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In this paper, we propose a fuzzy SV- k -modes algorithm that uses the fuzzy k -modes clus- 

tering process to cluster categorical data with set-valued attributes. In the proposed al- 

gorithm, we use Jaccard coefficient to measure the dissimilarity between two objects and 

represent the center of a cluster with set-valued modes. A heuristic update way of clus- 

ter prototype is developed for the fuzzy partition matrix. These extensions make the fuzzy 

SV- k -modes algorithm can cluster categorical data with single-valued and set-valued at- 

tributes together and the fuzzy k -modes algorithm is its special case. Experimental results 

on the synthetic data sets and the three real data sets from different applications have 

shown the efficiency and effectiveness of the fuzzy SV- k -modes algorithm. 
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1. Introduction 

The k -means algorithm is one of the most popular and best-known algorithms for clustering numerical data [1,2] . How-

ever, a lot of data in real applications are described by categorical attributes. For example, gender, profession, title, and

hobby of customers are usually defined as categorical attributes. Unlike numeric data, categorical values are discrete and

unordered. The standard k -means clustering process cannot be directly applied to categorical data due to lacking of geo-

metric properties. Huang [3] proposed a k -modes algorithm to cluster categorical data by modifying the standard k -means

clustering process [4] . In the k -modes algorithm, Huang used the simple matching dissimilarity measure to compute the

distance between two categorical objects and represented the center of a cluster with modes instead of means and gave

a frequency-based method to update modes. In [5] , Huang further presented a fuzzy k -modes algorithm that is the fuzzy

version of the k -modes algorithm in the framework of the fuzzy k -means algorithm [6] . Because of their efficiency in clus-

tering very large categorical data, the k -modes and fuzzy k -modes algorithms have been widely used in various applications

[7–12] . 

For most of data mining algorithms, a table or matrix is usually used as an input. In this matrix, each row represents

an object and each column is an attribute only having a value for each object [13] . However, in real applications, an object

may take multiple values in some attributes. For example, many people have more than one hobby in questionnaire. Such

a data representation is widespread in many domains, such as retails, insurances and telecommunications. A more general

data representation is shown in Table 1 . 
∗ Corresponding author. 

E-mail addresses: cfy@sxu.edu.cn (F. Cao), zx.huang@szu.edu.cn (J.Z. Huang), ljy@sxu.edu.cn (J. Liang). 

http://dx.doi.org/10.1016/j.amc.2016.09.023 

0 096-30 03/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2016.09.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.09.023&domain=pdf
mailto:cfy@sxu.edu.cn
mailto:zx.huang@szu.edu.cn
mailto:ljy@sxu.edu.cn
http://dx.doi.org/10.1016/j.amc.2016.09.023


2 F. Cao et al. / Applied Mathematics and Computation 295 (2017) 1–15 

Table 1 

An example data set on questionnaire. 

ID Name Sex . . . Title Hobby 

1 John M {CEO, Prof.} {Sport, Music} 

2 Tom M {CEO, Chair} {Reading, Sport} 

. . . . . . . . . . . . . . . . . . 

n Katty F {Prof., Chair} {Traveling, Music} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Without loss of generality, data in Table 1 can be formulated as follows. Suppose that X = { X 1 , X 2 , . . . , X n } is a set of n

objects and each object is described by m attributes { A 1 , A 2 , . . . , A m 

} , where X i = (X i 1 ; X i 2 ; . . . ; X im 

) and 1 ≤ i ≤ n . Let V 

j be

the domain values of the attribute A j in X and V A j be the power set of V 

j , if X i j ∈ V A j , we call X i as a set-valued object and

A j as a set-valued attribute. 

To cluster X , the most intuitive method is to convert V 

j (1 ≤ j ≤ m ) into | V 

j | binary categorical attributes. The value 0 or 1

indicates the categorical value is absent or present [14] . Although transformation simplifies the representation of set-valued

objects, this treatment unavoidably results in semantic information loss, especially in the understandability of clustering

results. Moreover, as the number of categorical attributes increases, two set-valued objects are very likely to be similar even

if the categorical values they contain are very different [15] . 

Different distance functions between two objects often result in different cluster structures in clustering algorithms. The

attribute values of different set-valued objects usually overlap for a given attribute instead of equal or unequal. For example,

the objects 1 and 2 in Table 1 have one overlapping value “CEO” for the attribute Title . It is only natural that the dissimilarity

measure between two set-valued objects should be in the range of [0,1] instead of {0, 1} for a given attribute. Thus, inherent

clusters probably overlap in a data set. The fuzzy k -modes algorithm has obtained better results in clustering data with

overlapping clusters [9] . Moreover, the fuzzy partition matrix can provide more information to help users to determine the

final clustering and to identify the boundary objects. 

In this paper, we propose a fuzzy method to cluster objects with set-valued attributes. The main contributions of the

paper are outlined as follows: 

• We define the center of a cluster as set-valued-modes which is a set-valued object that minimizes the sum of the dis-

tance between each object in the cluster and the set-valued modes. 

• We develop a way to obtain the fuzzy partition matrix and give a heuristic update way of cluster centers to minimize

the objective function. 

• We propose a fuzzy SV- k -modes algorithm which can partition data with single-valued and set-valued attributes together

and the fuzzy k -modes algorithm is its special case. 

• We analyze the influence of the fuzziness factor for the effectiveness of the fuzzy SV- k -modes algorithm. 

• Experimental results on the synthetic and real data sets have shown the efficiency and effectiveness of the fuzzy SV- k -

modes algorithm. 

The rest of this paper is structured as follows. Section 2 reviews the hard and fuzzy k -modes algorithms. In Section 3 ,

a fuzzy SV- k -modes algorithm is presented. In Section 4 , we propose an algorithm to generate set-valued data and validate

the scalability of the fuzzy SV- k -modes algorithm. In Section 5 , we show experimental results on the three real data sets

from different applications. We draw conclusions in Section 6 . 

2. The hard and fuzzy k -modes algorithms 

In this section, we briefly review the k -modes [3] and fuzzy k -modes [5] algorithms, which have become a very popular

technique in clustering categorical data. Both these two algorithms use the simple matching dissimilarity measure for cate-

gorical objects, modes instead of means for clusters. They use different methods to update modes in the clustering process

for minimizing the objective function. In the k -modes algorithm, a mode is composed of the value that occurs most fre-

quently in each attribute for a given cluster. In the fuzzy k -modes algorithm, each attribute value of a mode is given by the

value that achieves the maximum of the summation of membership degrees in a given cluster. These modifications have

removed the numeric-only limitation of the k -means and fuzzy k -means algorithms [16] . 

Let X = { x 1 , x 2 , . . . , x n } be a set of n objects described by a set of m categorical attributes { A 1 , A 2 , . . . , A m 

} , where x i =
(x i 1 ; x i 2 ; . . . ; x im 

) and 1 ≤ i ≤ n . The simple matching dissimilarity measure between x i and x j is defined as 

d(x i , x j ) = 

m ∑ 

s =1 

δ(x is , x js ) , (1) 

where 

δ(x is , x js ) = 

{
0 , i f x is = x js . 
1 , otherwise. 

(2) 
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A center Q of X , i.e. modes is defined if Q minimizes 

D (X, Q ) = 

n ∑ 

i =1 

d(x i , Q ) . (3)

Here, Q is not necessarily an object of X . 

The clustering aim of the k -modes and fuzzy k -modes algorithms is to partition X into k clusters and find W and Q that

minimize the objective function, 

F (W , Q ) = 

k ∑ 

l=1 

n ∑ 

i =1 

ω 

α
li d(x i , Q l ) , (4)

subject to 

0 ≤ ω li ≤ 1 , 1 ≤ l ≤ k, 1 ≤ i ≤ n, (5)

k ∑ 

l=1 

ω li = 1 , 1 ≤ i ≤ n, (6)

and 

0 < 

n ∑ 

i =1 

ω li < n, 1 ≤ l ≤ k, (7)

where k is a known number of clusters, α ∈ [1, ∞ ] is a fuzziness factor, W = [ ω li ] is a k -by- n real matrix and each element

indicates the membership degree of object x i belonging to the l th cluster, Q = [ Q 1 , Q 2 , . . . , Q k ] and Q l is the center of the

l th cluster with m categorical attributes. When α = 1 and ω li = { 0 , 1 } , Eq. (4) corresponds to the objective function of the

k -modes algorithm. Huang gave the modes updating methods of these two algorithms in [3,5] , respectively. 

3. Fuzzy SV- k -modes clustering 

k -type clustering algorithms, such as the k -means, fuzzy k -means, k -modes and fuzzy k -modes algorithms, consist of

three components: (1) distance function, (2) representation of cluster centers, and (3) update process of cluster centers. In

this section, we calculate the distance between two set-valued objects using Jaccard coefficient [17] and define the repre-

sentation of a set of objects as set-valued modes, and give a heuristic update way of cluster centers. 

3.1. Distance between two set-valued objects 

Let X i and X j be two set-valued objects described by a set of m attributes { A 1 , A 2 , . . . , A m 

} , the dissimilarity measure

between X i and X j is defined as 

d (X i , X j ) = 

m ∑ 

s =1 

δ′ (X is , X js ) , (8)

where 

δ′ (X is , X js ) = 1 − | X is 

⋂ 

X js | 
| X is 

⋃ 

X js | . (9)

Obviously, d ( x i , x j ) is a special case of d ( X i , X j ). 

3.2. Set-valued modes 

A center Q 

′ of X is defined as set-valued modes if Q 

′ minimizes 

D (X , Q 

′ ) = 

n ∑ 

i =1 

d (X i , Q 

′ ) . (10)

Here, Q 

′ is not necessarily an object of X . Q is a special case of Q 

′ . 
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3.3. The fuzzy-SV- k -modes algorithm with heuristic update strategy 

In the section, we propose a fuzzy SV- k -modes algorithm by extending the fuzzy k -modes algorithm. The fuzzy SV-

k -modes algorithm uses the fuzzy k -modes paradigm to cluster categorical data with set-valued attributes. For the fuzzy

SV- k -modes algorithm, the objective of partitioning X into k clusters is also to find W 

′ and Q 

′ that minimize the objective

function, 

F ′ ( W 

′ , Q 

′ ) = 

k ∑ 

l=1 

n ∑ 

i =1 

ω 

α
li d (X i , Q l ) , (11) 

subject to 

0 ≤ ω li ≤ 1 , 1 ≤ l ≤ k, 1 ≤ i ≤ n, (12) 

k ∑ 

l=1 

ω li = 1 , 1 ≤ i ≤ n, (13) 

and 

0 < 

n ∑ 

i =1 

ω li < n, 1 ≤ l ≤ k, (14) 

where W 

′ = [ ω li ] is a k -by- n real matrix and each element indicates the membership degree of object X i belonging to the

l th cluster, Q 

′ = [ Q 1 , Q 2 , . . . , Q k ] , and Q l is the set-valued modes of the l th cluster with m set-valued attributes. 

Minimization of F ′ in Eq. (11) with the constraints in Eqs. (12 )–(14) forms a class of constrained nonlinear optimization

problems whose solutions are unknown. To optimize F ′ in Eq. (11) , the usual method is to use partial optimization for Q 

′ 
and W 

′ . In this method, we first fix Q 

′ and find W 

′ that minimizes F ′ . Then, we fix W 

′ and compute Q 

′ that minimizes F ′ .
The matrix W 

′ can be obtained by the following theorem. 

Theorem 1. Let ˆ Q be fixed and minimize F ′ subject to Eqs. (12) –(14) . For α > 1, ˆ W is given by 

ˆ ω li = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 , if X i = 

ˆ Q l , 

0 , if X i = 

ˆ Q h , h � = l 

1 

∑ k 
h =1 

[ 
d ( ̂  Q l ,X i ) 

d ( ̂  Q h ,X i ) 

] 1 / (α−1) 
, if X i � = 

ˆ Q l and X i � = 

ˆ Q h , 1 ≤ h ≤ k 
(15) 

To minimize F ′ ( W 

′ , Q 

′ ) if W 

′ is fixed, we only need to minimize 
∑ n 

i =1 ω 

α
li 
δ′ (X is , Q ls ) , the sum of the distance between

the objects in X and Q l on the attribute A s where s ∈ { 1 , 2 , . . . , m } . As the attribute values in Q ls must be from the values in

V 

s , the number of categorical values in Q ls is in the range of [1, | V 

s |]. If we choose u s values { v s 
1 
, v s 

2 
, . . . , v s u s } from V 

s as the

values of Q ls , there are C u s | V s | combinations. Therefore, we need to traverse every combination to find a Q ls , which minimizes∑ n 
i =1 ω 

α
li 
δ′ (X is , Q ls ) . To reduce the complexity of update process, we give a heuristic update strategy to obtain the center of

a cluster below. 

The frequency of S j is defined as if S j is a subset of V 

j , 

f (S j ) = 

1 

n 

n ∑ 

i =1 

ν(S j , X i j ) , (16) 

where 

ν(S j , X i j ) = 

{ | S j | 
| X i j | , i f S j ⊆ X i j . 

0 , otherwise. 
(17) 

Using the following strategy, we can get Q lj in the attribute A j . Suppose that V j = { q j 
1 
, q 

j 
2 
, . . . , q 

j 

r ′ 
j 

} is the domain values of

the attribute A j in the lth cluster, we first compute 
∑ n 

i =1 f (q 
j 

h 
) × ω 

α
li 
(1 ≤ h ≤ r ′ 

j 
) of all categorical values in V j , and then rank

the categorical values in the descending order of 
∑ n 

i =1 f (q 
j 

h 
) ω 

α
li 

in set V j = { q j 
1 
, q 

j 
2 
, . . . , q 

j 

r ′ 
j 

} . Assume that Q lj has r j values.

We consider three situations to construct Q lj . 

• When r j = 1 , if 
∑ n 

i =1 f (q 
j 
1 
) × ω 

α
li 

> 

∑ n 
i =1 f (q 

j 
t ) × ω 

α
li 
, t = 2 , . . . , r ′ 

j 
, we choose the categorical value { q j 

1 
} as Q lj . If there is

more than one the maximum of 
∑ n 

i =1 f (q 
j 
t ) × ω 

α
li 
(t ∈ { 1 , 2 , . . . , r ′ 

j 
} ) to cluster Q l , we randomly choose one value as Q lj .

This case is similar to the fuzzy k -mode algorithm. 

• When r j = r ′ 
j 
, we choose all categorical values in A j for Q lj as the center of the cluster. 
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• When 1 < r j < r ′ 
j 
, we have the following three cases: 

Case 1: If 
∑ n 

i =1 f (q 
j 
1 
) × ω 

α
li 

≥ ∑ n 
i =1 f (q 

j 
2 
) × ω 

α
li 

≥ · · · ≥ ∑ n 
i =1 f (q 

j 
r j 
) × ω 

α
li 

> 

∑ n 
i =1 f (q 

j 
r j +1 

) × ω 

α
li 
, we choose the first r j cate-

gorical values for Q lj . 

Case 2: If 
∑ n 

i =1 f (q 
j 
1 
) × ω 

α
li 

≥ ∑ n 
i =1 f (q 

j 
2 
) × ω 

α
li 

≥ · · · > 

∑ n 
i =1 f (q 

j 
r j 
) × ω 

α
li 

= 

∑ n 
i =1 f (q 

j 
r j +1 

) × ω 

α
li 

> · · · ≥ ∑ n 
i =1 f (q 

j 

r ′ 
j 

) × ω 

α
li 
,

we firstly choose the first r j − 1 values Q 

′′ = { q j 
1 
, q 

j 
2 
, . . . , q 

j 
r j−1 

} as part of values for Q lj . If 
∑ r j −1 

m =1 

∑ n 
i =1 f ({ q j m 

, q 
j 
r j 
} ) × ω 

α
li 

>

∑ r j −1 

m =1 

∑ n 
i =1 f ({ q j m 

, q 
j 
r j +1 

} ) × ω 

α
li 
, we choose { q j r j } as the r j th value for Q lj , i.e., Q l j = { q j r j } ∪ Q 

′′ . If ∑ r j −1 

m =1 

∑ n 
i =1 f ({ q j m 

, q 
j 
r j 
} ) ×

ω 

α
li 

< 

∑ r j −1 

m =1 

∑ n 
i =1 f ({ q j m 

, q 
j 
r j +1 

} ) × ω 

α
li 
, we choose Q l j = { q j 

r j +1 
} ∪ Q 

′′ . If 
∑ r j −1 

m =1 
f ({ q j m 

, q 
j 
r j 
} ) = 

∑ r j −1 

m =1 
f ({ q j m 

, q 
j 
r j +1 

} ) , we

choose either Q l j = { q j r j } ∪ Q 

′′ or Q l j = { q j 
r j +1 

} ∪ Q 

′′ . 
Case 3: If 

∑ n 
i =1 f (q 

j 
1 
) × ω 

α
li 

≥ ∑ n 
i =1 f (q 

j 
2 
) × ω 

α
li 

≥ · · · > 

∑ n 
i =1 f (q 

j 

r j −p ′ ) × ω 

α
li 

= · · · = 

∑ n 
i =1 f (q 

j 
r j 
) × ω 

α
li 

= 

∑ n 
i =1 f (q 

j 
r j +1 

) ×
ω 

α
li 

= · · · = 

∑ n 
i =1 f (q 

j 
r j + p ) × ω 

α
li 

> 

∑ n 
i =1 f (q 

j 
r j + p+1 

) × ω 

α
li 

≥ · · · ≥ ∑ n 
i =1 f (q 

j 

r ′ 
j 

) × ω 

α
li 
, where p ′ and p are two integers, we

choose the first ( r j − p ′ − 1) categorical values as Q 

′′ = { q j 
1 
, q 

j 
2 
, . . . , q 

j 

r j −p ′ −1 
} . Assume that Q 

j is the set of all combina-

tions of p ′ + 1 categorical values from the next p ′ + p + 1 categorical values. Let 
∏ 

s be a combination in Q 

j that produces

the largest sum of frequencies, i.e., 
∑ n 

i =1 

∑ r j −p ′ −1 

m =1 
f ({ q j m 

} ∪ 

∏ 

s ) × ω 

α
li 

≥ ∑ n 
i =1 

∑ r j −p ′ −1 

m =1 
f ({ q j m 

} ∪ 

∏ 

t ) × ω 

α
li 

where 
∏ 

t is any

combination in Q 

j and 

∏ 

s � = 

∏ 

t . We choose 
∏ 

s as the rest values for Q lj , i.e., Q l j = 

∏ 

s ∪ Q 

′′ . 

In the k -modes algorithm, we choose the most frequent categorical value as the mode in a given attribute. For X , only

one value cannot adequately represent a cluster in a given attribute. In general cases, we choose r j = round( 
∑ n 

i =1 

| X i j | 
n ) values

as the set-valued mode in the attribute A j (1 ≤ j ≤ m ). 

Based on the above analysis, the fuzzy SV- k -modes algorithm with heuristic strategy is described as follows. 

The complexity of the fuzzy SV- k -modes algorithm is analyzed as follows. We only consider two major computational

steps: 

• Assigning objects to clusters, that is to say, computing membership degrees of objects belonging to clusters. The compu-

tational complexity is O(| V j | ) with respect to A j . Therefore, the computational complexity for this step is O(m × | V ′ | ) ,
where | V ′ | = max {| V j | , 1 ≤ j ≤ m } . 

• Computing set-valued-modes from the fuzzy matrix. The main goal of updating cluster centers is to find the set-valued

modes in each cluster according to the partition matrix W 

′ . The time complexity for this step is O(km × | V ′ | ) . where

| V ′ | = max {| V j | , 1 ≤ j ≤ m } . 
If the clustering process needs t iterations to converge, the total computational complexity of the proposed algorithm is

O(nmtk × | V ′ | ) , where | V ′ | = max {| V j | , 1 ≤ j ≤ m } . It is clear that the time complexity of the proposed algorithm increases

linearly as the number of dimensions, objects, or clusters increases. 

4. Experiments on synthetic data 

In this section, we propose an algorithm to generate data with set-valued attributes and validate the efficiency of the

fuzzy SV- k -modes algorithm on synthetic data sets. 

4.1. Synthetic data generation method 

To the best of our knowledge, we cannot find a method that can generate data with set-valued attributes. To best validate

the properties of the fuzzy SV- k -modes algorithm, we need to develop a new method to generate synthetic data with set-

valued attributes. Let a synthetic data set X be a set of n objects { X 1 , X 2 , . . . , X n } , each of which is described by a set of m

set-valued attributes { A 1 , A 2 , . . . , A m 

} . 
We assume that the set of values of each attribute is given before X generated. Let V 

j denote a set of values of A j ( j =
1 , 2 , . . . , m ) appearing in the objects of X . If X is classified into k clusters, then the distributions of attribute values of objects

in the same cluster are close to each other while the distributions of attribute values in different clusters have difference.

Therefore, we can control the structure of clusters in X using the distributions of attribute values. 

To generate a synthetic data set X consisting of k clusters C = { C 1 , C 2 , . . . , C k } , each of which has a particular distribution.

We need to use the following parameters. 

• k : the number of clusters desired; 

• c i : the number of objects in cluster C i ; 

• ρ: the percentage of overlap attribute values between any two clusters. 

For simplicity, we suppose that the size of domain values is the same in all attributes and the number of objects in each

cluster is equal to n . We use the following steps to generate an object X in cluster C . 
i 
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• With the parameters ρ , k and V 

j , we can obtain the domain values of the j th attribute in cluster C i ; 

• Select randomly a non empty subset from the domain values of the j th attribute as the j th component of X . 

• Use the same way as described in step 2 to generate the rest components of X and assign a label to X . 

The detailed generating algorithm is described in Algorithm 2 , which is abbreviated to GSDA ( G enerating S et-valued D ata

A lgorithm). 

Algorithm 1 The fuzzy SV- k -modes algorithm with heuristic strategy. 

1: Input: 

2: - X : a set of n set-valued objects; 

3: - k : the number of clusters; 

4: Output: { C 1 , C 2 , . . . , C k } , a set of k clusters; 

5: Method: 

6: Step 1. Randomly choose k objects as Q 

′ (1) 
. Determine W 

′ (1) 
such that F ′ ( W 

′ , Q 

′ (1) 
) is minimized with Theorem 1. Set

t = 1 . 

7: Step 2. Determine Q 

′ (t+1) 
such that F ′ ( W 

′ (t) 
, Q 

′ (t+1) 
) is minimized with heuristic strategy. If F ′ ( W 

′ (t) 
, Q 

′ (t+1) 
) =

F ′ ( W 

′ (t) 
, Q 

′ (t) 
) , then stop; otherwise goto step 3. 

8: Step 3. Determine W 

′ (t+1) 
such that F ′ ( W 

′ (t+1) 
, Q 

′ (t+1) 
) is minimized. If F ′ ( W 

′ (t+1) 
, Q 

′ (t+1) 
) = F ′ ( W 

′ (t) 
, Q 

′ (t+1) 
) , then

stop; otherwise set t = t + 1 and goto step 2. 

Algorithm 2 The GSDA . 

1: Input: 

2: - n : the number of objects in each cluster; 

3: - m : the number of attributes; 

4: - V j : the attribute values in the jth attribute; 

5: - ρ : the overlap percentage of domain values of each attribute in differentclusters; 

6: - k : the number of clusters; 

7: Output: A synthetic data set X with label; 

8: Method: 

9: X = ∅ ; 
10: for i = 1 to k do 

11: for j = 1 to m do 

12: Allocate uniformly V j to k clusters V 
j 

1 
, V 

j 
2 
, . . . , V 

j 

k 
; 

13: end for 

14: end for 

15: for i = 1 to k do 

16: for p = 1 to n do 

17: for q = 1 to m do 

18: Obtain the domain values of the q th attributes V 
q 
i 

in the i th cluster; 

19: for h = 1 to k do 

20: if i ! = h then 

21: Compute the number of overlapping attribute values rationum = round(| V q 
h 
| × ρ) ; 

22: Select randomly rationum values from V 
q 

h 
and add them to the V 

q 
i 

; 

23: end if 

24: end for 

25: Select randomly r values from V 
q 
i 

as the q th component of X; 

26: end for 

27: Assign the label i to object X; 

28: Add X to X ; 

29: end for 

30: end for 

31: return X ; 

4.2. Scalability 

To test the scalability of the fuzzy SV- k -modes algorithm, we conducted a series of experiments on synthetic data sets.

We ran the fuzzy SV- k -modes algorithm by selecting randomly initial cluster centers on synthetic data sets. Considering
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Fig. 1. Scalability of the fuzzy SV- k -modes algorithm with data size. 
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Fig. 2. Scalability of the fuzzy SV- k -modes algorithm with data dimensionality. 

 

 

 

 

 

 

 

 

 

 

 

randomicity of the generating algorithm, we generated 10 synthetic data sets taken as test data sets, where ρ was set to 0.5

in GSDA . The average run-time in 10 data sets was taken as experimental results. All of our experiments were conducted on

a PC with an Intel Xeon CPU I7 (3.4GHz) and 16GB memory. Experimental results are reported below. 

Experiment 1 : In this experiment, we fixed the dimensionality to 10, the number of attribute values to 10 in each at-

tribute, the cluster number to 2, and the data size varied from 10 0 0 to 50 0 0 with step 10 0 0. 

Fig. 1 shows the scalability of the fuzzy SV- k -modes algorithm with data size. It can be seen that this algorithm is linear

with respect to the data size. Therefore, the fuzzy SV- k -modes algorithm can ensure efficient execution when the data size

is large. 

Experiment 2 : In this experiment, we fixed the data size to 30 0 0, the number of attribute values to 10 in each attribute,

the cluster number to 2, and the dimensionality varied from 10 to 50 with step 10. 

Fig. 2 shows the scalability of the fuzzy SV- k -modes algorithm with dimensionality. It can be seen that the fuzzy SV- k -

modes algorithm is linear with respect to the dimensionality. Therefore, the fuzzy SV- k -modes algorithm can ensure efficient

execution for high dimensional data set. 

Experiment 3: In this experiment, we fixed the data size to 10 0 0, the number of attribute values to 10 in each attribute,

and the dimensionality to 30. For simplicity, 2, 3, 4, 5 and 6 were taken as the number of clusters. 

Fig. 3 shows the scalability of the fuzzy SV- k -modes algorithm with the number of clusters. It can be seen that the fuzzy

SV- k -modes algorithm is scalable well to the number of clusters. 

Experiment 4 : In this experiment, we fixed the data size to 10 0 0, the dimensionality to 10, the cluster to 2, and the

number of attribute values from 10 to 50 with step 10. 
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Fig. 3. Scalability of the fuzzy SV- k -modes algorithm with the number of clusters. 
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Fig. 4. Scalability of the fuzzy SV- k -modes algorithm with the number of attribute values. 

 

 

 

 

 

 

 

 

Fig. 4 shows the scalability of the fuzzy SV- k -modes algorithm with the number of attribute values. We can see that the

run-time of the fuzzy SV- k -modes algorithm nearly linearly increases with the number of attribute values increasing. This

is because that the distributions of the attribute values in each attribute are nonuniform in most cases. 

From the above-mentioned analysis, we find that the time complexity of the fuzzy SV- k -modes algorithm increases lin-

early as the number of objects, dimensions, clusters or attribute values increases. 

5. Experiments on real data 

In this section, we first gave the preprocessing processes of three real data sets and reviewed five external indexes for

evaluating clustering quality. We then compared the fuzzy SV- k -modes algorithm with the fuzzy k -modes algorithm on the

three real data sets. Finally, we analyzed the relationship between α and W 

′ in the fuzzy SV- k -modes algorithm. 

5.1. Data sets 

Although there are many data sets with set-valued attributes in real applications, public set-valued data sets are very

rare. To evaluate clustering quality of the fuzzy SV- k -modes algorithm, we need to conduct a series of data preprocessing

for a given real data set. The main aim of data preprocessing is to decide the size of k and the distributions of clusters. The

preprocessing processes of the three data sets are described as follows. 
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Fig. 5. The distributions of MB data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1. Market basket data 

Market basket data, which have been used earlier to evaluate association rules algorithms, are used in our study and can

be downloaded from Data website 1 . This market basket data contain 1001 customers and each customer has 7 transactional

records described by four attributes, which are Customer_Id, Time, Product_Name, Product_Id. As each customer has the

same value in the attribute Time, we deleted this attribute. In addition, attributes Product_Name and Product_Id represent

the same meaning and we only consider the attribute Product_Id. Thus, each customer has at most 7 values in the attribute

Product_Id and can be transformed a set-valued object. The preprocessing of the market basket data is described as follows.

We firstly visualized the market basket data using multidimensional scaling techniques [18] where the dissimilarity matrix

was obtained by Eq. (8) . And then, we selected objects whose coordinate values are in the range of (x < −0 . 2 , y < 0 . 2) , ( x

> 0.2, y < 0) and y > 0.4 in the coordinate system to generate a new market basket data set (abbr. MB), which has 703

objects. The distributions of MB data set are shown in Fig. 5 . 

From Fig. 5 , we can obviously see that MB data can be divided into 3 clusters. 

5.1.2. Microsoft web data 

Microsoft web data set can be downloaded from UCI [19] and its associated task is Recommender-Systems. The data

record the use of www.microsoft.com by 37,711 anonymous, randomly selected users. For each user, the data list all the

areas of the website that the user visited in a one-week timeframe. Therefore, each user is a set-valued object described by

two attributes. One attribute is User_Id, the other is the areas of the website. The preprocessing of this data is summarized

as follows: firstly select users who visited the number of websites is greater than 8 to generate a temporary data; then

select objects whose coordinate values of x are greater than 0.1 and less than −0.1 in the coordinate system after visualizing

the temporary data to generate a new web data set (abbr. MW) which has 962 objects and includes 9857 records. The

distributions of MW data are shown in Fig. 6 . 

From Fig. 6 , obviously the number of clusters of MW data can be set to 2 in the fuzzy SV- k -modes algorithm. 

5.1.3. MovieLens data 

MovieLens data can be downloaded from the MovieLens website 2 . Depending on the size of the set, this data were classi-

fied into MovieLens 100k, MovieLens 1M and MovieLens 10M. MovieLens data contain rating information, user information,

movie information and tag information. 

We selected MovieLens 1M data to evaluate the fuzzy SV- k -modes algorithm. In MovieLens 1M data, the rating in-

formation contains 1,0 0 0,209 anonymous ratings of approximately 390 0 movies made by 6040 MovieLens users who

joined MovieLens in 20 0 0. Each record of the data set represents one rating of one movie, and has the following format:

User_Id::Movie_Id::Rating::Timestamp. Each user has at least 20 rating records and each rating was made on a 5-star scale.
1 http://www.datatang.com/datares/go.aspx?dataid=613168 . 
2 http://grouplens.org/datasets/movielens/ . 

http://www.microsoft.com
http://www.datatang.com/datares/go.aspx?dataid=613168
http://grouplens.org/datasets/movielens/
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Fig. 6. The distributions of MW data. 

Table 2 

Summary of the three real data sets after preprocessing. 

Data set Objects Attributes Records k C 1 C 2 C 3 

MB 703 2 4921 3 309 217 177 

MW 962 2 9857 2 366 596 

URM 2306 6 2306 3 855 810 641 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Movies data file structure Movie_Id::Title::Genres, we can find that each Moive_Id corresponds to more than

one genre. Thus, the rating format can be transformed User_Id::Genres::Rating::Timestamp, where Genres is a set-valued

attribute. 

In addition, in MovieLens 1M data, each user provided some demographic information, such as Gender, Age, Occupa-

tion and Zip-code. Age was divided into seven categories according to the range of age. There are 21 attribute values for

Occupation. 

Joining the rating information with the user information by User_Id, we generated a new rating data having 6040 records.

Each record is described by User_Id, Gender, Age, Occupation, Zip-code, Genres, Rating and Timestamp, where User_Id, Gen-

der, Age, Occupation, Zip-code and Timestamp are six single-valued attributes while Genres and Rating are two set-valued

attributes. Therefore, the new rating data can be used to evaluate the fuzzy SV- k -modes algorithm. As the domain values of

Zip-code and Timestamp have too many different values, these two attributes were not been considered. We selected 2306

objects whose coordinate values are in the range of ( x < 0, y > 0) and ( x > 2, 0 < y < 1) from the coordinate system after

visiualizing the new rating data as a new user rating data set (abbr. URM). The distributions of URM data set are shown in

Fig. 7 . 

From Fig. 7 , we can divide URM data into 3 clusters and each cluster has some outliers. 

The detailed information of the three real data set after preprocessing is summarized in Table 2 . 

5.2. Evaluation indexes 

Given a categorical set-valued data set X , let C = { C 1 , C 2 , . . . , C k } be a clustering result of X , P = { P 1 , P 2 , . . . , P ′ k 
} be a real

partition in X . The overlap between C and P can be summarized in a contingency table as shown in Table 3 , where n ij 
denotes the number of objects in common between C i and P j , n i j = | C i ⋂ 

P j | . c i is the number of objects in C i , and p j is the

number of objects in P j . 

With Table 3 , Accuracy (AC), Precision (PE), Recall (RE), Adjusted rand index (ARI) and Normalized mutual information

(NMI) are defined as follows: 

AC = 

1 

n 

max 
j 1 j 2 ... j k ∈ S 

k ∑ 

i =1 

n i j i , 
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Fig. 7. The distributions of URM data. 

Table 3 

The contingency table. 

P 1 P 2 . . . P k ′ Sums 

C 1 n 11 n 12 . . . n 1 k c 1 
C 2 n 21 n 22 . . . n 2 k c 2 

� � �
. . . � �

C k n k ′ 1 n k ′ 2 . . . n k ′ k c k 
Sums p 1 p 2 . . . p k ′ 

 

 

 

 

 

 

 

P E = 

1 

k 

k ∑ 

i =1 

n i j ∗
i 

p i 

RE = 

1 

k ′ 
k ′ ∑ 

i =1 

n i j ∗
i 

c i 
, 

ARI = 

∑ 

i j 

(
n i j 

2 

)
−

[ ∑ 

i 

(
n i j 

2 

)∑ 

j 

(
n i j 

2 

)] 
/ 
∑ 

i 

(
c i 
2 

)

1 
2 

[ ∑ 

i 

(
c i 
2 

)
+ 

∑ 

j 

(
p j 
2 

)] 
−

[ ∑ 

i 

(
n i j 

2 

)∑ 

j 

(
n i j 

2 

)] , 

NMI = 

∑ k 
i =1 

∑ k ′ 
j=1 n i j log ( 

n i j n 

c i p j 
) √ ∑ k 

i =1 c i log ( c i 
n 
) 
∑ k ′ 

j=1 p j log ( 
p j 
n 
) 

. 

where n 1 j ∗
1 

+ n 2 j ∗
2 

+ · · · + n k j ∗
k 

= max 
j 1 j 2 ... j k ∈ S 

∑ k 
i =1 n i j i 

( j ∗
1 

j ∗
2 
. . . j ∗

k 
∈ S) and S = { j 1 j 2 . . . j k : j 1 , j 2 , . . . , j k ∈ { 1 , 2 , . . . , k } , j i � = j t for i

� = t } is a set of all permutations of 1 , 2 , . . . , k . In these experiments, we let k = k ′ , i.e., the number of clusters to be found

was equal to the number of classes in the data set. In general, the higher the values of AC , PE , RE , ARI and NMI are, the

better the clustering results are. 

5.3. Clustering results 

For fuzzy k -type clustering algorithms, the fuzziness factor α is an important parameter that influences the results of

clustering algorithms. In the fuzzy k -means algorithm, Pal and Bezdek [20] suggested taking α ∈ [1.5, 2.5] and Yu [21] gave

a theoretical upper bound for α. From the perspective of cluster validation, Zhou [22] considered that the optimal interval

of α is [2.5, 3]. Wu [23] recommended that α was set to 4 when a data set contains noise and outliers. Xiong [24] found
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Table 4 

Comparison results of the fuzzy k -modes and fuzzy SV- k -modes algorithms with different α on MB data. 

AC PE RE ARI NMI 

α = 1 . 1 Fuzzy k -modes 0.7982 ± 0.1106 0.8017 ± 0.1042 0.7662 ± 0.1272 0.5645 ± 0.2106 0.5453 ± 0.1713 

Fuzzy SV- k -modes 0.8755 ± 0.1412 0.8785 ± 0.1354 0.8616 ± 0.1512 0.7333 ± 0.2526 0.7092 ± 0.2188 

α = 1 . 3 Fuzzy k -modes 0.7796 ± 0.0863 0.7801 ± 0.0813 0.7475 ± 0.1214 0.5151 ± 0.1710 0.5111 ± 0.1383 

Fuzzy SV- k -modes 0.8742 ± 0.1314 0.8793 ± 0.1268 0.8611 ± 0.1411 0.7231 ± 0.2448 0.7019 ± 0.2076 

α = 1 . 5 Fuzzy k -modes 0.7488 ± 0.0989 0.7531 ± 0.0950 0.7123 ± 0.1152 0.4625 ± 0.1835 0.4699 ± 0.1498 

Fuzzy SV- k -modes 0.8656 ± 0.1083 0.8785 ± 0.0964 0.8488 ± 0.1262 0.6945 ± 0.2115 0.6807 ± 0.1690 

α = 1 . 7 Fuzzy k -modes 0.7258 ± 0.0670 0.7258 ± 0.0674 0.7070 ± 0.1219 0.4203 ± 0.1167 0.4275 ± 0.1001 

Fuzzy SV- k -modes 0.8367 ± 0.1286 0.8460 ± 0.1222 0.8082 ± 0.1523 0.6412 ± 0.2478 0.6335 ± 0.2065 

α = 1 . 9 Fuzzy k -modes 0.7016 ± 0.0932 0.7103 ± 0.0998 0.6967 ± 0.1401 0.3792 ± 0.1540 0.3952 ± 0.1450 

Fuzzy SV- k -modes 0.8855 ± 0.1036 0.8953 ± 0.0947 0.8638 ± 0.1282 0.7379 ± 0.2010 0.7220 ± 0.1626 

α = 2 . 1 Fuzzy k -modes 0.6682 ± 0.0682 0.6782 ± 0.0714 0.6882 ± 0.1390 0.3149 ± 0.1176 0.3303 ± 0.1021 

Fuzzy SV- k -modes 0.8751 ± 0.1176 0.8807 ± 0.1183 0.8548 ± 0.1387 0.7190 ± 0.2143 0.6963 ± 0.1842 

α = 2 . 3 Fuzzy k -modes 0.6606 ± 0.0684 0.6680 ± 0.0710 0.6610 ± 0.1104 0.2941 ± 0.1114 0.3153 ± 0.1042 

Fuzzy SV- k -modes 0.8829 ± 0.1186 0.8904 ± 0.1146 0.8661 ± 0.1346 0.7318 ± 0.2192 0.7100 ± 0.1908 

α = 2 . 5 Fuzzy k -modes 0.6469 ± 0.0627 0.6647 ± 0.0546 0.6844 ± 0.1343 0.2807 ± 0.0951 0.3107 ± 0.0814 

Fuzzy SV- k -modes 0.9125 ± 0.0842 0.9183 ± 0.0790 0.9027 ± 0.0983 0.7844 ± 0.1636 0.7572 ± 0.1327 

α = 2 . 7 Fuzzy k -modes 0.6391 ± 0.0446 0.6541 ± 0.0470 0.7378 ± 0.1136 0.2693 ± 0.0702 0.2896 ± 0.0552 

Fuzzy SV- k -modes 0.8462 ± 0.1280 0.8561 ± 0.1225 0.8264 ± 0.1425 0.6609 ± 0.2357 0.6470 ± 0.1987 

α = 2 . 9 Fuzzy k -modes 0.6170 ± 0.0341 0.6296 ± 0.0425 0.7389 ± 0.1345 0.2409 ± 0.0613 0.2684 ± 0.0571 

Fuzzy SV- k -modes 0.8778 ± 0.1125 0.8826 ± 0.1133 0.8579 ± 0.1338 0.7248 ± 0.2027 0.6980 ± 0.1782 

Table 5 

Comparison results of the fuzzy k -modes and fuzzy SV- k -modes algorithms with different α on MW data. 

AC PE RE ARI NMI 

α = 1 . 1 Fuzzy k -modes 0.7498 ± 0.0954 0.7619 ± 0.0892 0.7373 ± 0.1200 0.2741 ± 0.2043 0.2399 ± 0.1588 

Fuzzy SV- k -modes 0.8527 ± 0.0968 0.8824 ± 0.0961 0.8112 ± 0.1233 0.5230 ± 0.2268 0.4890 ± 0.2094 

α = 1 . 3 Fuzzy k -modes 0.7335 ± 0.0875 0.7439 ± 0.0793 0.7177 ± 0.1231 0.2347 ± 0.1860 0.2053 ± 0.1467 

Fuzzy SV- k -modes 0.8690 ± 0.0897 0.8987 ± 0.0915 0.8303 ± 0.1131 0.5663 ± 0.2063 0.5329 ± 0.1850 

α = 1 . 5 Fuzzy k -modes 0.7250 ± 0.0639 0.7309 ± 0.0529 0.7076 ± 0.0998 0.2060 ± 0.1255 0.1692 ± 0.0897 

Fuzzy SV- k -modes 0.8884 ± 0.0495 0.9163 ± 0.0571 0.8568 ± 0.0520 0.6084 ± 0.1202 0.5660 ± 0.1225 

α = 1 . 7 Fuzzy k -modes 0.7234 ± 0.0679 0.7345 ± 0.0557 0.7037 ± 0.1015 0.2055 ± 0.1303 0.1747 ± 0.0889 

Fuzzy SV- k -modes 0.8708 ± 0.0870 0.9017 ± 0.0839 0.8314 ± 0.1120 0.5695 ± 0.2046 0.5357 ± 0.1838 

α = 1 . 9 Fuzzy k -modes 0.7375 ± 0.0707 0.7535 ± 0.0534 0.7297 ± 0.1034 0.2361 ± 0.1388 0.2126 ± 0.0909 

Fuzzy SV- k -modes 0.8610 ± 0.0933 0.8936 ± 0.0856 0.8212 ± 0.1173 0.5441 ± 0.2211 0.5117 ± 0.1975 

α = 2 . 1 Fuzzy k -modes 0.7343 ± 0.0829 0.7560 ± 0.0677 0.7169 ± 0.1216 0.2332 ± 0.1690 0.2171 ± 0.1153 

Fuzzy SV- k -modes 0.8638 ± 0.0873 0.8932 ± 0.0887 0.8274 ± 0.1036 0.5509 ± 0.2046 0.5145 ± 0.1908 

α = 2 . 3 Fuzzy k -modes 0.7231 ± 0.0820 0.7495 ± 0.0678 0.7039 ± 0.1239 0.2109 ± 0.1650 0.2070 ± 0.1140 

Fuzzy SV- k -modes 0.8754 ± 0.0729 0.9074 ± 0.0695 0.8371 ± 0.0948 0.5757 ± 0.1745 0.5404 ± 0.1585 

α = 2 . 5 Fuzzy k -modes 0.7280 ± 0.0822 0.7509 ± 0.0678 0.7073 ± 0.1246 0.2206 ± 0.1650 0.2091 ± 0.1133 

Fuzzy SV- k -modes 0.8629 ± 0.0882 0.8943 ± 0.0869 0.8253 ± 0.1056 0.5480 ± 0.2078 0.5144 ± 0.1892 

α = 2 . 7 Fuzzy k -modes 0.7256 ± 0.0834 0.7494 ± 0.0752 0.6994 ± 0.1192 0.2161 ± 0.1686 0.2040 ± 0.1219 

Fuzzy SV- k -modes 0.8723 ± 0.0812 0.9006 ± 0.0812 0.8352 ± 0.1025 0.5710 ± 0.1959 0.5325 ± 0.1844 

α = 2 . 9 Fuzzy k -modes 0.7409 ± 0.0813 0.7600 ± 0.0749 0.7303 ± 0.1087 0.2473 ± 0.1674 0.2284 ± 0.1216 

Fuzzy SV- k -modes 0.8508 ± 0.0996 0.8890 ± 0.0818 0.8069 ± 0.1285 0.5166 ± 0.2374 0.4916 ± 0.2024 

 

 

 

 

 

 

 

 

 

 

 

 

that the k -means algorithm often produce “uniform effect” in clustering imbalance data sets. That is to say, the k -means

clustering algorithm makes clusters have relatively uniform sizes for a given data set. In [25] , we studied the uniform effect

of the fuzzy k -means algorithm and found the uniform effect phenomenon becomes more obvious as the fuzziness factor α
increases for imbalance data sets. In the fuzzy k -modes algorithm, Huang [5] set α = 1 . 1 because it provided the least value

of object function. Although there have been many studies on the selection of α for the fuzzy k -type algorithms, there is

still not one generally accepted criterion [22] . 

In this experiment, we compared the clustering results of the fuzzy SV- k -modes and fuzzy k -modes algorithms and the

size of α was set from 1.1 to 2.9 with step length of 0.2. We randomly ran 50 times the two algorithms that use the same

initial cluster centers in each run. Experimental results on the three real data sets are shown in Tables 4 –6 . The value

following “±” is the standard deviation of average values. 

From Tables 4 –6 , we can find that the fuzzy SV- k -modes algorithm is obviously superior to the fuzzy k -modes algo-

rithm. In addition, we can see that α = 1 . 1 is the optimal value for the fuzzy k -modes algorithm and the fuzzy SV- k -modes

algorithm is not sensitive to the fuzziness factor α. When α > 1.5, the fuzzy k -modes algorithm cannot obtain effective

clustering results in URM data because it usually generates one cluster in iteration process. The “ ” symbol means

the fuzzy k -modes algorithm cannot generate an effective partition in URM data set. Therefore, we consider that the fuzzy

SV- k -modes algorithm is an effective method in clustering set-valued objects. 
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Table 6 

Comparison results of the fuzzy k -modes and fuzzy SV- k -modes algorithms with different α on URM data. 

AC PE RE ARI NMI 

α = 1 . 1 Fuzzy k -modes 0.6356 ± 0.1430 0.6348 ± 0.1548 0.6094 ± 0.1510 0.3457 ± 0.2097 0.3828 ± 0.2305 

Fuzzy SV- k -modes 0.7411 ± 0.0842 0.7370 ± 0.0901 0.7104 ± 0.0816 0.5077 ± 0.1273 0.5170 ± 0.1220 

α = 1 . 3 Fuzzy k -modes 0.6484 ± 0.1684 0.6426 ± 0.1652 0.6202 ± 0.1727 0.3767 ± 0.2491 0.4053 ± 0.2674 

Fuzzy SV- k -modes 0.7481 ± 0.1322 0.7544 ± 0.1313 0.7220 ± 0.1264 0.5102 ± 0.2072 0.5134 ± 0.1825 

α = 1 . 5 Fuzzy k -modes 

Fuzzy SV- k -modes 0.7890 ± 0.1126 0.8183 ± 0.1143 0.7602 ± 0.1117 0.5720 ± 0.1779 0.5808 ± 0.1773 

α = 1 . 7 Fuzzy k -modes 

Fuzzy SV- k -modes 0.7475 ± 0.1016 0.7696 ± 0.0943 0.7200 ± 0.1041 0.5168 ± 0.1549 0.5193 ± 0.1332 

α = 1 . 9 Fuzzy k -modes 

Fuzzy SV- k -modes 0.7405 ± 0.0999 0.7480 ± 0.0978 0.7029 ± 0.1032 0.5012 ± 0.1558 0.5091 ± 0.1456 

α = 2 . 1 Fuzzy k -modes 

Fuzzy SV- k -modes 0.7511 ± 0.0712 0.7606 ± 0.0942 0.7107 ± 0.0847 0.5078 ± 0.1259 0.5186 ± 0.1141 

α = 2 . 3 Fuzzy k -modes 

Fuzzy SV- k -modes 0.7815 ± 0.0616 0.8162 ± 0.0775 0.7467 ± 0.0703 0.5645 ± 0.0905 0.5724 ± 0.0930 

α = 2 . 5 Fuzzy k -modes 

Fuzzy SV- k -modes 0.7730 ± 0.1296 0.7885 ± 0.1499 0.7520 ± 0.1216 0.5523 ± 0.2002 0.5580 ± 0.1872 

α = 2 . 7 Fuzzy k -modes 

Fuzzy SV- k -modes 0.8001 ± 0.0745 0.8138 ± 0.1049 0.7663 ± 0.0867 0.5879 ± 0.1040 0.5804 ± 0.1041 

α = 2 . 9 Fuzzy k -modes 

Fuzzy SV- k -modes 0.8012 ± 0.1281 0.8154 ± 0.1345 0.7753 ± 0.1341 0.5861 ± 0.2090 0.5705 ± 0.1925 
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Fig. 8. Relationship between α and membership degrees on MB data. 

 

 

 

 

 

5.4. Relationship between α and W 

′ 

The size of α affects the membership degrees that an object is assigned to of different clusters. In this experiment, we

analyzed the relationship between α and W 

′ on the three data sets and α was set from 1.1 to 2.9 with the step length 0.2.

For convenience, in each data set we only visualized the variety of the membership degrees of the first 10 objects with α
increasing. The relationship between α and W 

′ on the three real data sets is shown in Figs. 8 –10 , where the symbols “∗”,

“+” and “o” represent different cluster labels, respectively. 

From Figs. 8 –10 , we can see that the membership degrees that an object is assigned to different clusters decrease as α
increases. 

6. Conclusions 

In real applications, data sets with set-valued characteristic have become ubiquitous. In this paper, we proposed a fuzzy

SV- k -modes algorithm that is an extension version of the fuzzy k -modes algorithm for clustering data with set-valued
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Fig. 9. Relationship between α and membership degrees on MW data. 
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Fig. 10. Relationship between α and membership degrees on URM data. 

 

 

 

 

 

 

attributes. In the proposed algorithm, we defined the distance between two set-valued objects and gave the representa-

tion and heuristic update ways of cluster prototype. Experimental results on the synthetic and real data sets have shown

the efficiency and effectiveness of the fuzzy SV- k -modes algorithm in clustering data with set-valued attributes. These mod-

ifications made the fuzzy SV- k -modes algorithm can cluster data with single-valued and set-valued attributes together and

the fuzzy k -modes algorithm is its special case. 
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