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To discover knowledge from hybrid data using rough sets, researchers have developed sev-
eral fuzzy rough set models and a neighborhood rough set model. These models have been
applied to many hybrid data processing applications for a particular purpose, thus neglect-
ing the issue of selecting an appropriate model. To address this issue, this paper mainly
concerns the relationships among these rough set models. Investigating fuzzy and neigh-
borhood hybrid granules reveals an important relationship between these two granules.
Analyzing the relationships among rough approximations of these models shows that
Hu’s fuzzy rough approximations are special cases of neighborhood and Wang’s fuzzy
rough approximations, respectively. Furthermore, one-to-one correspondence relation-
ships exist between Wang’s fuzzy and neighborhood rough approximations. This study also
finds that Wang’s fuzzy and neighborhood rough approximations are cut sets of Dubois’
fuzzy rough approximations and Radzikowska and Kerre’s fuzzy rough approximations,
respectively.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In real world databases, data sets usually take on hybrid forms, i.e., the coexistence of categorical and numerical data.
Feature selection, classification and prediction towards hybrid data thus hold great significance. Generally speaking, there
are two strategies in hybrid data processing. One strategy is employing classical numerical data processing methods, includ-
ing PCA [24], neural networks [6,14] and SVM [37]. When using these methods, all categorical data should be coded as inte-
gral numbers in hybrid data. However, processing categorical data in this manner is unreasonable, as the coded values of
categorical data lack practical meanings [11]. Classical categorical data processing methods use the other strategy, including
rough set theory [1,18,20–22,25,28,30–32,36,39,47]. Problems occur when numerical data are processed using traditional
rough set theory. Discretizing numerical data into categorical data is thus necessary; however, this leads to the incurrence
of information loss in the discretization process [11,46]. Both strategies mentioned above have their own limits.

Researchers have recently proposed several hybrid data processing methods [2,7,11,12,15,26,29,34,35,38,40], frequently
using fuzzy and neighborhood rough set models. Fuzzy sets and rough sets are complementary in handling uncertainty
[3,4,8,10,13,23,27,43]. Dubois and Prade [7] combined rough and fuzzy set theory to define the first fuzzy rough sets. This
model employed the min and max fuzzy operators to describe the fuzzy lower and upper approximations. Radzikowska
and Kerre [33] defined fuzzy rough sets in a more general manner based on the T-equivalence relation. The fuzzy lower
and upper approximations were constructed by an implicator and triangular norm. Mi and Zhang [25] presented a new fuzzy
rough set definition based on a residual implication h and its dual r. Hu et al. [11] introduced a novel fuzzy rough model,
presented several attribute significance measures and designed a forward greedy algorithm for hybrid attribute reduction.
. All rights reserved.
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Wang et al. [38] defined new lower and upper approximations based on the similarity between two objects and extended
some underlying concepts to the fuzzy environment. Yeung et al. [46] first defined some lower and upper approximations
based on arbitrary fuzzy relations from the constructive approach viewpoint. Some of the fuzzy rough set models mentioned
above usually process hybrid data [7,11,35,38]. Furthermore, hybrid data analysis also employed another traditional rough
set generalization: the neighborhood rough set [12,16,41,42,44,45]. Neighborhoods and neighborhood relations are impor-
tant concepts in topology. Lin [19] regarded neighborhood spaces as general topological spaces more than equivalence
spaces and introduced neighborhood relations into rough set methodology. The notion of neighborhood systems provided
a convenient and flexible tool for representing similarity and described a hybrid information system with categorical and
numerical attributes. Wu and Zhang [41] explicitly discussed the properties of neighborhood approximation spaces. Yao
[43,45] relaxed the original query with a neighborhood system to conduct approximation retrieval. Hu et al. [12] constructed
a unified theoretical framework for a neighborhood-based classifier using a neighborhood-based rough set model and a
forward feature set selection algorithm towards hybrid data.

Some fuzzy and neighborhood rough set models mentioned above have been used to process hybrid data. However, a user
cannot know which rough set model is appropriate when analyzing a given data set, making it difficult to select the appro-
priate model for a specific case. Solving this problem requires exploring the inherent relationships among the existing mod-
els, which helps researchers identify these generalized rough sets and select a proper model for a given application. This
paper illustrates these relationships from two perspectives: constructing information granules and their rough approxima-
tions. It first discusses the analysis of the relationship between constructing fuzzy and neighborhood hybrid granules, in
which information granules are the basis for rough approximations in rough set models. The paper then explores relation-
ships among these rough approximations in the existing rough set models. This research clarifies the inherent relationships
among these existing models.

The rest of the paper is organized as follows. Section 2 reviews some preliminary concepts. Section 3 analyzes the rela-
tionship between fuzzy hybrid granules and neighborhood hybrid granules. Section 4 introduces five rough set models for
hybrid data. Section 5 investigates the relationships among the models, and the last section concludes the paper.
2. Preliminaries

Several fuzzy rough set models and the neighborhood rough set model are capable of processing hybrid data. To clarify
the relationships among them, this section reviews some basic concepts, which facilitates the understanding of the remain-
der of this paper.
2.1. Hybrid information system

The hybrid information system occurs more frequently in real-world applications than does categorical information. A
hybrid information system can be written as (U,Ch = Cn [ Cc), where U is the set of objects, Cn is a numerical attribute set
and Cc is a categorical attribute set. To simplify this, we denote the ith numeric or categorical attribute in Ch as ch

i . If every
object in a hybrid information system belongs to a decision class generated from decision attribute D, the hybrid information
system is a hybrid decision table, denoted as (U,Ch [ D).
2.2. Neighborhood rough set model

Let U be a finite universe. We associate each element x 2 U with a subset n(x) # U, called a neighborhood of x. A neigh-
borhood of x may or may not contain x. A neighborhood system NS(x) of x is a family of neighborhoods of x. A neighborhood
operator n : U ? 2U, where 2U denotes the power set of the universe, can describe a neighborhood.

Let n : U ? 2U be a neighborhood operator. n is considered serial if, for all x 2 U, there exists y 2 U such that y 2 n(x), i.e.,
for all x 2 U, n(x) – ;;n is considered inverse serial if, for all x 2 U, there exists y 2 U such that x 2 n(y), i.e., [x2Un(x) = U; n is
reflexive if, for all x 2 U, x 2 n(x); n is symmetric if, for all x,y 2 U, x 2 n(y) implies y 2 n(x); n is transitive if, for all x,y,z 2 U,
y 2 n(x) and z 2 n(y) imply z 2 n(x); and n is Euclidean if, for all x,y,z 2 U, y 2 n(x) and z 2 n(x) imply y 2 n(z).

Combining these special properties, we can characterize various neighborhood systems [44]. In generalizing Pawlak’s
approximation operators, we use different neighborhood operators to define distinct approximation operators. For an equiv-
alence relation R, the equivalence class [x]R may be considered a neighborhood of x. Let n denote an arbitrary neighborhood
operator and n(x) the corresponding neighborhood of x. Replacing [X]R with n(x) in Pawlak’s lower and upper approximations
leads to the definition of a pair of approximation operators [44]:
aprnðXÞ ¼ fxjnðxÞ# X; x 2 Ug and

aprnðXÞ ¼ fxjnðxÞ \ X – ;; x 2 Ug;
where the subscript n indicates that the approximation operators are based on a particular neighborhood operator n. They
can be viewed as a generalization of Pawlak’s lower and upper approximations.
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2.3. Fuzzy rough set model

Dubois and Prade first introduced the fuzzy rough set [7], hereafter called Dubois’ fuzzy rough set for simplicity. Accord-
ing to their definition, a universe of objects U = {x1,x2, . . .,xn} is described by a fuzzy binary relation eR, and the membership of
object xi in a fuzzy rough set ðeRðAÞ; eRðAÞÞ is described as
leRðAÞðxiÞ ¼ inf
xj2U

maxf1� eRðxi; xjÞ;lAðxjÞg and

leRðAÞðxiÞ ¼ sup
xj2U

minfeRðxi; xjÞ;lAðxjÞg;
where A 2FðUÞ. FðUÞ is the class of all fuzzy sets in U.
If U=eR ¼ fF1; F2; . . . ; Fkg is a fuzzy partition of U by a fuzzy binary relation eR, then the above expressions are equivalent to

the following formulas [7]:
leRðAÞðFiÞ ¼ inf
x2U

maxf1� lFi
ðxÞ;lAðxÞg and

leRðAÞðFiÞ ¼ sup
x2U

minflFi
ðxÞ;lAðxÞg:
Furthermore, a collection of input fuzzy attributes C1,C2, . . .,Cm, i.e., a set of fuzzy attributes, describes a universe of objects
U = {x1,x2, . . .,xn} [11]. Each fuzzy attribute contains a set of linguistic terms FðCiÞ ¼ fFikjk ¼ 1; . . . ; PCi

g, where PCi
is the num-

ber of linguistic terms with respect to Ci. The set U=C ¼ fFikji ¼ 1; . . . ;m; k ¼ 1; . . . ; PCi
g can be regarded as fuzzy partitions of

U by a set of fuzzy attributes C. For an arbitrary fuzzy set X, the membership degree of Fik in the lower and upper approx-
imations is
leRðAÞðFikÞ ¼ inf
x2U

maxf1� lFik
ðxÞ;lAðxÞg and

leRðAÞðFikÞ ¼ sup
x2U

minflFik
ðxÞ;lAðxÞg:
Radzikowska and Kerre presented a more general approach to the fuzzification of rough sets [33]. Furthermore, they
introduced a broad family of fuzzy rough sets, each called an ðI;TÞ-fuzzy rough set, determined by an implicator I and
triangular norm T. The corresponding fuzzy approximation space and fuzzy rough approximations are defined below.

For a nonempty universe U and similarity relation eR on U, a pair S ¼ ðU; eRÞ is called a fuzzy approximation space.
Let S ¼ ðU; eRÞ be a fuzzy approximation space and let I and T be a border implicator and a t-norm, respectively. The

ðI;TÞ-fuzzy rough approximation in S is a mapping AprI;TS : FðUÞ !FðUÞ �FðUÞ defined by
for every A 2FðUÞ
AprI;TS ¼ ððeR # AÞIðxÞ; ðeR " AÞTðxÞÞ
and for every x 2 U
ðeR # AÞIðxÞ ¼ inf
y2U

IðeRðx; yÞ;lAðxÞÞ;

ðeR " AÞTðxÞ ¼ sup
y2U

TðeRðx; yÞ;lAðxÞÞ;
where FðUÞ is the class of all fuzzy sets of U.
The implicator and t-norm notations are explained below.
A triangular norm, or t-norm, is an increasing, associative and commutative mapping T : ½0;1�2 ! ½0;1� that satisfies the

boundary condition ("x 2 [0,1], T(x,1) = x). The most popular continuous t-norms are

� the standard min operator TMðx; yÞ ¼minfx; yg,
� the algebraic product TPðx; yÞ ¼ x � y,
� the bold intersection (also called the Łukasiewicz t-norm) TLðx; yÞ ¼maxf0; xþ y� 1g.

A triangular conorm, or t-conorm, is an increasing, associative and commutative mapping S : ½0;1�2 ! ½0;1� that satisfies
the boundary condition ð8x 2 ½0;1�; Sðx; 0Þ ¼ xÞ. Three well-known continuous conorms are

� the standard max operator SMðx; yÞ ¼maxfx; yg (the smallest t-conorm),
� the probabilistic sum SPðx; yÞ ¼ xþ y� x � y,
� the bounded sum SLðx; yÞ ¼minf1; xþ yg.

A negator N is a decreasing [0,1] � [0,1] mapping satisfying Nð0Þ ¼ 1 and Nð1Þ ¼ 0. The negator Ns ¼ 1� x is usually
referred to as the standard negator. A negator N is involutive if NðNðxÞÞ ¼ x for all x 2 [0,1], and it is weakly involutive if
NðNðxÞÞP x for all x 2 [0,1]. Every involutive negator is continuous [17,33].



4 W. Wei et al. / Information Sciences 190 (2012) 1–16
Let T;S and N be a t-norm, t-conorm and negator, respectively. An implicator I is called an S-implicator based on S

and N if Iðx; yÞ ¼TðNðxÞ; yÞ for all x,y 2 [0,1].
Three most popular S-implicators are

� the Łukasiewicz implicator ILðx; yÞ ¼minf1;1� xþ yg, based on SL and Ns,
� the Kleene–Dienes implicator IKDðx; yÞ ¼maxf1� x; yg, based on SM and Ns,
� the Kleene–Dienes–Łukasiewicz implicator IIðx; yÞ ¼ 1� xþ x � y, based on SP and Ns.

Hu presented another fuzzy rough set model [11], hereafter called Hu’s fuzzy rough set, which specially processes hybrid
data. The lower and upper approximations are based on the fuzzy hybrid granules, and they are given as follows.

Let S = (U,Ch) be a hybrid information system and X # U a crisp set of objects. The lower and upper approximations of X are
HChðXÞ ¼ fxij½xi�Ch # X; xi 2 Ug and

HChðXÞ ¼ fxij½xi�Ch \ X – ;; xi 2 Ug;
where ½xi�Ch is a hybrid granule with respect to Ch.
Wang proposed a new fuzzy rough set model [38], hereafter called Wang’s fuzzy rough set, which is explicitly expressed

thus:
Let S = (U,C) be a fuzzy information system and X # U a crisp subset of objects. Wang’s fuzzy lower and upper approx-

imations of X are
WCbðXÞ ¼ fxi 2 XjsCðxi; xjÞ 6 1� b;8xj 2 U � Xg;

WCbðXÞ ¼ fxi 2 Uj9xj 2 X; such that sCðxi; xjÞP bg;
where sC(xi,xj) is the similarity degree between xi and xj with respect to C.
As seen above, the neighborhood and fuzzy rough set models can process hybrid data. However, the inherent relation-

ships among these existing models, which can help a researcher select a suitable model for a special case, have not yet been
investigated. The following sections thus explore the relationships from two viewpoints: constructing information granules
and their hybrid rough approximations.
3. Comparison of hybrid information granules

In this section, hybrid information granules are divided into two types: crisp and fuzzy hybrid granules. The following
subsections explicitly investigate the relationship between them.
3.1. Construction of a crisp hybrid granule

The hybrid data can be divided into two parts: categorical and numerical. To construct the crisp hybrid granule, research-
ers introduced discretization algorithms to process the numerical part of the hybrid data. However, at least two structures
are lost in the discretization process: the neighborhood and order structures in the numerical part. To solve the problem, Hu
et al. introduced a neighborhood rough set model for hybrid attribute reduction [12].

Hybrid neighborhood granules can generally be constructed through the following three steps:

(1) constructing numerical neighborhood granules derived from a numerical attribute set;
(2) constructing categorical granules derived from a categorical attribute set;
(3) merging numerical and categorical neighborhood granules into hybrid neighborhood granules.

Hu et al. presented the following concrete method for constructing neighborhood granules [11,12].
Let S = (U,Ch) be a hybrid information system, Cn # Ch the numerical attribute set and Cc # Ch the categorical attribute

set; the numerical, categorical and hybrid neighborhood granules with respect to object x 2 U are defined as follows:

(1) dCn ðxiÞ ¼ fxjjdCn ðxi; xjÞ 6 d; xj 2 Ug,
(2) dCc ðxiÞ ¼ fxjjdCc ðxi; xjÞ ¼ 0; xj 2 Ug,
(3) dCh ðxiÞ ¼ fxjjdCn ðxi; xjÞ 6 d ^ dCc ðxi; xjÞ ¼ 0; xj 2 Ug.

where dCn ðx; xiÞ is a distance function with respect to the numerical attribute subset, dCc ðx; xiÞ is a distance function with
respect to the categorical attribute subset and d is a threshold.
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3.2. Construction of a fuzzy hybrid granule

Whether objects are described in hybrid data by categorical or numeric attributes, a relation matrix can denote the rela-
tions between the objects. To construct a fuzzy hybrid granule, a fuzzy equivalence relation derived from each attribute
ch

k 2 Ch is introduced, and the relation matrix is indicated as follows.
MðRch
k
Þ ¼

r11 r12 � � � r1n

r21 r22 � � � r2n

� � � � � � � � � � � �
rn1 rn2 � � � rnn

0BBB@
1CCCA;
where rij 2 [0,1] is the relation value of xi and xj with respect to ch
k .

Rch
k

should satisfy:

(1) reflectivity: Rch
k
ðxi; xiÞ ¼ 1; 8xi 2 X;

(2) symmetry: Rch
k
ðxi; xjÞ ¼ Rch

k
ðxj; xiÞ; 8xi; xj 2 X;

(3) transitivity: Rch
k
ðxi; xwÞP minyfRch

k
ðxi; xjÞ;Rch

k
ðxj; xwÞg; 8xi; xj; xw 2 X.

The relation Rch
k

partitions U into many fuzzy hybrid granules (i.e., fuzzy equivalence classes) given by U=Rch
k
¼ f½xi�R

ch
k

gn
i¼1

as U=ch
k ¼ f½xi�ch

k
gn

i¼1, where ½xi�R
ch
k

and ½xi�ch
k

denote the fuzzy equivalence classes determined by xi with respect to a hybrid

attribute ch
k .

Hu et al. presented a concrete method for constructing fuzzy granules [11]. As with constructing crisp granules, generat-
ing numerical granules, creating categorical granules and merging numerical and categorical granules are necessary when
constructing fuzzy hybrid granules, indicated as follows.

The fuzzy granule induced by a numerical attribute set is a fuzzy set in U, denoted as ½xi�Cn ¼ rCn ðxi ;x1Þ
x1
þ rCn ðxi ;x2Þ

x2
þ � � � þ rCn ðxi ;xnÞ

xn
,

where rCn ðxi; xjÞ ¼
T

ch
k
2Cn rch

k
ðxi; xjÞ; the fuzzy granule derived from a categorical attribute set is a fuzzy set in U (in fact, it is a

crisp set because the membership function belongs to {0,1}), denoted as ½xi�Cc ¼ rCc ðxi ;x1Þ
x1
þ rCc ðxi ;x2Þ

x2
þ � � � þ rCc ðxi ;xnÞ

xn
, where

rCc ðxi; xjÞ ¼
T

ch
k
2Cc rch

k
ðxi; xjÞ; and a hybrid granule is generated by mixing numerical and categorical granules, denoted as

½xi�Ch ¼ r
Ch ðxi ;x1Þ

x1
þ r

Ch ðxi ;x2Þ
x2
þ � � � þ r

Ch ðxi ;xnÞ
xn

, where rCh ðxi; xjÞ ¼ rCn ðxi; xjÞ \ rCc ðxi; xjÞ.

3.3. Comparing a neighborhood hybrid granule and a fuzzy hybrid granule

In a hybrid information system, the neighborhood hybrid granule with respect to a hybrid attribute set is a crisp object
set, but the fuzzy hybrid granule (fuzzy equivalence class) induced by a hybrid attribute set is a fuzzy object set. These hybrid
granules obviously differ. However, the above analyses (Sections 3.1 and 3.2) show that neighborhood and fuzzy hybrid
granules are constructed based on the distance between objects. A relationship thus exists between a neighborhood hybrid
granule and a fuzzy hybrid granule, given by the following theorem.

Theorem 3.1. Let S = (U,Ch) be a hybrid information system,Cn [ Cc = Ch, Cn a numerical attribute set and Cc a categorical attribute

set. If rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
and rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg, then
ð½xi�Ch Þk ¼ dCh ðxiÞjd¼f�1ðkÞ;
where f ð0Þ ¼ 1; f ð1Þ ¼ 0; f ð�Þ 2 ½0;1�; f ðxÞ < f ðyÞ if x > y; f ðxÞ ¼ f ðyÞ if x ¼ y; k 2 ð0;1�; dCh jd¼f�1ðkÞðxiÞ indicates the neighbor-
hood granule in which the parameter d is equal to k, and dCn ðxi; xjÞ and dCc ðxi; xjÞ are normalized distances, respectively.
Proof. According to the existing conditions, we have
rCh ðxi; xjÞ ¼minfrCnðxi; xjÞ; rCc ðxi; xjÞg ¼
f ðdCn ðxi; xjÞÞ; dCc ðxi; xjÞ ¼ 0;
0; otherwise:

�

Therefore,
ð½xi�Ch Þk ¼ fxjjrCh ðxi; xjÞP k; xj 2 Ug
¼ fxjjðf ðdCn ðxi; xjÞÞP kÞ ^ ðdCc ðxi; xjÞ ¼ 0Þ; xj 2 Ug
¼ fxjjdCn ðxi; xjÞ 6 f�1ðkÞ ^ dCc ðxi; xjÞ ¼ 0; xj 2 Ug
¼ dCh ðxiÞjd¼f�1ðkÞ: �



Fig. 1. Relationship between fuzzy granules and neighborhood granules.
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Theorem 3.1 shows that the cut set of fuzzy hybrid granules is a neighborhood granule. Fig. 1 illustrates the relationship.

Hu et al. presented a special case [11], in which the similarity between two objects is defined as
rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg

¼
minff ðdCn ðxi; xjÞÞ;1g; dCnðxi; xjÞ < a and dCc ðxi; xjÞ ¼ 0
0; otherwise

�
¼ 1� 1

a� dCnðxi; xjÞ; dCn ðxi; xjÞ < a and dCc ðxi; xjÞ ¼ 0;
0; otherwise;

(

where
rCnðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ ¼ 1� 1
a
� dCnðxi; xjÞ and rCc ðxi; xjÞ ¼

1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
:

According to Theorem 3.1, we get ð½xi�Ch Þk ¼ dCh ðxiÞjð1�kÞa. Furthermore, when the parameter a = 0.25, the following equation
can be obtained, ð½xi�Ch Þk ¼ dCh ðxiÞjd¼1�k

4
, where dCh ðxiÞjd¼1�k

4
indicates the neighborhood granule in which the threshold d ¼ 1�k

4 .

4. Rough approximations for hybrid data

Defining rough approximations (lower and upper approximations) is a key problem for a rough set model. In this section,
we review several common rough approximations for hybrid data.

4.1. Neighborhood rough approximations

Hu et al. [11,12] applied the neighborhood rough set model to process hybrid information data, and the corresponding
lower and upper approximations are defined thus:

Let S = (U,Ch) be a hybrid information system and X # U a crisp set of objects. The neighborhood lower and upper approx-
imations of X can be defined as
NCh
dðXÞ ¼ fxijdCh ðxiÞ# X; xi 2 Ug;

NCh
dðXÞ ¼ fxijdCh ðxiÞ \ X – ;; xi 2 Ug:
Furthermore, the lower and upper approximations of a hybrid decision table are thus:
Let S = (U,Ch [ D) be a hybrid decision table, Ch a hybrid condition attribute set, D a decision attribute, and U/

D = {Y1,Y2, . . .,YN} a partition of discoursed universe U; the neighborhood lower and upper approximations for decision D are
NCh
dD ¼ [N

i¼1NCh
dðYiÞ;

NCh
dD ¼ [N

i¼1NCh
dðYiÞ:
4.2. Hu’s fuzzy rough approximations

Hu’s fuzzy rough set model is another rough set model for processing hybrid data. SubSection 2.3 introduced the defini-
tion of lower and upper approximations for the model.

Furthermore, for a given hybrid decision table S = (U,Ch [ D), U/D = {Y1,Y2, . . .,YN} is a partition of discoursed universe U.
The lower and upper approximations with respect to the decision D are
HChD ¼ [N
i¼1HChðYiÞ;

HChD ¼ [N
i¼1HChðYiÞ:
4.3. Wang’s fuzzy rough approximations

In hybrid information systems, the similarity degree between two objects with respect to a fuzzy attribute set Ch is s(xi,xj),
and Wang’s fuzzy lower and upper approximations can be rewritten as
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WCh
bðXÞ ¼ fxi 2 Xjsðxi; xjÞ 6 1� b; 8xj 2 U � Xg;

WCh
bðXÞ ¼ fxi 2 Uj9xj 2 X; such that sðxi; xjÞP bg:
For processing hybrid data using Wang’s fuzzy rough set model, the similarity degree rCh ðxi; xjÞ is employed to measure
the similarity between two objects. Thus, Wang’s fuzzy lower and upper approximation can be rewritten as
WCh
bðXÞ ¼ fxi 2 XjrCh ðxi; xjÞ 6 1� b;8xj 2 U � Xg;

WCh
bðXÞ ¼ fxi 2 Uj9xj 2 X; such that rChðxi; xjÞP bg:
Furthermore, let S = (U,Ch [ D) be a hybrid decision table and U/D = {Y1,Y2, . . .,YN} a partition of discoursed universe U. The
neighborhood lower and upper approximations for decision D are
WCh
bD ¼ [N

i¼1WCh
bðYiÞ;

WCh
bD ¼ [N

i¼1WCh
bðYiÞ:
The similarity between two objects in Wang’s fuzzy lower and upper approximation can also apply to other similarity
measures.

4.4. Dubois’ fuzzy rough approximations

Hu et al. simplified Dubois’ fuzzy rough approximations [9], where, for a given hybrid information system S = (U,Ch), X is a
crisp subset of U, and rCh ðxi; xjÞ measures the similarity between two objects, thus:
lChðXÞðxiÞ ¼min
xjRX
f1� rCh ðxi; xjÞg;

l
ChðXÞ
ðxiÞ ¼max

xj2X
frChðxi; xjÞg:
4.5. Radzikowska and Kerre’s fuzzy rough approximations

Cornelis et al. [5] used the model proposed by Radzikowska and Kerre [33] to obtain attribute reductions in hybrid data,
using the Łukasievicz connectives ðTL;ILÞ and ðTM ;IKDÞ. Let S = (U,Ch) be a hybrid information system and X a crisp subset
of U. rCh ðxi; xjÞmeasures the similarity between two objects, rewriting Radzikowska and Kerre’s fuzzy rough approximations
as
ðeR # XÞIL
ðxiÞ ¼ inf

xj2U
ILðrChðxi; xjÞ;lXðxiÞÞ;

ðeR " XÞTL ðxiÞ ¼ sup
xj2U

TLðrCh ðxi; xjÞ;lXðxiÞÞ;

ðeR # XÞIKD
ðxiÞ ¼ inf

xj2U
IKDðrCh ðxi; xjÞ;lXðxiÞÞ;

ðeR " XÞTM ðxiÞ ¼ sup
xj2U

TMðrCh ðxi; xjÞ;lXðxiÞÞ:
5. Comparing rough approximations for hybrid data

Hu’s fuzzy, neighborhood and Wang’s fuzzy rough approximations for hybrid data are all crisp object sets, whereas Du-
bois’ and Radzikowska and Kerre’s fuzzy rough approximations for hybrid data are fuzzy object sets. These rough approxi-
mations are divided into two types: crisp and fuzzy hybrid rough approximations. This section investigates the relationships
among them.

5.1. Relationships among crisp hybrid rough approximations

Neighborhood rough approximations are defined based on neighborhood hybrid granules, and Hu’s fuzzy rough approx-
imations are defined by constructing fuzzy hybrid granules. Furthermore, because the cut sets of a fuzzy hybrid granule is a
neighborhood hybrid granule, neighborhood rough approximations are more general than Hu’s fuzzy ones. The following
theorem offers a concrete explanation.

Theorem 5.1. Let S = (U,Ch) be a hybrid information system and let X # U be a crisp set. If rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
and rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg, then
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NCh
nðXÞ ¼ HChðXÞ and NCh

nðXÞ ¼ HChðXÞ;
where n is a constant that satisfies dCh ðxiÞjd¼n ¼ dCh ðxiÞjd¼1 � fxjjdCh ðxi; xjÞ ¼ 1g.
Proof. From Theorem 3.1 and the existing conditions, we have
dCh ðxiÞjd¼1 ¼ ð½xi�Ch Þ0:
Furthermore, because fxjjdCh ðxi; xjÞ ¼ 1g ¼ fxjjrCh ðxi; xjÞ ¼ 0g,
dCh ðxiÞjd¼n ¼ dChðxiÞjd¼1 � fxjjdCh ðxi; xjÞ ¼ 1g ¼ ð½xi�Ch Þ0 � fxjjrCh ðxi; xjÞ ¼ 0g:
Therefore,
NCh
nðXÞ ¼ fxijdCh ðxiÞjd¼n # X; xi 2 Ug

¼ xij ð½xi�ChÞ0 � fxjjrCh ðxi; xjÞ ¼ 0g
� �

# X; xi 2 U
� �

¼ fxij½xi�Ch # X; xi 2 Ug
¼ HChðXÞ and

NCh
nðXÞ ¼ fxijdCh ðxiÞjd¼n \ X – ;; xi 2 Ug

¼ xij ð½xi�ChÞ0 � fxjjrCh ðxi; xjÞ ¼ 0g
� �

\ X – ;; xi 2 U
� �

¼ fxij½xi�Ch \ X – ;; xi 2 Ug

¼ HChðXÞ:

Theorem 5.1 shows that, in essence, neighborhood rough approximations are identical to Hu’s if the parameter satisfies a

special condition. Neighborhood lower and upper approximations are the generalizations of Hu’s fuzzy ones. It can be spe-
cifically indicated by Fig. 2.

Furthermore, the definitions indicate that Wang’s fuzzy rough approximations are generated using the similarity between
two objects, and fuzzy hybrid granules construct Hu’s fuzzy rough approximations, which also rely on the similarity between
two objects. Some relationships among Wang’s and Hu’s fuzzy rough approximations may therefore exist. The following two
theorems investigate these relationships.

Theorem 5.2. Let S = (U,Ch) be a hybrid information system, and X # U. If rCh ðxi; xjÞmeasures the similarity between two objects. If
rCnðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
and rCh ðxi; xjÞ ¼ minfrCn ðxi; xjÞ; rCc ðxi; xjÞg;
then
WCh
1ðXÞ ¼ HChðXÞ:
Proof. From the definition of Wang’s lower and upper approximations, we have

WCh

1ðXÞ ¼ fxi 2 XjrCh ðxi; xjÞ 6 1� 1; 8xj R Xg
¼ fxi 2 XjrCh ðxi; xjÞ ¼ 0; 8xj R Xg
¼ fxi 2 Xjxj 2 X if rCh ðxi; xjÞ > 0g
¼ fxij½xi�Ch # X; xi 2 Ug
¼ HChðXÞ: �
Fig. 2. Relationships between neighborhood rough approximations and Hu’s fuzzy rough approximations.
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Theorem 5.2 shows that Wang’s fuzzy lower approximation is the same as Hu’s if the parameter b = 1 in Wang’s lower
approximation. Therefore, we conclude that Wang’s fuzzy lower approximation is more general than Hu’s.
Theorem 5.3. Let S = (U,Ch) be a hybrid information system, and X # U. If rCh ðxi; xjÞ evaluates the similarity between two objects
in Wang’s and Hu’s fuzzy upper approximations, then
WCh
fðXÞ ¼ HChðXÞ;
where f is a constant that satisfies fxi 2 UjrCh ðxi; xjÞP f; 9xj 2 Xg ¼ fxi 2 UjrCh ðxi; xjÞP 0; 9xj 2 Xg�
fxi 2 UjrCh ðxi; xjÞ ¼ 0; 9xj 2 Xg.
Proof. From the existing condition, we have
WCh
fðXÞ ¼ fxi 2 UjrCh ðxi; xjÞP f;9xj 2 Xg

¼ fxijrCh ðxi; xjÞ > 0;9xj 2 Xg
¼ fxij½xi�Ch \ X – ;;9xj 2 Xg

¼ HChðXÞ: �
Theorem 5.3 indicates that Hu’s fuzzy upper approximation is identical to Wang’s if the parameter b is an infinitesimal.
Therefore, in some sense, Hu’s fuzzy upper approximation is a special case of Wang’s. Fig. 3 specifically indicates the results
from Theorems 5.2 and 5.3.

The following two theorems examine the relationships among Wang’s fuzzy rough approximations and neighborhood
rough approximations.

Theorem 5.4. Let S = (U,Ch) be a hybrid information system and X # U a crisp set. If rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
; and rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg, then
WCh
bðXÞ ¼ NCh

f�1ð1�bÞðXÞ � fxi 2 Xjxj 2 X if ðdCh ðxi; xjÞ ¼ f�1ð1� bÞÞg;
where f(0) = 1, f(1) = 0, f(�) 2 [0,1], f(x) < f(y) if x > y, and f(x) = f(y) if x = y.
Proof. From the existing conditions, we have
WCh
bðXÞ ¼ fxi 2 XjrCh ðxi; xjÞ 6 1� b;8xj R Xg

¼ fxi 2 XjdCnðxi; xjÞP f�1ð1� bÞ ^ dCc ðxi; xjÞ ¼ 0; 8xj R Xg
¼ fxi 2 Xjxj 2 X if dCn ðxi; xjÞ < f�1ð1� bÞ ^ dCc ðxi; xjÞ ¼ 0g
¼ fxi 2 Xjxj 2 X ifðdCnðxi; xjÞ 6 f�1ð1� bÞÞ ^ dCc ðxi; xjÞ ¼ 0g
�fxi 2 Xjxj 2 X ifðdCn ðxi; xjÞ ¼ f�1ð1� bÞÞ ^ dCc ðxi; xjÞ ¼ 0g

¼ fxijdCh ðxiÞjf�1ð1�bÞ # X; xi 2 Ug
�fxi 2 Xjxj 2 X if ðdCn ðxi; xjÞ ¼ f�1ð1� bÞÞ ^ dCc ðxi; xjÞ ¼ 0g

¼ NCh
f�1ð1�bÞðXÞ � fxi 2 Xjxj 2 X if ðdCh ðxi; xjÞ ¼ f�1ð1� bÞÞg: �
Theorem 5.4 indicates a one to one correspondence between Wang’s fuzzy lower approximation and neighborhood lower
approximation.
Fig. 3. Relationships between Wang’s rough approximations and Hu’s fuzzy rough approximations.
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Theorem 5.5. Let S = (U,Ch) be a hybrid information system and let X # U be a crisp set, and rCh ðxi; xjÞ measures the similarity

between two objects. If rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
and rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg, then
WCh
bðXÞ ¼ NCh

f�1ðbÞðXÞ;

where f(0) = 1, f(1) = 0, f(�) 2 [0,1], f(x) < f(y) if x > y, and f(x) = f(y) if x = y.
Proof. According to the existing condition, we have
WCh
bðXÞ ¼ fxi 2 UjrCh ðxi; xjÞP b; 9xj 2 Xg

¼ fxijdCh ðxi; xjÞ 6 f�1ðbÞ;9xj 2 Xg
¼ fxijdCh ðxiÞjd¼f�1ðbÞ \ X – ;g

¼ NCh
f�1ðbÞðXÞ: �
As in Theorems 5.4 and 5.5 suggests that there is a one to one correspondence between Wang’s fuzzy upper approxima-
tion and neighborhood upper approximation. Fig. 4 illustrates these relationships.

The conclusions in Theorems 5.4 and 5.5 indicate that the one-to-one correspondence between two lower approxima-
tions differ from that between the two upper approximations. The following theorems give the reason for this problem.

Theorem 5.6. Let S = (U,Ch) be a hybrid information system and let X # U be a crisp set. If b1 > b2, then
WCh
b1 ðXÞ# WCh

b2 ðXÞ;

WCh
b1 ðXÞ# WCh

b2 ðXÞ:
Proof. From the existing conditions, we have
WCh
b1 ðXÞ ¼ fxi 2 XjrCh ðxi; xjÞ 6 1� b1;8xj R Xg

# fxi 2 XjrCh ðxi; xjÞ 6 1� b2;8xj R Xg
¼ fxi 2 Xjxj 2 X if rCh ðxi; xjÞ > 1� b2g
¼WCh

b2
ðXÞ and

WCh
b1 ðXÞ ¼ fxi 2 UjrCh ðxi; xjÞP b1;9xj 2 Xg

¼ fxi 2 UjrCh ðxi; xjÞ > b2;9xj 2 Xg
# fxi 2 UjrCh ðxi; xjÞP b2; 9xj 2 Xg

¼WCh
b2 ðXÞ:
Theorem 5.7. Let S = (U,Ch) be a hybrid information system and let X # U be a crisp set. If d1 > d2, then
NCh
d1 ðXÞ# NCh

d2 ðXÞ;

NCh
d1 ðXÞ � NCh

d2 ðXÞ:

As in the proof of Theorem 5.6, using the definitions of neighborhood lower and upper approximations, proving the the-

orem is easy.
Fig. 4. Relationships between Wang’s fuzzy rough approximations and neighborhood rough approximations.
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Theorems 5.6 and 5.7 show that changing Wang’s fuzzy rough approximations with parameter b differs from changing
neighborhood rough approximations with parameter d.

5.2. Relationships among fuzzy and crisp hybrid rough approximations

Both fuzzy and crisp hybrid rough approximations are constructed based on the similarity between two objects. There-
fore, we speculate that there exists some inherent relationships among them. Dubois’ and Radzikowska and Kerre’s fuzzy
rough approximations are two important fuzzy hybrid rough approximations. This subsection therefore investigates the
relationships among crisp and fuzzy hybrid rough approximations.

In the following, several theorems illustrate the relationships among Dubois’ fuzzy rough approximations and crisp hy-
brid rough approximations.

Theorem 5.8. Let S = (U,Ch) be a hybrid information system, and X # U. If rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
and rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg, then
ðChðXÞÞ1 ¼ HChðXÞ;

ðChðXÞÞS0 ¼ HChðXÞ:
Proof. According to the existing conditions, we have

ðChðXÞÞ1 ¼ fxijmin

xjRX
f1� rCh ðxi; xjÞgP 1g

¼ fxij1� rCh ðxi; xjÞP 1;8xj R Xg
¼ fxijrCh ðxi; xjÞ 6 0;8xj R Xg
¼ fxijrCh ðxi; xjÞ ¼ 0;8xj R Xg
¼ fxij½xi�Ch # X; xi 2 Ug
¼ HChðXÞ;

ðChðXÞÞS0 ¼ fxijmax
xj2X
frCh ðxi; xjÞg > 0g

¼ fxijrCh ðxi; xjÞ > 0;9xj 2 Xg
¼ fxij½xi�Ch \ X – ;; xi 2 Ug

¼ HChðXÞ:

Theorem 5.8 shows that Hu’s lower approximation is the 1-cut of Dubois’ fuzzy lower approximation, and Hu’s upper

approximation is the strong 0-cut of Dubois’ fuzzy upper approximation.
Theorem 5.9. Let S = (U,Ch) be a hybrid information system, and X # U. If rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
and rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg, then
ðChðXÞÞk ¼ NCh
f�1ð1�kÞðXÞ � fxi 2 Xjxj 2 X if ðdCn ðxi; xjÞ ¼ f�1ð1� kÞÞ ^ dCc ðxi; xjÞ ¼ 0g;
where k 2 (0,1], d 2 [0,1), f(0) = 1,f(1) = 0, f(�) 2 [0,1], f(x) < f(y) if x > y, and f(x) = f(y) if x = y.
Proof. According to the existing conditions, we have
ðChðXÞÞk ¼ fxijmin
xjRX
f1� rCh ðxi; xjÞgP kg

¼ fxij1� rCh ðxi; xjÞP k;8xj R Xg
¼ fxijrCh ðxi; xjÞ 6 1� k;8xj R Xg
¼ fxijðdCn ðxi; xjÞP f�1ð1� kÞ ^ dCc ðxi; xjÞ ¼ 0Þ _ ðdCc ðxi; xjÞ ¼ 1Þ;8xj R Xg
¼ fxi 2 Xjxj 2 X ifðdCn ðxi; xjÞ 6 f�1ð1� kÞÞ ^ dCc ðxi; xjÞ ¼ 0g
�fxi 2 Xjxj 2 X ifðdCn ðxi; xjÞ ¼ f�1ð1� kÞÞ ^ dCc ðxi; xjÞ ¼ 0g
¼ fxijdCh ðxiÞjd¼f�1ð1�kÞ # X; xi 2 Ug
�fxi 2 Xjxj 2 X ifðdCn ðxi; xjÞ ¼ f�1ð1� kÞÞ ^ dCc ðxi; xjÞ ¼ 0g
¼ NCh

f�1ð1�kÞðXÞ � fxi 2 Xjxj 2 X ifðdCn ðxi; xjÞ ¼ f�1ð1� kÞÞ ^ dCc ðxi; xjÞ ¼ 0g:
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Theorem 5.9 indicates that neighborhood lower approximation is inherently identical to the k-cut of Dubois’ fuzzy lower
approximation because a one-to-one correspondence between parameters d and k.
Theorem 5.10. Let S = (U,Ch) be a hybrid information system, and X # U. If rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ; rCc ðxi; xjÞ ¼
1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
; and rCh ðxi; xjÞ ¼minfrCn ðxi; xjÞ; rCc ðxi; xjÞg, then
ðChðXÞÞk ¼ NCh
f�1ðkÞðXÞ;
where k 2 (0,1], d 2 [0,1), f(0) = 1, f(1) = 0, f(�) 2 [0,1], f(x) < f(y) if x > y, and f(x) = f(y) if x = y.
Proof. According to the existing condition, we have
ðChðXÞÞk ¼ fxijmax
xj2X
frCh ðxi; xjÞgP kg

¼ fxijrCh ðxi; xjÞP k;9xj 2 Xg
¼ fxijdCn ðxi; xjÞ 6 f�1ðkÞ ^ dCc ðxi; xjÞ ¼ 0;9xj 2 Xg

¼ NCh
f�1ðkÞðXÞ: �
Similar to Theorems 5.9, 5.10 shows that neighborhood upper approximation is the same as the k-cut of Dubois’ fuzzy
upper approximation because a one-to-one correspondence also exists between d and k.
Theorem 5.11. Let S = (U,Ch) be a hybrid information system, and X # U. If rCh ðxi; xjÞ evaluates the similarity between two
objects in Dubois’ and Wang’s fuzzy upper approximations, then
ðChðXÞÞk ¼WCh
kðXÞ;

ðChðXÞÞk ¼WCh
kðXÞ:
Proof. From the existing condition, we have
ðChðXÞÞk ¼ fxijmin
xjRX
f1� rCh ðxi; xjÞgP kg

¼ fxij1� rCh ðxi; xjÞP k;8xj R Xg
¼ fxijrCh ðxi; xjÞ 6 1� k;8xj R Xg
¼WCh

kðXÞ:
Furthermore,
ðChðXÞÞk ¼ fxijmax
xj2X
frCh ðxi; xjÞgP kg

¼ fxijrCh ðxi; xjÞP k;9xj 2 Xg

¼WCh
kðXÞ: �
Theorem 5.11 states that Wang’s fuzzy rough approximations is in essence equal to the k-cut of Dubois’ fuzzy rough
approximations.

Fig. 5 illustrates the relationships among Hu’s fuzzy, neighborhood, Wang’s fuzzy and Dubois’ fuzzy rough
approximations.

Radzikowska and Kerre demonstrated that employing ðTM ;IKDÞ in Radzikowska and Kerre’s fuzzy rough approximations
gives exactly Dubois’ fuzzy rough approximations [33]. Fig. 6 illustrates this relationship. Furthermore, using the results from
Theorems 5.8, 5.9, 5.10, 5.11, obtaining relationships among Radzikowska and Kerre’s fuzzy and crisp hybrid rough approx-
imations is easy.

Example 1 better illustrates the relationships among crisp and fuzzy hybrid rough approximations. The above analyses
show that the relationships among Dubois’ fuzzy and crisp hybrid approximations are representative. Therefore, we only
analyze the relationships among Dubois’ fuzzy and crisp hybrid rough approximations in the example.

Example 1. Table 1 is part of the table Ecoli in UCI datasets, in which Sequence name is the ID of objects, MCG, GVH, LIP, CHG,
AAC, ALM1 and ALM2 are the condition attributes (LIP and CHG are categorical, and the others are numerical), and Class is the
decision attribute. Table 1 indicates that it is a hybrid decision table. For convenience, suppose that Cn = {MCG,GVH,AA-
C,ALM1,ALM2}, Cc = {LIP,CHG}, Ch = Cn [ Cc and D = {Class}.



Fig. 5. Relationships among Dubois’ fuzzy rough approximation and crisp hybrid rough approximations.
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Without loss of generality, let rCn ðxi; xjÞ ¼ f ðdCn ðxi; xjÞÞ ¼
1� 2dCn ðxi; xjÞ; dCn ðxi; xjÞ < 0:5
0; otherwise

�
and rCc ðxi; xjÞ ¼

1; dCc ðxi; xjÞ ¼ 0
0; otherwise

�
, where dCn ðxi; xjÞ ¼maxjC

n j
k¼1

jf ðxi ;cn
k Þ�f ðxj;cn

k Þj
maxxl2Uff ðxl ;cn

k
Þg

n o
and dCc ðxi; xjÞ ¼

0; f ðxi; cc
kÞ ¼ f ðxj; cc

kÞ for8cc
k 2 Cc

1; otherwise

�
.

After computing, we obtain the following distance matrix:
DðChÞ ¼

0 0:2323 0:3529 0:7176 0:7412 0:8353 1 0:7412 1 1
0:2323 0 0:2353 0:6406 0:6235 0:7879 0:8824 0:6235 1 1
0:3529 0:2353 0 0:6563 0:3882 0:6566 0:6471 0:4545 1 1
0:7176 0:6406 0:6563 0 1 1 0:8281 0:8438 1 1
0:7412 0:6235 0:3882 1 0 0:3334 0:3131 0:3467 1 1
0:8353 0:7879 0:6566 1 0:3334 0 0:6465 0:2400 1 1

1 0:8824 0:6470 0:8281 0:3131 0:6465 0 0:4444 1 1
0:7412 0:6235 0:4545 0:8438 0:3467 0:2400 0:4444 0 1 1

1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

;

and similarity matrix:
MðChÞ ¼

1 0:5354 0:2941 0 0 0 0 0 0 0
0:5354 1 0:5294 0 0 0 0 0 0 0
0:2941 0:5294 1 0 0:2235 0 0 0:0909 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0:2235 0 1 0:3334 0:3737 0:3067 0 0
0 0 0 0 0:3334 1 0 0:5200 0 0
0 0 0 0 0:3737 0 1 0:1111 0 0
0 0 0:0909 0 0:3067 0:5200 0:1111 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

:

The equivalent classes induced by hybrid attribute set Ch and decision attribute Class are



Fig. 6. Relationship between Dubois’ and Radzikowska and Kerre’s fuzzy rough approximations.

Table 1
Data description.

Sequence name MCG GVH LIP CHG AAC ALM1 ALM2 Class

x1(FTSN) 0.00 0.51 0.48 0.50 0.35 0.67 0.44 im
x2(FTSQ) 0.10 0.49 0.48 0.50 0.41 0.67 0.21 im
x3(MOTB) 0.30 0.51 0.48 0.50 0.42 0.61 0.34 im
x4(TOLA) 0.61 0.47 0.48 0.50 0.00 0.80 0.32 im
x5(TOLQ) 0.63 0.75 0.48 0.50 0.64 0.73 0.66 im
x6(EMRB) 0.71 0.52 0.48 0.50 0.64 1.00 0.99 im
x7(ATKC) 0.85 0.53 0.48 0.50 0.53 0.52 0.35 imS
x8(NFRB) 0.63 0.49 0.48 0.50 0.54 0.76 0.79 imS
x9(NLPA) 0.75 0.55 1.00 1.00 0.40 0.47 0.30 imL
x10(CYOA) 0.70 0.39 1.00 0.50 0.51 0.82 0.84 imL
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½x1�Ch ¼
1
x1
þ 0:5353

x2
þ 0:2941

x3
þ 0

x4
þ 0

x5
þ 0

x6
þ 0

x7
þ 0

x8
þ 0

x9
þ 0

x10
;

½x2�Ch ¼
0:5353

x1
þ 1

x2
þ 0:5294

x3
þ 0

x4
þ 0

x5
þ 0

x6
þ 0

x7
þ 0

x8
þ 0

x9
þ 0

x10
;

½x3�Ch ¼
0:2941

x1
þ 0:5294

x2
þ 1

x3
þ 0

x4
þ 0:2235

x5
þ 0

x6
þ 0

x7
þ 0:0909

x8
þ 0

x9
þ 0

x10
;

½x4�Ch ¼
0
x1
þ 0

x2
þ 0

x3
þ 1

x4
þ 0

x5
þ 0

x6
þ 0

x7
þ 0

x8
þ 0

x9
þ 0

x10
;

½x5�Ch ¼
0
x1
þ 0

x2
þ 0:2235

x3
þ 0

x4
þ 1

x5
þ 0:3333

x6
þ 0:3737

x7
þ 0:3067

x8
þ 0

x9
þ 0

x10
;

½x6�Ch ¼
0
x1
þ 0

x2
þ 0

x3
þ 0

x4
þ 0:3334

x5
þ 1

x6
þ 0

x7
þ 0:52

x8
þ 0

x9
þ 0

x10
;

½x7�Ch ¼
0
x1
þ 0

x2
þ 0

x3
þ 0

x4
þ 0:3737

x5
þ 0

x6
þ 1

x7
þ 0:1111

x8
þ 0

x9
þ 0

x10
;

½x8�Ch ¼
0
x1
þ 0

x2
þ 0:0909

x3
þ 0

x4
þ 0:3067

x5
þ 0:5200

x6
þ 0:1111

x7
þ 1

x8
þ 0

x9
þ 0

x10
;

½x9�Ch ¼
0
x1
þ 0

x2
þ 0

x3
þ 0

x4
þ 0

x5
þ 0

x6
þ 0

x7
þ 0

x8
þ 1

x9
þ 0

x10
;

½x10�Ch ¼
0
x1
þ 0

x2
þ 0

x3
þ 0

x4
þ 0

x5
þ 0

x6
þ 0

x7
þ 0

x8
þ 0

x9
þ 1

x10
;

Y1 ¼ fx1; x2; x3; x4; x5; x6g;
Y2 ¼ fx7; x8g;
Y3 ¼ fx9; x10g;
where Y1, Y2, Y3 are the decision classes induced by decision attribute.
Furthermore, we can obtain the upper and lower approximations of Y1:
ChðY1Þ ¼
1
x1
þ 1

x2
þ 0:9091

x3
þ 1

x4
þ 0:6263

x5
þ 0:4800

x6
þ 0

x7
þ 0

x8
þ 0

x9
þ 0

x10
;

ChðY1Þ ¼
1
x1
þ 1

x2
þ 1

x3
þ 1

x4
þ 1

x5
þ 1

x6
þ 0:3737

x7
þ 0:5200

x8
þ 0

x9
þ 0

x10
;

HChðY1Þ ¼ fx1; x2; x4g;

HChðY1Þ ¼ fx1; x2; x3; x4; x5; x6; x7; x8g:
Thus, it is easy to know that
ðChðY1ÞÞ1 ¼ fx1; x2; x4g ¼ HChðY1Þ;

ðChðY1ÞÞ0 ¼ fx1; x2; x3; x4; x5; x6; x7; x8g ¼ HChðY1Þ:
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The results are in accordance with Theorem 5.8.
Suppose that parameter d = 0.3. One can obtain that dCh ðx1Þ ¼ fx1; x2g; dCh ðx2Þ ¼ fx1; x2; x3g; dCh ðx3Þ ¼ fx2; x3g; dCh ðx4Þ ¼

fx4g; dCh ðx5Þ ¼ fx5g; dCh ðx6Þ ¼ fx6; x8g; dCh ðx7Þ ¼ fx7g; dCh ðx8Þ ¼ fx6; x8g; dCh ðx9Þ ¼ fx9g; dCh ðx10Þ ¼ fx10g. Thus
NCh
0:3ðY1Þ ¼ fx1; x2; x3; x4; x5g;

fxijxj 2 Y1 if dCn ðxi; xjÞ ¼ 0:3 ^ dCc ðxi; xjÞ ¼ 0g ¼ ;; and

NCh
0:3ðY1Þ ¼ fx1; x2; x3; x4; x5; x6; x8g:
Because the relationships between k and d in lower and upper approximations are d = f�1(1 � k) and d = f�1(k), obtaining that
k = 1 � (1 � 2 � 0.3) = 0.6 and k = 1 � 2 � 0.3 = 0.4, respectively. Therefore, we can obtain that
ðChðY1ÞÞ0:6 ¼ fx1; x2; x3; x4; x5g ¼ NCh
0:3ðY1Þ � ;;

ðChðY1ÞÞ0:4 ¼ fx1; x2; x3; x4; x5; x6; x8g ¼ NCh
0:3ðY1Þ:
The given example easily explains Theorems 5.9 and 5.10.
In addition, suppose that b = 0.6; it is easy to obtain that
WCh
0:6ðY1Þ ¼ fx1; x2; x3; x4; x5g ¼ ðChðY1ÞÞ0:6;

WCh
0:6ðY1Þ ¼ fx1; x2; x3; x4; x5; x6g ¼ ðChðY1ÞÞ0:6:
The above equations expound and illustrate Theorem 5.11.
6. Conclusions

This paper clarifies the relationships among the generalized rough set models for hybrid data. To approach the target, we
investigated the relationships among the rough sets from two viewpoints: constructing information granules and rough
approximations. We first investigated in detail the construction of fuzzy and neighborhood hybrid granules. We then ana-
lyzed the relationships among these rough approximations. We came to the following conclusions: Hu’s fuzzy rough approx-
imations are special cases of both neighborhood and Wang’s fuzzy rough approximations. One-to-one correspondence
relationships exist between Wang’s fuzzy and neighborhood rough approximations. Wang’s fuzzy and neighborhood rough
approximations are the cut sets of Dubois’ and Radzikowska and Kerre’s fuzzy rough approximations, respectively. These re-
sults can help researchers both understand these generalized rough sets and select a proper model for a given application.
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