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The main work in spatial epidemiology is the study of spatial variation in disease risk or
incidence, including the spatial patterns of the populations. Spread of diseases in human
populations can exhibit different patterns for spatially explicit approaches. In this paper,
we investigate an epidemic model with both diffusion and migration. In the previous
work (Sun et al., J Stat Mech P11011, 2007), we studied the model only with diffusion
and obtained stationary Turing pattern. However, combined with migration, the model
will exhibit typical traveling pattern, which is shown by both mathematical analysis and
numerical simulations. The results obtained well extend the finding of pattern formation
in the epidemic model and may well explain the field observed in the real world.
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1. Introduction

Most studies concentrate on the local temporal development of diseases and epi-
demics. Their geographical spread is less well understood, although important
progress has been achieved in many cases.1−3 The key question, as well as diffi-
culty, is how to include spatial effects and quantify the dispersal of individuals.4

This problem has been studied with some effort in various ecological systems, for
instance, in plant dispersal by seeds. Today’s volume, speed, and nonlocality of
human travel, as well as the spread of smallpox in Great Britain,5 demonstrate
that modern epidemics cannot be accounted for by local diffusion models that are
applicable only as long as the mean distance traveled by individuals is small com-
pared to geographical distances. These local reaction-diffusion models generically
lead to epidemic wavefronts, which were observed, for example, in the geo-temporal
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spread of the Black Death in Europe from 1347 to 1350.6−8 Thus, spatial epidemic
models are more suitable for describing the process of epidemiology.

One of the simplest models which captures the fundamental features of infection
dynamics is the S-I (susceptible-infectious) model. Such a model exhibits a single
epidemic. Each individuals can be in one of two states: susceptible to the disease,
infectious who can spread the disease to susceptible. We firstly pay attention to the
following reaction-diffusion model:9

∂S

∂t
= rS

(
1 − S

K

)
− βSpIq + DS∇2S, (1a)

∂I

∂t
= βSpIq − dI + DI∇2I, (1b)

where K represents carrying capacity, r represents intrinsic birth rate constant, β is
the force of infection or the rate of transmission, d represents the death coefficient
of I for the disease and DS and DI are the diffusion coefficients. And ∇2 = ∂/∂x2

or (∂2/∂x2 +∂2/∂y2). For the sake of simplicity, we consider the case that p+q = 1
and p, q > 0.

However, individuals can exhibit a correlated motion towards certain direction
instead of random motion, and this phenomena widely exists in the real world.11

For example, some people want to travel, study or settle down in Canada from
their native country. Then they may exhibit a correlated motion from their native
country towards the country where they want to go. Here, we call this phenomenon
as migration. And this phenomenon can enhance the spread of some disease, such as
Tuberculosis.10 To the best of our knowledge, there is little work on the dynamical
behavior of both migration and diffusion in the epidemic model. For the above
reasons, in the present paper, we pose the equation to describe the spatiotemporal
epidemic dynamics allowing for both migration and diffusion as follows:

∂S

∂t
+ cS∇S = rS

(
1 − S

K

)
− βSpIq + DS∇2S = f(S, I) + DS∇2S, (2a)

∂I

∂t
+ cI∇I = βSpIq − dI + DI∇2I = g(S, I) + DI∇2I, (2b)

where ∇ = ∂/∂x (or ∂/∂x + ∂/∂y) and ci (i = S, I) is the migration coefficient.

2. Linear Stability Analysis

The first step in analyzing the model (2) is to determine the behavior of the non-
spatial model obtained by setting space derivatives equal to zero. The non-spatial
model has at most three stationary states, which correspond to spatially homoge-
neous equilibria of the model, in the nonnegative quadrant: two disease-free states
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(0, 0), (K, 0) and an endemic stationary state E∗ = (S∗, I∗) , where

S∗ = K

(
1 − β

1
p

rd
1−p

p

)
,

I∗ =
(

β

d

) 1
p

S∗.

And the condition to ensure that S∗ and I∗ are positive is that r > β
1
p /d

1−p
p .

From the biological point of view, we are interested in studying the stabil-
ity behavior of the interior equilibrium point E∗, and the Jacobian matrix J is
given by

J =
(

∂Sf ∂If

∂Sg ∂Ig

)
(S∗,I∗)

=
(

a11 a12

a21 a22

)
. (3)

It is easy to see that model equation (2) is the form of generalized reaction-
diffusion-migration model. To consider pattern formation for system (2), we should
look for the dispersion relation, which gives the condition for pattern formation.
Following Murray,6 we will assume period (or zero-flux) boundary conditions and
prescribed initial conditions. A symmetry breaking occurs when a homogeneous
steady state solution of system (2) is linearly stable to perturbations in the absence
of the diffusion and migration terms, but linearly unstable to small spatial pertur-
bations in the presence of diffusion and migration. It is a simple matter to find
the exact algebraic formulation of the dispersion relation when these equations are
subject to certain boundary conditions and stability properties. Here we consider
an approach based on Laplace transform methods which is convenient for finding
symmetry breaking (Turing instability) conditions in the case when the systems
include diffusion and migration. The Laplace transform methods are extensively
used in the reaction-migration-diffusion equations including the system with frac-
tional diffusion and fractional reaction.12−14

We make the following substitutions:

S = S∗ + S(−→r , t), (4)

and

I = I∗ + I(−→r , t), (5)

into the kinetic equations and assume |S| � S∗, |I | � I∗. Then, in the linear
approximation, we have

∂S

∂t
+ cS∇S = a11S + a12I + DS∇2S, (6a)

∂I

∂t
+ cI∇I = a21S + a22I + DI∇2I. (6b)
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The initial conditions are assumed as

S|t=0 = f(−→r ) (7)

and

I|t=0 = g(−→r ), (8)

where the functions f(−→r ) and g(−→r ) decay rapidly for −→r → ±∞. Following the
standard approach, let us now perform a Laplace transformation of the linearized
equations over the two independent variables −→r and t. For −→r we use the so-called
two-sided version of the transformation. The relations for the forward and backward
transforms are

Sλn =
∫ ∞

0

e−λtdt

∫ +∞

−∞
S(−→r , t)e−n−→r d−→r (9)

and

S(−→r , t) = − 1
4π2

∫ β+i∞

β−i∞
eλtdλ

∫ i∞

−i∞
Sλnen−→r dn, (10)

where λ and n are complex variables. And λ is the Laplace transform variable, n is
the Fourier transform variable. That is to say that, n = ik or (ik, il) corresponding
to one- and two-dimensional space, and the wave numbers k and l are real numbers.
In Eq. (10) for the backward transformation, the integration contour in the n-plane
is the imaginary axis. In the λ-plane the contour is parallel to the imaginary axis
and located to the right of all singularities of the integrand.

After this transformation, the kinetic equations read as

(λ − a11 + cSn − DSn2)Sλn − a12Iλn = F (n) (11)

and

(λ − a22 + cIn − DIn
2)Iλn − a21Sλn = G(n), (12)

where F (n) and G(n) are the transforms of f(−→r ) and g(−→r ). To reveal the presence
of an instability and disclose its character, it is sufficient to consider one vari-
able. The temporal growth of the perturbations can now be found by inverting the
Laplace transforms, which follows directly after factorizing the denominator. Then
we obtain the linear stability of this state as described by the dispersion relation

D(λ, n) = (λ − a22 + cIn − DIn
2)(λ − a11 + cSn − DSn2) − a12a21. (13)

If we set r as a bifurcation parameter, then analysis of Eq. (13) gives the thresh-
olds for Hopf and Turing instabilities:9

rH = 2d
p−1

p β
1
p − dp

(
β

d

) 1
p

− dp, (14)
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and

rT =

(
2dpβ

1
p − dpβ

(
β

d

) p−1
p

+ 2k2
T DIβ

1
p − k2

T DIβp

(
β

d

) p−1
p

d
p−1

p − k2
T dpDSd

p−1
p

− k4
T DSDI d

p−1
p

)/(
d

p−1
p (k2

T DI + dp)
)

,

where k2
T =

√
(a11a22 − a12a21)/(DSDI). In the rest of this paper, we investigate

the pattern of the system (2) assuming that rH < r < rT .

The condition for a spatial mode n (in one- or two-dimensional space) is that it is
unstable and thus system (2) grows into a pattern, that is Re(λ) > 0. Here, we pay
attention the one-dimensional space case, that is n = ik. The dispersion relation
Re(λ) > 0 is algebraically complicated, so we straightforwardly use Eq. (13) to
study the numerical computation for this model. The condition for diffusion driven
instability is that Re(λmax) > 0 at k = kmax �= 0.

In the present paper, we focus on the parameter cS and cI , which determine
the intensity of migration, and set that r = 0.4, K = 1, p = 0.4, β = 0.5, d = 0.6,
DS = 0.1 and DI = 0.5. Note that under these values of the parameters, we obtain
the stationary Turing pattern.9 Figure 1 depicts the range of the values of k for
some constant values, and the small perturbation may bring about an instability
with time. From Fig. 1, we can see that the spatial pattern can occur due to the
positive real parts of λ.

Fig. 1. An illustration of the dispersion relation [Re(λ) versus k] from the Eq. (13) with cS =
cI = 1. Other parameter values are used as: r = 0.4, K = 1, p = 0.4, β = 0.5, d = 0.6, DS = 0.1
and DI = 0.5.
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3. Main Results

In this following, we give the numerical solution to the system (2) in the
one-dimensional space. We used the RK4EX algorithm for the reaction terms, a
Fourier transform technique to calculate the first and second partial derivative in
space x variables, i.e., the diffusion and migration terms. In addition, the Fourier
technique can save the time in obtaining these results, and our numerical results
also validated by using the explicit an Euler method. In our calculations, the param-
eters values were taken to be �x = 1,�t = 0.01 and the space was discretized to
1×100 lattices on the one-dimensional space. The periodic boundary condition was
used in the simulation. Note that though we vary the number of mesh points such
as 1 × 200 and 1 × 300, the quality results of system (2) are all the same. In the
simulations different types of dynamics are observed and we have found that the
distributions of S and I are always of the similar type.

In the previous paper,9 we obtain the typical dynamics of population density
variation is the formation of isolated groups, i.e., stripe-like or spotted or coex-
istence of both. Now, it is natural to ask what kind of pattern formation of the
population can be observed when considering migration. It can be seen from Fig. 2
that the system (2) shows typical traveling spatial pattern when combined with
migration. That is to say that, the migration term plays an important role in for-
mation of the population, i.e., changes the Turing pattern into into traveling spatial
pattern.

To well show the effect of migration, we plot the time series at some spatial
point in Fig. 3. From this figure, one can conclude that migration can lead the
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Fig. 2. Typical spatiotemporal pattern diagram for the model (2) with migration. Parameter
values are used as: r = 0.4, K = 1, p = 0.4, β = 0.5, d = 0.6, DS = 0.1, DI = 0.5 and
cS = cI = 1. (a) The pattern of the susceptible individuals; and (b) The pattern of the infectious
individuals.
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Fig. 3. Time series diagram for the model (2) with migration at x = 25. Parameter values are
used as: r = 0.4, K = 1, p = 0.4, β = 0.5, d = 0.6, DS = 0.1, DI = 0.5 and cS = cI = 1. (a) The
density of the susceptible; and (b) The density of the infectious.
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Fig. 4. An illustration of the variation in pattern wavelength with cS . The other parameter
values are the same as in Fig. 1. As shown in the figure, the wavelength increases with cS . The
wavelength is calculated using Eq. (15).

system undergoes oscillatory in time. Moreover, we find that the S and I are in
synchrony at different time. The presence, absence or degree of synchronization can
be an important part of the function or malfunction of a biological system. This is
because synchrony may decrease the global persistence.15 In other words, migration
may lead the disease to be extinctive.

The other property that characterizes the spatial patterns of the population is
wavelength. Determining the wavelength for the spatial pattern is a key issue in the
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field of spatial epidemiology. In other words, we can well know the distribution of
the population in the spatial space by calculating the wavelength. When a spatial
pattern occur, one expects that these will be dominated by the fastest growing
mode. Since the fastest growing mode corresponds to the spatial pattern with wave
number, kmax, the wavelength has the following form

λw =
2π

kmax
. (15)

Combining the Eqs. (13) and (15), we can give the prediction the wavelength
with respect to the parameters cS (cI is fixed as 1), which are shown in Fig. 4.
From the figure, one can see that the wavelength is increased as cS being increased.
Biologically speaking, the migration of the population can speed up the invasion
speed. This is consistent with the real world.

4. Discussion and Conclusion

We have presented a theoretical analysis of evolutionary processes that involves
organism distribution and the interaction of spatially distributed populations with
local diffusion and migration. Our analysis and numerical simulations reveal that
the migration plays a constructive role in the pattern form, i.e., try changing the
Turing pattern into traveling wave. Furthermore, we give the calculation of wave-
length of the traveling pattern.

Traveling waves, arising essentially from activator-inhibitor dynamics,16−18 are
predicted by theory in a range of host-natural enemy systems.19−22 However, even
where waves are dynamically possible, they may not be detected because of a lack
of spatio-temporal data at the appropriate resolution. Furthermore, few systems
are documented well enough both to detect repeated waves and to explain their
interaction with spatio-temporal variations in population structure and demogra-
phy. In Grenfell et al.,8 they demonstrate recurrent epidemic traveling waves in an
exhaustive spatio-temporal data set for measles in England and Wales. Our results
can well capture the main features of the observed data, which is obtained from the
real world.

We illustrate the emergence of the traveling pattern in the epidemic process
with the simplest dynamical description. Despite its simplicity and spatial coarse-
ness, this model reproduces the novel phenomenon. The model is introduced in a
general form so that it has broad applications to a range of interacting popula-
tions. For example, it can be applied to diseases such as measles, AIDS, flu, etc. On
the other hand, recent studies show noise plays an important role on the epidemic
model,23−24 which indicates that the noise induces sustained oscillations and coher-
ence resonance in the epidemic model. For such reason, we should pay attention to
the role of noise in the future work.
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