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Abstract. In this paper, a decision table in rough set theory is classified
into three types according to its consistency. Three parameters α (whole
certainty measure), β (whole consistency measure) and γ (whole sup-
port measure) are introduced to evaluate the performance of a decision
rule set induced from a decision table. For three types of decision tables,
the dependency of the parameters upon condition/decision granulation
is analyzed. The parameters can be used to construct an evaluation func-
tion in favor of selecting a better one from some different rule acquiring
methods for real decision problems.

Keywords: Rough set theory, decision table, decision rule, knowledge
granulation, decision evaluation.

1 Introduction

Recently, rough set theory proposed by Pawlak in [1] has become a popular
mathematical framework for pattern recognition, image processing, feature se-
lection, neuro computing, conflict analysis, decision support, data mining and
knowledge discovery process from large data sets [2-7]. For decision problems,
by various kinds of reduct techniques, a set of decision rules can be generated
from a decision table for classification or prediction [8-10].

In recent years, how to evaluate the performance of a decision rule has been
becoming a very important issue in rough set theory[11-16]. In fact, a set of
decision rules can be generated from a decision table by adopting any kind of
reduction methods. In [11], Yao proposed several evaluation criterions for deci-
sion rules such as the generality, the absolute support, the change of support
and the change of support, and so on. In [13], based on information entropy,
Düntsch suggested some uncertainty measures of a decision rule, and proposed
three criterions for model selection as well. In additional, several other measures
such as certainty measure and support measure are often used to evaluate a de-
cision rule [3, 7, 15]. However, because all of these measures are defined only for
a single decision rule, they are unsuitable for measuring the whole performance
of a rule set. Another two kinds of measures, the approximation accuracy for
decision classes and the consistency degree for a decision table [1, 16], in some
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sense, could be regarded as measures for whole performance of all decision rules
generated from a decision table. Nevertheless, the approximation accuracy and
consistency degree have some limitations. For instance, the certainty and con-
sistency of a rule set could not be well depicted by the approximation accuracy
and consistency degree when their values achieve 0. As we know, the fact that
approximation accuracy/consistency degree is equal to 0 only implies that there
is no decision rule with the certainty 1 in the decision table. So the approxima-
tion accuracy and consistency degree of a decision table cannot give elaborate
depictions of the certainty and consistency to a rule set.

This paper aims to find some criterions for evaluating the whole performance
of a set of decision rules. In Section 2, some preliminary concepts such as indis-
cernibility relation, partition, partial relation of knowledge and decision table are
briefly recalled. In Section 3, three parameters α, β and γ for evaluating a set of
rules are introduced. The dependency of the parameters upon condition/decision
granulation is analyzed. Section 4 concludes the paper.

2 Some Basic Concepts

An information system S is a pair (U, A), where U is a non-empty, finite set of
objects called the universe and A is a non-empty, finite set of attributes, such
that a : U → Va for any a ∈ A, where Va is called the domain of a.

Each non-empty subset B ⊆ A determines an indiscernibility relation RB =
{(x, y) ∈ U × U | a(x) = a(y), ∀a ∈ B}. The relation RB partitions U into some
equivalence classes U/RB = {[x]B | x ∈ U}, where [x]B = {y ∈ U | (x, y) ∈ RB}.

We define a partial relation � on the family {U/B | B ⊆ A} as follows[17]:
U/P � U/Q (or U/Q � U/P ), if and only if, for every Pi ∈ U/P , there exists
Qj ∈ U/Q such that Pi ⊆ Qj, where U/P = {P1, P2, · · · , Pm} and U/Q =
{Q1, Q2, · · · , Qn} are partitions induced by P, Q ⊆ A, respectively. In this case,
we say that Q is coarser than P , or P is finer than Q. If U/P � U/Q and
U/P �= U/Q, we say Q is strictly coarser than P (or P is strictly finer than Q),
denoted by U/P ≺ U/Q (or U/Q 
 U/P ). It is clear that U/P ≺ U/Q, if and
only if, for every X ∈ U/P , there exists Y ∈ U/Q such that X ⊆ Y , and there
exist X0 ∈ U/P , Y0 ∈ U/Q such that X0 ⊂ Y0.

A decision table is an information system S = (U, C ∪ D) with C ∩ D = Ø,
where C is called condition attribute set, and D is called decision attribute set.
If U/C � U/D, then S = (U, C ∪ D) is said to be consistent, otherwise it is
inconsistent.

Definition 1. [1,16] Let S = (U, C∪D) be a decision table, Xi ∈ U/C, Yj ∈ U/D
and Xi ∩ Yj �= Ø. By des(Xi) and des(Yj), we denote the descriptions of the
equivalence classes Xi and Yj in the decision table S. A decision rule is formally
defined as Zij : des(Xi) → des(Yj).

The certainty measure and support measure of a decision rule Zij are defined
as μ(Zij) = |Xi ∩ Yj |/|Xi|, s(Zij) = |Xi ∩ Yj |/|U |, where, by | · |, we denote the
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cardinality of a set. It is clear that the values of μ(Zij) and s(Zij) of a decision
rule Zij fall into the interval [ 1

|U| , 1].
By |Zij |, we denote the cardinality of the set Xi ∩ Yj , which is called the

support number of the rule Zij . For convenience, by a(x) (a ∈ C) and d(x)
(d ∈ D), we denote the values of the object x under the condition attribute a
and the decision attribute d, respectively.

Definition 2. Let S = (U, C∪D) be a decision table, U/C = {X1, X2, · · · , Xm},
U/D = {Y1, Y2, · · · , Yn}. A condition class Xi ∈ U/C is said to be consistent if
d(x) = d(y) for ∀x, y ∈ Xi and ∀d ∈ D; a decision class Yj ∈ U/D is said to be
converse consistent if a(x) = a(y) for ∀x, y ∈ Yj and ∀a ∈ C.

It is easy to see that a decision table S = (U, C ∪ D) is consistent if every
condition class Xi ∈ U/C is consistent.

Definition 3. Let S = (U, C∪D) be a decision table, U/C = {X1, X2, · · · , Xm},
U/D = {Y1, Y2, · · · , Yn}. S is said to be converse consistent, if every decision
class Yj ∈ U/D is converse consistent, i.e., U/D � U/C.

A decision table is called a mixed decision table if it is neither consistent nor
converse consistent.

S = (U, C ∪D) is called to be restrict consistent (restrict converse consistent)
if U/C ≺ U/D (U/D ≺ U/C).

Definition 4. [15,18] Let S = (U, A) be an information system, U/A = {R1, R2,
· · · , Rm}. The knowledge granulation of A is defined as

G(A) =
1

|U |2
m∑

i=1

|Ri|2. (1)

Consequently, G(C), G(D) and G(C∪D) are called as the condition granulation,
decision granulation and granulation of S, respectively.

3 Whole Performance Evaluation for a Rule Set

In rough set theory, several measures for a decision rule Zij : des(Xi) → des(Yj)
have been introduced in [1], such as certainty measure μ(Xi, Yj) = |Xi∩Yj |/|Xi|,
support measure s(Xi, Yj) = |Xi ∩ Yj |/|U |. However, because μ(Xi, Yj) and
s(Xi, Yj) are defined only for a single decision rule, they are unsuitable for mea-
suring the whole performance of a rule set.

In [1], the approximation accuracy of a classification is introduced by Pawlak.
Let F = {Y1, Y2, · · · , Yn} be a classification of the universe U , and C a condition
attribute set. CF = {CY1, CY2, · · · , CYn} and CF = {CY1, CY2, · · · , CYn} are
called C-lower and C-upper approximations of F , where CYi =

⋃
{x ∈ U |

[x]C ⊆ Yi ∈ F}(1 ≤ i ≤ n), CYi =
⋃

{x ∈ U | [x]C ∩ Yi �= Ø, Yi ∈ F}(1 ≤ i ≤ n).

The approximation accuracy of F by C is defined as aC(F ) =
�

Yi∈U/D |CYi|
�

Yi∈U/D |CYi| . The
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approximation accuracy expresses the percentage of possible correct decisions
when classifying objects employing the attribute set C. In a sense, aC(F ) can
be used to measure certainty of a decision table. The consistency degree of a
decision table S = (U, C ∪ D), another measure in rough set theory, is defined
as cC(D) = 1

|U|
∑n

i=1 |CYi|. The consistency degree expresses the percentage of
objects which can be correctly classified to decision classes of U/D by condition
attribute set C. In a sense, cC(D) can be used to measure the consistency of a
decision table.

Nevertheless, the certainty and consistency of a rule set could not be well
depicted by approximation accuracy and consistency degree when their values
achieve 0. Here, three new evaluation parameters α, β and γ are introduced to
solve the problem.

Definition 5. Let S = (U, C ∪ D) be a decision table, RULE = {Zij |Zij :
des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The certainty measure α of S is
defined as

α(S) =
m∑

i=1

n∑

j=1

s(Zij)μ(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U ||Xi|

, (2)

where s(Zij) and μ(Zij) are the certainty measure and support measure of the
rule Zij, respectively.

Although the parameter α is defined in the context of all decision rules from a
decision table, it is also suitable to an arbitrary decision rule set as well.

Theorem 1 (Extremum). Let S = (U, C ∪ D) be a decision table, RULE =
{Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}.

(1) For every Zij ∈ RULE, if μ(Zij) = 1, then the parameter α achieves its
maximum value 1;

(2) If m = 1 and n = |U |, then parameter α achieves its minimum value 1
|U| .

Remark. In fact, a decision table S = (U, C ∪ D) is consistent if and only if
every decision rule from S is certain, i.e., its certainty measure is equal to 1.
So, (1) of Theorem 1 shows that the parameter α achieves its maximum value 1
when S is consistent. (2) of Theorem 1 shows that α achieves its minimum value
1
|U| when we want to distinguish any two objects of U without any condition
information.

Theorem 2. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables. If U/C1 = U/C2, U/D2 ≺ U/D1, then α(S1) > α(S2).

Proof. From U/C1 = U/C2 and the converse consistency of S1 and S2, it follows
that there exist Xp ∈ U/C1 and Yq ∈ U/D1 such that Yq ⊆ Xp. By U/D2 ≺
U/D1, there exist Y 1

q , Y 2
q , · · · , Y s

q ∈ U/D2 (s > 1) such that Yq =
⋃s

k=1 Y k
q .

In other words, the rule Zpq in S1 can be decomposed into a family of rules
Z1

pq, Z
2
pq, · · · , Zs

pq in S2. It is clear that |Zpq| =
∑s

k=1 |Zk
pq|. Therefore, |Zpq|2 >∑s

k=1 |Zk
pq|2. Hence, by the definition of α(S), α(S1) > α(S2).

Theorem 2 states that the certainty measure α of a converse consistent deci-
sion table decreases with its decision classes becoming finer.
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Theorem 3. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables. If U/D1 = U/D2, U/C2 ≺ U/C1, then α(S1) < α(S2).

Proof. From U/C2 ≺ U/C1, there exists Xl ∈ U/C1 and an integer s > 1 such
that Xl =

⋃s
k=1 Xk

l , where Xk
l ∈ U/C2. It is clear that |Xl| =

∑s
k=1 |Xk

l |, and
therefore, 1

|Xl| < 1
|X1

l |
+ 1

|X2
l |

+ · · · + 1
|Xs

l | .

Noticing that both S1 and S2 are converse consistent, we have |Zlq| = |Zk
lq|

(k = 1, 2, · · · , s). Hence, we have that

α(S1) =
m∑

i=1

n∑
j=1

s(Zij)μ(Zij)

= 1
|U|

l−1∑
i=1

n∑
j=1

|Zij |2
|Xi| + 1

|U|
n∑

j=1

|Zlj |2
|Xl| + 1

|U|
m∑

i=l+1

n∑
j=1

|Zij |2
|Xi|

< 1
|U|

l−1∑
i=1

n∑
j=1

|Zij |2
|Xi| + 1

|U|
s∑

k=1

n∑
j=1

|Zlj |2
|Xk

l | + 1
|U|

m∑
i=l+1

n∑
j=1

|Zij |2
|Xi|

= α(S2).
Theorem 3 states that the certainty measure α of a converse consistent deci-

sion table increases with its condition classes becoming finer.

Definition 6. Let S = (U, C ∪ D) be a decision table, RULE = {Zij |Zij :
des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The consistency measure β of S is
defined as

β(S) =
m∑

i=1

|Xi|
|U | [1 −

Ni∑

j=1

μ(Zij)(1 − μ(Zij))], (3)

where Ni is the number of decision rules determined by the condition class Xi,
μ(Zij) is the certainty measure of the rule Zij.

Although the parameter β is defined in the context of all decision rules from a
decision table, it is also suitable to an arbitrary decision rule set as well.

Theorem 4 (Extremum). Let S = (U, C ∪ D) be a decision table, RULE =
{Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}.

(1) For every Zij ∈ RULE, if μ(Zij) = 1, then the parameter β achieves its
maximum value 1;

(2) For every Zij ∈ RULE, if μ(Zij) = 1
|U| , then the parameter β achieves

its minimum value 1
|U| .

It should be noted that the parameter β achieves its maximum 1 when S =
(U, C ∪ D) be a consistent decision table.

Theorem 5. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables or mixed decision tables. If U/C1 = U/C2, U/D2 ≺
U/D1, then β(S1) > β(S2).

Proof. A mixed decision table S can be transformed into a converse consistent
decision table S

′
via deleting all certainty decision rules. And it is clear that
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β(S) = β(S
′
). So, we only need to prove this theorem for converse consistent

tables.
Since U/C1 = U/C2 and the converse consistency of S1 and S2, there exist

Xp ∈ U/C1 and Yq ∈ U/D1 such that Yq ⊆ Xp. By U/D2 ≺ U/D1, there exist
Y 1

q , Y 2
q , · · · , Y s

q ∈ U/D2 (s > 1) such that Yq =
⋃s

k=1 Y k
q . In other words, the

rule Zpq in S1 can be decomposed into a family of rules Z1
pq, Z

2
pq, · · · , Zs

pq in S2.
It is clear that |Zpq| =

∑s
k=1 |Zk

pq|. Hence, we have that

μ(Zpq)(1 − μ(Zpq)) = |Zpq||Xp|−|Zpq|2
|Xp|2

=
|Z1

pq+Z2
pq+···+Zs

pq||Xp|−|Z1
pq+Z2

pq+···+Zs
pq|2

|Xp|2

<
|Z1

pq+Z2
pq+···+Zs

pq||Xp|−(|Z1
pq|2+|Z2

pq|2+···+|Zs
pq|2)

|Xp|2

=
|Z1

pq||Xp|−|Z1
pq|2

|Xp|2 +
|Z2

pq||Xp|−|Z2
pq|2

|Xp|2 + · · · +
|Zs

pq||Xp|−|Zs
pq|2

|Xp|2

=
s∑

k=1
μ(Zk

pq)(1 − μ(Zk
pq)).

Then, we can obtain that

β(S1) =
m∑

i=1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))]

=
p−1∑
i=1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))] + |Xp|
|U| [1 −

Np∑
j=1

μ(Zpj)(1−

μ(Zpj))] +
m∑

i=p+1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))]

>
p−1∑
i=1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))] +
m∑

i=p+1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1−

μ(Zij))]+
|Xp|
|U| [1−

s∑
k=1

μ(Zk
pq)(1−μ(Zk

pq))−
Ni∑

j=1,j �=q

μ(Zpj)(1−μ(Zpj))]

= β(S2).
Theorem 5 states that the consistency measure β of a mixed (or converse

consistent) decision table decreases with its decision classes becoming finer.

Theorem 6. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables or mixed decision tables. If U/D1 = U/D2, U/C2 ≺
U/C1, then β(S1) < β(S2).

Proof. Similar to the proof of Theorem 5, it can be proved.
Theorem 6 states that the consistency measure β of a mixed (or converse

consistent) decision table increases with its condition classes becoming finer.

Definition 7. Let S = (U, C ∪ D) be a decision table, RULE = {Zij |Zij :
des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The support measure γ of S is
defined as

γ(S) =
m∑

i=1

n∑

j=1

s2(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U |2 , (4)

where s(Zij) is the support measure of the rule Zij.
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Although the parameter γ is defined in the context of all decision rules from a
decision table, it is suitable to an arbitrary decision rule set as well.

Theorem 7 (Extremum). Let S = (U, C ∪ D) be a decision table, RULE =
{Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}.

(1) If m = n = 1, then the parameter γ achieves its maximum value 1;
(2) If m = |U | or n = |U |, then the parameter γ achieves its minimum value

1
|U| .

Theorem 8. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two decision
tables, then γ(S1) < γ(S2), if and only if, G(C1 ∪ D1) < G(C2 ∪ D2).

Proof. Suppose U/(C ∪ D) = {Xi ∩ Yj | Xi ∩ Yj �= Ø, Xi ∈ U/C1, Yj ∈ U/D},
RULE = {Zij |Zij : Xi → Yj , Xi ∈ U/C, Yj ∈ U/D}. From Definition 4 and
s(Zij) = |Xi∩Yj|

|U| , it follows that

G(C ∪ D) = 1
|U|2

m∑
i=1

n∑
j=1

|Xi ∩ Yj |2

=
m∑

i=1

n∑
j=1

( |Xi∩Yj|
|U| )2 =

m∑
i=1

n∑
j=1

s2(Zij)

= γ(S).
Therefore, γ(S1) < γ(S2) if and only if G(C1 ∪ D1) < G(C2 ∪ D2).
Theorem 8 states that the support measure γ of a decision table increases

with the granulation of the decision table becoming bigger.

Theorem 9. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables. If U/C1 = U/C2, U/D1 ≺ U/D2, then γ(S1) < γ(S2).

Proof. Similar to Theorem 5, it can be proved.
Theorem 9 states that the support measure γ of a decision table decreases

with its decision classes becoming finer.

4 Conclusions

In this paper, the limitations of the traditional measures are exemplified. Three
parameters α, β and γ are introduced to measure the certainty, consistency and
support of a rule set obtained from a decision table, respectively. For three types
of decision tables (consistent, converse consistent and mixed), the dependency
of parameters α, β and γ upon condition/decision granulation is analyzed.
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