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Spatial Pattern of an Epidemic Model with Cross-diffusion ∗
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Pattern formation of a spatial epidemic model with both self- and cross-diffusion is investigated. From the
Turing theory, it is well known that Turing pattern formation cannot occur for the equal self-diffusion coefficients.
However, combined with cross-diffusion, the system will show emergence of isolated groups, i.e., stripe-like or
spotted or coexistence of both, which we show by both mathematical analysis and numerical simulations. Our
study shows that the interaction of self- and cross-diffusion can be considered as an important mechanism for the
appearance of complex spatiotemporal dynamics in epidemic models.

PACS: 87. 23. Cc, 82. 40. Ck, 05. 45. Pq

Applications of mathematical modelling to the
spread of epidemics have a long history and were initi-
ated by Daniel Bernoulli[1] on the spread of smallpox
in 1760.[2] Most studies concentrate on the local tem-
poral development of diseases and epidemics. Their
geographical spread is less well understood, although
important progress has been achieved in a number of
case studies.[3−5] The key problem, as well as diffi-
culty, is how to include spatial effects and quantify
the dispersal of individuals.[2] This problem has been
studied with some effort in various ecological systems,
for instance, in plant dispersal by seeds.

In addition, many important epidemiological and
ecological phenomena are strongly influenced by spa-
tial heterogeneities because of the localized nature of
transmission or other forms of interaction.[6,7] Pre-
dicting the dynamics of these populations requires de-
tailed estimates of spatial parameters and the mech-
anisms involved.[8−11] Thus, spatial epidemic models
are more suitable for describing the process of epi-
demiology.

However, in nature, the tendency of the suscepti-
ble would be to keep away from the infected for the
reason that the susceptible individuals have ability to
recognize the infected group and avoid them moving
away from them, which has been generally overlooked
despite their potential ecological reality and intrinsic
theoretical interest. In general, the escape velocity of
the susceptible may be taken as proportional to the
dispersive velocity of the infected. This phenomenon
is called the cross-diffusion. The value of the cross-
diffusion coefficient may be positive, negative or zero.
The term of positive cross-diffusion coefficient denotes
the movement of the susceptible in the direction of
lower concentration of the infected and negative cross-
diffusion coefficient denotes that the susceptible tends
to diffuse in the direction of higher concentration of
the infected.

It is natural to ask how the cross-diffusion has
influence on the distribution of the infected in both
space and time. To well know this effect, we investi-
gate the pattern formation of an epidemic model with
both self- and cross-diffusion.

We focus our attention on the following model:

∂S

∂t
=A − dS − βSpIq + D1∇2S + D∇2I,

(1a)
∂I

∂t
=βSpIq − (d + µ)I + D2∇2I, (1b)

where A is the recruitment rate of the population, d is
the natural death rate of the population, β is the force
of infection or the rate of transmission, and µ is the
disease-related death rate from the infected. The non-
linear incidence rate βSpIq is given by Liu et al.[12,13]

due to saturation or multiple exposures before infec-
tion. In this Letter, we set p = 1 and q = 2. Here,

∇2 =
∂2

∂x2
+

∂2

∂y2
is the usual Laplacian operator in

two-dimensional space and D1, D2 are, respectively,
the susceptible and infected individuals diffusion co-
efficients. D is called the cross-diffusion coefficient.
From the biological point of view, we assume all the
parameters are positive throughout this study.

The model (1) needs to be analysed with the initial
populations

S(0) > 0, I(0) > 0.

We also assume that no external input is imposed from
outside. Hence, the boundary conditions are taken as

∂S

∂n

∣∣∣
(x,y)

=
∂I

∂n

∣∣∣
(x,y)

= 0, (2)

where (x, y) ∈ ∂Ω and Ω is the spatial domain.
In this Letter, we set that D > 0, which means

that the susceptible tends to diffuse in the direction
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of lower concentration of the infected. Such situations
are common in nature in the process of the spread in
the epidemic.

Simple calculations show that the system (1) has
three equilibrium points:
(i) E1 = (A/d, 0), which corresponds to extinction of
the epidemic.

(ii) E2 =
(

Aβ +
√

A2β2 − 4d3β − 8d2βµ − 4dβµ2

2dβ
,

2d(d + µ)

Aβ +
√

A2β2 − 4d3β − 8d2βµ − 4dβµ2

)
, which is

corresponding to the coexistence of the S and I.

(iii) E∗ =
(

Aβ −
√

A2β2 − 4d3β − 8d2βµ − 4dβµ2

2dβ
,

2d(d + µ)

Aβ −
√

A2β2 − 4d3β − 8d2βµ − 4dβµ2

)
, which cor-

responds to the coexistence of the S and I.
By direct calculations, we know that E2 is unsta-

ble, which is a saddle. Thus, we are interested in
studying the stability behaviour of the interior equi-
librium point E∗. The Jacobian corresponding to this
equilibrium point is that

J =
(

a11 a12

a21 a22

)
.

Following the standard linear analysis of the reaction-
diffusion equation,[14] we consider a perturbation near
the steady state,

S(r, t) = S∗ + a(r, t), (3a)
I(r, t) = I∗ + b(r, t), (3b)

and we assume that

a(r, t) = α exp(λt) exp(ik · r), (4a)
b(r, t) = γ exp(λt) exp(ik · r). (4b)

We obtain that the eigenvalue is the root of the fol-
lowing equation:

λ2 + αkλ + γk = 0, (5)

where

αk =(D1 + D2)k2 − (a11 + a22), (6a)
γk =D1D2k

4 − (D2a11 + D1a22 − Da21)k2

+ a11a22 − a12a21. (6b)

The onset of Hopf instability corresponds to the case,
when a pair of imaginary eigenvalues cross the real
axis from the negative to the positive side. This sit-
uation occurs only when the diffusion vanishes.[14,15]

Mathematically speaking, the Hopf bifurcation occurs
when

Im(λk) 6= 0, Re(λk) = 0, at k = 0, (7)

where λk is the root of Eq. (5). Then we can obtain
the critical value of the transition, the Hopf bifurca-
tion parameter, i.e. β, equal to

βH =
1

µA2
(d4 + 4d3µ + 6d2µ2 + 4dµ3 + µ4). (8)

The system (1) will be unstable if at least one of
the roots of Eq. (5) is positive. By straightforward
analysis we find that γk is a quadratic polynomial
with respect to k2. Its extremum is a minimum at
some k2.[16,17] From Eq. (6b), elementary differentia-
tion with respect to k2 shows

k2
min =

a11D2 + a22D1 − Da21

2D1D2
. (9)

By substituting k = kmin into Eq. (6b), we have

γkmin =D1D2k
4
min − (D2a11 + D1a22 − Da21)k2

min

+ a11a22 − a12a21. (10)

By setting γkmin = 0, we can obtain the critical value
of Turing bifurcation parameter βT , equal to

βT =A2
[
2(−12d6D2

2D
4
1D

2 − 20d6D4
2D

3
1D + 32d6D3

2D
2
1D

3 − 16d6D3
2D

4
1D + 10d6D2

2D
2
1D

4

− d6D2D
5
1D

2 + 30d4D6
1µ

2D2
2 + 30d5D5

1µD3
2 − 24d5D5

2D
3
1µ − 8d6D5

2D1D
2 − 20d6D4

2D1D
3

− 8d6D5
2D

3
1 + 6d6D3

2D
5
1 + 2D6

1D
2
2µ

6 + 2d6D6
1D

2
2 + 10d4D2

2D
5
1Dµ2 + 10d3D2

2D
5
1Dµ3

− 10d3D2D
5
1D

2µ3 + 20d3D6
1µ

3D2D + 15d2D6
1µ

4D2D + 5d5D2
2D

5
1Dµ − 5d5D2D

5
1D

2µ

+ 6d5D2D
3
1D

4µ − 60d5D4
2D

3
1Dµ − 8d5D2D

4
1D

3µ − 12d5D3
2D

3
1D

2µ + 18d5D2
2D

3
1D

3µ

+ 15d4D6
1µ

2D2D − 12d4D4
1µ

2D2D
3 − 10d4D5

1µ
2D2D

2 + 6d5D6
1µD2D − 96d4D4

1µ
2D3

2D

− 72d4D4
1µ

2D2
2D

2 − 64d5D4
1µDD3

2 + 32d4D3µ2D2
1D

3
2 + 64d5D3µD2

1D
3
2 − 7d5D5µD1D

2
2

− d5D6µD1D2 + 10d4D4µ2D2
1D

2
2 + d4D5µ2D2

1D2 − 12d4D3
2D

3
1µ

2D2 − 8d5D5
2D1µD2

− 20d5D4
2D1µD3 + 16d4D5

2D
2
1µ

2D + 40d4D4
2D

2
1µ

2D2 + 20d5D2
1D

4µD2
2 − 48d5D4

1D
2µD2

2

+ 2d5D2
1D

5µD2 + 18d4D3
1D

3µ2D2
2 + 6d4D3

1D
4µ2D2 + 32d5D5

2D
2
1µD + 80d5D4

2D
2
1D

2µ

+ 40d6D2D4
2D

2
1 + 6d6D3D2

2D
3
1 + d6D2

2D
5
1D + 2d6D4D2D

3
1 − 2d6D2D

4
1D

3 − 4d6D3
2D

3
1D

2



3502 LI Li et al. Vol. 25

+ 60d4D5
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2D3
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.

At the critical point, we have γk = 0 when k =
kc.[16] For fixed kinetics parameters, this defines a crit-
ical cross-diffusion coefficient Dc as the appropriate
root of

(a11D2+a22D1−Da21)2−4D1D2(a11a22−a12a21) = 0.
(11)

Then critical wavenumber kc is then given by

k2
c =

a11D2 + a22D1 − Dca21

2D1D2
=

√
a11a22 − a12a21

D1D2
.

(12)
Note that the critical wavenumber of the cross-
diffusion system is the same as the non-cross-diffusion
system. That is to say, cross-diffusion has no effect on
the critical wavenumber but has effect on the roots of
Eq. (5).

Fig. 1. Bifurcation diagram for system (1). We set the
parameter values A = 1, d = 1, µ = 1.8 and D1 = D2 = 1.

Now, let us discuss the bifurcations represented by
these formulas in the parameter space spanned by the
parameters β and D which can be seen from Fig. 1.
The whole class of spatial model is included in this
parameter space. The upper part of the displayed pa-
rameter space (where is marked by IV) corresponds to

systems with homogeneous equilibria, which is uncon-
ditionally stable. If this region is left via a bifurcation
(Turing or Hopf), the qualitative behaviour of such
equilibria changes. If an equilibrium is represented
by a point in the part of the parameter space, where
is marked by III, it can be destabilized by a homoge-
neous oscillations. In domain II, both Hopf and Turing
instability occur. The equilibria that can be found in
the area, where is marked by I, are stable with respect
to homogeneous perturbations but loose their stability
with respect to perturbations of specific wave numbers
k. In this region, stationary inhomogeneous patterns
can be observed.

In order to see the effects of the cross-diffusion, we
plot the dispersion relation corresponding to several
values of one parameter while keeping the others fixed
in Fig. 2. Here, we set A = 1, d = 1, µ = 1.8, β = 35
and D1 = D2 = 1. It can be seen from Fig. 2 that
when D is increased, Turing modes [Re(λ) > 0] can
be available.

Fig. 2. Dispersion relation of system (1). (a) D = 1 and
(b) D = 0.5.

The dynamics behaviour of the spatial model can
not be studied by using analytical methods or normal
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forms. Thus we have to perform numerical simulations
by computer. To solve differential equations by com-
puters, one has to discretize the space and time of the
problem. In practice the continuous problem defined
by the reaction-diffusion system in 2D is solved in a
discrete domain with M × N lattice sites. The spac-
ing between the lattice points is defined by the lattice
constant ∆h. In the discrete system the Laplacian de-
scribing diffusion is calculated using finite differences,

i.e., the derivatives are approximated by differences
over ∆h. The time evolution is also discrete, i.e.,
the time goes in steps of ∆t. The time evolution can
be solved by using the Euler method. In the present
study, we set ∆h = 1, ∆t = 0.01 and M = N = 200.
It is checked that a further decrease of the step values
does not lead to any significant modification of the
results.

Fig. 3. Snapshots of contour pictures of the infected at 100000 iterations with (a) D = 1, (b) D = 1.3, (c) D = 1.5.

We keep A = 1, d = 1, µ = 1.8, β = 35,
D1 = D2 = 1 and vary parameter D for simulations.
Figure 3 shows the evolution of the spatial pattern of
infected population with small random perturbation
of the stationary solution S∗ and I∗ of the spatially
homogeneous systems when the parameter values are
in the domain of Turing space. As D increases, stripe
only, coexistence of stripe and spotted, and spotted
only pattern emerge successively.

In summary, spatial pattern of an epidemic model
with both self- and cross-diffusion has been investi-
gated. The numerical results correspond perfectly to
our theoretical findings that there are a range of pa-
rameters in β − D plane where the different spatial
patterns can be obtained. The influence of cross-
diffusion on the pattern formation is revealed. More
specifically, when there is no cross-diffusion, there is
no Turing pattern. However, combing with cross-
diffusion, we obtain stripe-like, spotted or coexistence
of both patterns as D increases. Although more work
is needed, in principle, it seems that cross-diffusion is
able to generate many different kinds of spatiotempo-
ral patterns. For such reason, we can predict that the
interaction of self- and cross-diffusion can be consid-
ered as an important mechanism for the appearance of
complex spatiotemporal dynamics in epidemic models.
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