
Expert Systems With Applications 65 (2016) 332–344

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Discussion

A fast incremental extreme learning machine algorithm for data

streams classification

Shuliang Xu

a , Junhong Wang

a , b , ∗

a School of Computer and Information Technology, Shanxi University, Taiyuan 030 0 06, China
b Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Taiyuan 030 0 06, China

a r t i c l e i n f o

Article history:

Received 31 March 2016

Revised 17 August 2016

Accepted 18 August 2016

Available online 25 August 2016

Keywords:

Data mining

Extreme learning machine

Data streams

Classification

Concept drift

a b s t r a c t

Data streams classification is an important approach to get useful knowledge from massive and dynamic

data. Because of concept drift, traditional data mining techniques cannot be directly applied in data

streams environment. Extreme learning machine (ELM) is a single hidden layer feedforward neural net-

work (SLFN), comparing with the traditional neural network (e.g. BP network), ELM has a faster speed, so

it is very suitable for real-time data processing. In order to deal with the challenge in data streams clas-

sification, a new approach based on extreme learning machine is proposed in this paper. The approach

utilizes ELMs as base classifiers and adaptively decides the number of the neurons in hidden layer, in

addition, activation functions are also randomly selected from a series of functions to improve the per-

formance of the approach. Finally, the algorithm trains a series of classifiers and the decision results for

unlabeled data are made by weighted voting strategy. When the concept in data streams keeps stable,

every classifier is incrementally updated by using new data; if concept drift is detected, the classifiers

with weak performance will be cleared away. In the experiment, we used 7 artificial data sets and 9 real

data sets from UCI repository to evaluate the performance of the proposed approach. The testing results

showed, comparing with the conventional classification methods for data streams such as ELM, BP, AUE2

and Learn ++ .MF, on most data sets, the new approach could not only be simplest in the structure, but

also get a higher and more stable accuracy with lower time consuming.

© 2016 Published by Elsevier Ltd.

w

C

S

s

t

a

d

l

f

S

o

a

t

a

r

W

g

s
1. Introduction

With the development of information society, many fields have

produced huge amount of data streams, such as communica-

tion, electronic commerce, stock market et al. Data streams clas-

sification is different from conventional classification approaches

(Padmalatha, Reddy, & Rani, 2014); due to infinite number, fast ar-

rival and concept drift, so how to derive useful knowledge and pat-

terns from massive stream data becomes a challenge in data min-

ing and machine learning (Lemaire, Salperwyck, Bondu, Zimányi,

& Kutsche, 2015). Since the model of data stream was proposed,

it has attracted much attention from Scholars (Farid et al., 2013;

Gama, Sebasti, & Rodrigues, 2009). Domingos et al. proposed VFDT

algorithm (Hulten, Spencer, & Domingos, 2001), VFDT establishes a

decision tree based on Hoeffding inequality in the training model

process and makes a leaf node become a decision node according

to the statistics of the attributes values. After a new sample ar-

riving, by traversing the decision tree with top-down method, we
∗ Corresponding author. Tel.: +8613834560616.

E-mail addresses: xushulianghao@126.com (S. Xu), wjhwjh@sxu.edu.cn (J. Wang).

i

p

c

http://dx.doi.org/10.1016/j.eswa.2016.08.052

0957-4174/© 2016 Published by Elsevier Ltd.
ill get the labels of the unlabeled data. Lenco et al. proposed CD-

Stream algorithm (Ienco, Bifet, Pfahringer, & Poncelet, 2014). CDC-

tream treats a data block as a processing unit and it compares the

tatistical information of the current data and historical data to de-

ermine whether the distribution of the data changing or not. If an

larm is sent, the algorithm starts to collect data. If concept drift is

etected, the collect data will be used to train a new classifier to

earn new concept. Du et al. proposed an algorithm based on in-

ormation entropy and adaptive sliding window, called ADDM (Du,

ong, & Jia, 2014), it detects concept drift only when the number

f instances in sliding window satisfies Hoeffding bound. In ADDM

lgorithms, an increased error rate will lead to an increase in en-

ropy. If the calculated entropy is equal to 1, the system will think

 change has happened and MB-GT (Nikovski & Jain, 2010) algo-

ithm will be used to retrain classifiers. For partially labeled data,

u et al. proposed CDRT algorithm (Wu, Li, & Hu, 2012), the al-

orithm is based on random decision tree model and uses semi

upervised learning techniques to deal with unlabeled data. CDRT

s similar to CVFDT (Hulten et al., 2001), when concept drift ap-

earing, the subtree replacement strategy will be taken to update

lassifiers. Aiming at the problem of periodic concept drift, Ortiz

http://dx.doi.org/10.1016/j.eswa.2016.08.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.08.052&domain=pdf
mailto:xushulianghao@126.com
mailto:wjhwjh@sxu.edu.cn
http://dx.doi.org/10.1016/j.eswa.2016.08.052

S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344 333

p

F

w

c

c

m

t

b

j

p

t

n

2

a

c

b

c

i

d

e

c

c

f

f

S

t

c

m

H

2

g

&

h

l

d

w

&

a

e

r

e

R

a

e

p

l

d

m

e

e

t

E

f

p

o

a

G

o

v

w

C

(

C

i

h

d

w

p

E

G

l

n

s

n

p

2

t

p

t

b

m

c

n

t

b

fi

a

s

e

m

p

h

E

i

r

c

c

(

a

f

c

q

a

(

(

(

roposed an ensemble algorithm called FAE (Ortíez et al., 2014),

AE utilizes Hoeffding trees (Hulten et al., 2001) as base classifiers,

hen the weight of old classifier is greater than a threshold, the

lassifier will be activated and then go to affect the decision of the

lassification results. Shao et al. proposed an algorithm (Shao, Ah-

adi, & Kramer, 2014) based on P-tree structure and it uses PCA

o detect concept drift. The difference between the two adjacent

locks is measured by the first principal components of the ad-

acent blocks; if the cosine angle of the two first principal com-

onent vectors exceeds a range, a change in data streams will be

hought to appear. Farid et al. proposed an algorithm for detecting

ovel classes in data streams by a decision tree (Farid & Rahman,

012). The approach unites classification and clustering techniques

nd treats concept drift as a novel class. By calculating the per-

entage of the data of each class in leaf nodes, a novel class will

e detected. Shaker et al. proposed an instances-based algorithm,

alled IBLStream (Shaker & Húllermeier, 2012); IBLStream is sim-

lar to KNN, by saving the relevant examples, the labels of new

ata are decided according to the several examples of the near-

st neighbors. Li et al. extended the classical SVM to an on-line

lassifier (Li & Yu, 2015), which was called OLSVM, the algorithm

an be directly applied for data streams classification with kernel

unction method. Xing et al. proposed a lifelong learning method

or Support Vector Machine (SVM) training called L 3 -SVM (Youlu,

hen, Chaomin, & Zhao, 2015). The algorithm introduces a Proto-

ype Support Layer (PSL) before SVM training. L 3 -SVM learns the

oncepts of data streams in an online way.

ELM, proposed by Huang, Zhu, and Siew (2006b) , is an effective

achine learning algorithm (Huang, Huang, Song, & You, 2015a;

uang, 2014; Huang, Zhou, Ding, & Zhang, 2012; Yu, Dai, & Tang,

015b) for SLFN and can get a much faster speed with a good

eneralization performance than SVM and BP network (Liu, Gao,

 Li, 2012). ELM randomly generates the input weights and the

idden layer biases, the output weights can be determined ana-

ytically. Since ELM was proposed, it has been widely applied and

eveloped. Tavares et al. proposed an extreme learning algorithm

ith parallel layer perceptrons, called PLP-ELM (Tavares, Saldanha,

 Vieira, 2015). Different from original ELM, PLP-ELM has two par-

llel hidden layers. For the activation functions in the hidden lay-

rs, one is linear and another is nonlinear. The final classification

esult for each instance is determined by two parallel hidden lay-

rs outputs. Zhang et al. proposed a self-adaptive algorithm called

AE-ELM (Zhang & Yang, 2015). RAE-ELM introduces AdaBoost.RT

lgorithm to train several classifiers, only the classifiers that the

rror rate is within a certain range will be accepted. Li et al. pro-

osed an extreme learning machine algorithm based on transfer

earning, called TL-ELM (Li, Mao, & Jiang, 2014). In TL-ELM, the

ifference between the prior knowledge and the target learning

odel needs to be considered. TL-ELM can use the existing knowl-

dge to learn similar knowledge without retraining classifiers. Xin

t al. proposed extreme learning machine for big data classifica-

ion, called Elastic-ELM (Xin, Wang, Qu, & Wang, 2015); Elastic-

LM uses MapReduce to parallel handle data and it is very suitable

or the problem of the real-time data processing. Stasic et al. pro-

osed an extreme learning machine called V-QELM which based

n voting mechanism (Stosic, Stosic, & Ludermir, 2016). In V-QELM

lgorithm, for the activation functions in hidden layer nodes, q -

aussian activation function is adopted. Each classifier selects an

ptimal value of the Parameter q k from a number of candidate

alues. Final classification results are determined by k classifiers

ith the voting mechanism. In the article (Huang, Bai, Kasun, &

hi, 2015b; Zeng, Xu, & Fang, 2015), convolutional neural network

CNN) is used in extreme learning machine. The algorithm utilizes

NN to extract effective features from a feature set and then ELM

s used to decide the class labels of unlabeled data.
For the most algorithms of ELM, the number of the nodes in

idden layer needs to be specified in advance; sometimes it is

ifficult for users to choose an appropriate number of the nodes

ithout priori knowledge. To solve this problem, Xue et al. pro-

osed an ensemble extreme learning machine algorithm called GE-

LM (Xue, Yao, Wu, & Yang, 2014) based on Genetic algorithm. In

E-ELM, several ELM classifiers with different numbers of hidden

ayer nodes are created at first, and then the algorithm uses ge-

etic operations and a validation set getting from training set to

elect the top M classifiers with minimum error rate and the least

orm of the output weight matrix. Miche et al. prosed an optimally

runed Extreme Learning Machine called OP-ELM (Miche et al.,

010); OP-ELM ranks the best neurons using MRSR and selects

he optimal number of neurons by LOO algorithm. Huang et al.

roposed SRM-ELM algorithm based on structural risk minimiza-

ion (Huang & Lai, 2012). SRM-ELM can obtain an optimal num-

er of neurons by Particle Swarm Optimization (PSO) with mini-

al structural risk. Lima et al. proposed an extreme learning ma-

hine algorithm for nonlinear regression called H-ELM (Lima, Can-

on, & Hsieh, 2015). In H-ELM, after the parameters are initialized,

he algorithm will automatically select the best number of neurons

y training set and feedback mechanism. But in fact, when classi-

ers are trained by the above algorithms, classifier will not change

ny more, so it is evident that the algorithms cannot handle data

treams hidden concept drift.

Because of simple structure, short training time and good gen-

ralization ability, extreme learning machine satisfies the require-

ents of classification algorithms in data streams. Aiming at the

roblem of data stream classification, the existing ELM algorithms

ave already made some achievements; most of them ,such as OS-

LM etc (Liang, Huang, Saratchandran, & Sundararajan, 2006), uses

ncremental learning strategy to update classifiers. For the algo-

ithms, gradual concept drift can be dealt with well, however, it

an not handle abrupt concept drift. So in this paper, a fast in-

remental extreme learning machine algorithm for data streams

IDS-ELM) is proposed. The approach takes ELM as base classifiers

nd uses an incremental learning mechanism to improve the per-

ormance of classifiers. When the concept hidden in data streams

hanging and evolving, the classifiers which do not meet the re-

uirements of the data streams classification will be eliminated

nd retrained.

For the paper, the contributions are as follows:

1) A new data streams classification algorithm is developed via a

weighted extreme learning machine strategy (Zong, Huang, &

Chen, 2013). The algorithm will be incrementally and continu-

ously updating classifier in the stable data, when concept drift

appears, the algorithm will rebuild a classifiers system and can

get a better accuracy.

2) The existed ELM algorithms (Li et al., 2014; Shao & Japkow-

icz, 2012; Shao et al., 2014; Wang, Lu, Dong, & Zhao, 2015; Xue

et al., 2014; Zhang, Lan, Huang, & Xu, 2013) are very sensitive

to the number of the neurons in hidden layer. Although most

of them have used some search techniques to select the optimal

number of the neurons, the methods produces much time over-

head and it is not suitable for data stream environment. IDS-

ELM utilizes an approach similar to the binary search method

to find an appropriate number of the neurons in hidden layer.

Comparing with the existed algorithms, the speed of IDS-ELM

is faster with a high accuracy.

3) According to the literatures (Zhang, Zhu, Shi, & Wu, 2009), the

more differences the classifiers are, the better performances

the algorithm will have. In order to increase the differences

among the classifiers, in this paper, activation functions in hid-
den nodes are randomly selected from a series of functions.

334 S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344

Fig. 1. ELM structure.

d

∑

i

r

r

i

c

t

2

∑

T

H

w

H

β

o

i

F

u

G

(

(

(

(

(

(

e

s

β

W

H
The rest of the paper is organized as follows. Section 2 briefly

reviews classification techniques for data streams and ELM basics.

In Section 3 , a new fast incremental extreme learning machine al-

gorithm called IDS-ELM is proposed and in Section 4 , IDS-ELM is

evaluated with 7 artificial data sets and 9 real data sets. Finally,

the conclusions are made in Section 5 .

2. Related work

2.1. Data streams classification

Let S = { . . . , d t−1 , d t , d t+1 , . . . } denotes a data stream, where d t =
{ x i , y i } , x i is the value set of the i th datum in each attribute and y i
is the class label of the instance. The goal of the data stream clas-

sification is to train a classifier f : x → y that establishes a mapping

relationship between feature vectors and class labels (Li, Wu, Hu,

& Wang, 2015). Data stream is different from conventional static

data, which often has infinite number, continuously arrives and is

accessed only once. To facilitate the description of the data stream

problem, we have the following notions.

A number of instances are organized into a data set with gener-

ating order and we call the data set as a data block, so it is know

that all data streams are composed of many data blocks. Because

of massive data and high speed for data streams, the data is only

allowed to be accessed once, and the sliding window mechanism

is applied (Soares & Rui, 2015a). In sliding window, there is one or

several data blocks in a window at the same time, only if the data

in the current window is processed completely, the next data block

can be allowed to enter into the sliding window.

At time t , the data distribution in data streams is p t (y | x), af-

ter �t time, the data distribution is changing to p t+�t (y | x) ; if

p t+�t (y | x) � = p t (y | x) , it is said that concept drift has happened in

�t time (liobait, Technol, Bifet, Pfahringer, & Holmes, 2014). If �t is

a short time, the conceptual transformation is referred to as grad-

ual concept drift; if �t is a long time, it is called abrupt concept

drift.

When a concept in data stream has changed, classifiers will not

function well, so the accuracy of the classification will decline. By

observing the change of the neighboring accuracies, if the change

of the accuracies is more than a range, we can say the concept has

changed in the data streams.

2.2. ELM basics

ELM is a single hidden layer feedforward neural network

(Huang et al., 2006b). The input weights and biases for hidden

node are assigned randomly and the weights connecting the hid-

den layer and output layer are determined analytically (Huang

et al., 2012). The structure of ELM is showed in Fig. 1 .

For N arbitrary distinct samples (x i , t i), where x i =
[x i 1 , x i 2 , x i 3 , . . . , x in]

T
, the output of a standard ELM with L hidden

nodes and an activation function g(x) which is nonlinear infinitely
ifferentiable in any interval is mathematically modeled as

L

i =1

βi g(a i , b i , x j) = o j , j = 1 , 2 , . . . , N (1)

Where a i is the weight connecting the input neurons with the

 th hidden neuron; βi is the weight connecting the i th hidden neu-

on with the output neurons; b i is the bias of the i th hidden neu-

on. The ELM performance can be guaranteed by the two theorems

n Huang, Chen, and Siew (20 06a) ; Huang et al. (20 06b) and ELM

an approximate the N samples with zero error if the conditions of

he two theorems are satisfied (Huang et al., 2006a; Huang et al.,

006b), so we have

L

i =1

βi g(a i , b i , x j) = t j , j = 1 , 2 , . . . , N (2)

he formula (2) can be written in a more compact format as

 β = T (3)

here

 =

⎡

⎣

g(a 1 , b 1 , x 1) . . . g(a L , b L , x 1)
. . .

. . .
. . .

g(a 1 , b 1 , x N) . . . g(a L , b L , x N)

⎤

⎦ (4)

=

⎡

⎣

βT
1
. . .

βT
L

⎤

⎦

L ×m

and T =

⎡

⎣

t T 1
. . .

t T N

⎤

⎦

N×m

(5)

H is the output matrix of the hidden layer; the i th column

f H is the i th hidden neuron output vector for samples and the

 th row is the i th sample output vector for all hidden neurons.

or activation function, six nonlinear functions are most commonly

sed (Fernandez-Navarro, Hervas-Martínez, Sanchez-Monedero, &

utierrez, 2011; Zuo, Huang, Wang, Han, & Westover, 2014):

1) Sigmoid function

G (a , b, x) =

1

1 + exp(−(a · x + b)))
(6)

2) Sinusoid function

G (a , b, x) = sin (a · x + b) (7)

3) Multiquadric function

G (a , b, x) =

√

‖

x − a ‖

2 + b 2 (8)

4) Gaussian function

G (a , b, x) = exp(−‖

x − a ‖

2

b
) (9)

5) Hardlim function

G (a , b, x) =

{
1 i f a · x + b � 0

0 otherwise
(10)

6) Triangular basis function

G (a , b, x) =

{
1 − | a · x + b | i f − 1 � a · x + b � 1

0 otherwise
(11)

According to the relevant definition of the Moore-penrose gen-

ralized inverse (Yong & Meng, 2016), the smallest norm least-

quares of (3) is as

ˆ = H

† T (12)

here H † is the Moore-penrose generalized inverse of the matrix

. H † can be calculated through orthogonal projection method,

S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344 335

o

(

i

t

2

W

p

t

f

L

(

2

t

e

β

S

I

H

β

S

2

a

c

l

a

H

A

t

S

S

S

w

a

n

v

a

3

3

l

p

b

t

u

r

a

n

2

w

m

r

i

t

o

p

E

g

m

c

f

b

n

fi

A

i

S

S

S

S

S

S

c

3

e

t

k

i

w

c

r

S

E

m

rthogonalization method and singular value composition (SVD)

 Zhang, 2013).

In order to improve the generalization performance, when deal-

ng with classification problems, ELM is generally regularized as

he following optimization problem (Yu, Sun, Yang, Yang, & Zuo,

015a):

min

1

2

∥∥β
∥∥2 +

1

2

C

N ∑

i =1

∥∥ξi

∥∥2

s.t. h (x i) β = t T i − ξT
i (13)

here ξi is the training error of the i th sample; C is a relevant

enalty factor. We can transform the problem (13) into the solu-

ion of the dual problem and construct the following Lagrangian

unction:

 =

1

2

∥∥β
∥∥2 +

1

2

C

N ∑

i =1

∥∥ξi

∥∥2 −
N ∑

i =1

L ∑

j=1

αi j (h (x i) β j − t i j + ξi j) (14)

From the partial derivatives of the function and KKT conditions

 Huang, Wang, & Lan, 2011; Huang et al., 2012; Sun, Yuan, & Wang,

014), we can conclude, if L < N , the size of the matrix H

T H is less

han that of the matrix HH

T , combining (1)–(3), the solution of the

quations is

= H

† T =

(
I

C
+ H

T H

)−1

H

T T (15)

o the final output of ELM is

f (x) = h (x) β = h (x)
(

I

C
+ H

T H

)−1

H

T T (16)

f L > N , the size of the matrix HH

T is less than that of the matrix

T H , the solution of the equations is

= H

T
(

I

C
+ H H

T
)−1

T (17)

o the final output of ELM is

f (x) = h (x) β = h (x) H

T
(

I

C
+ H H

T
)−1

T (18)

In the binary classification problem (Singh, Kumar, & Singla,

015; Sun et al., 2014), the decision function of ELM is formulated

s

f (x) = sign (h (x) β) (19)

For multiclass case (Singh et al., 2015; Sun et al., 2014), the

lass label of sample is formulated as

 abel (x) = arg max
1 � i ≤m

{ f i (x) } (20)

nd

f (x) = [f 1 (x) , f 2 (x) , f 3 (x) , . . . , f n (x)]
T

(21)

The ELM training algorithm can be summarized as follows

uang et al. (2006b) .

lgorithm 1. A training set X = { (x i , t i) | x i ∈ R

n , t i ∈ R

m } , activa-

ion function g(x) , the number of hidden neurons L .

tep 1 . Randomly generate input node weight w i and hidden neu-

rons bias b i , i = 1 , 2 , . . . , L.

tep 2 . Calculate the hidden layer output matrix H for the training

samples.

tep 3 . Calculate the output layer weight β based on the formula

(15) or (17) .

From the above, it can be known that, for ELM, the output layer

eight vector is the only parameter that needs to be calculated

nd not to be tuned repeatedly. Comparing with the traditional

eural network algorithm e.g. BP neural network, ELM has the ad-
antage in the training speed, so it meets the requirements of the

lgorithm in the data stream environment.

. IDS-ELM algorithm

.1. The approach determining the number of the neurons in hidden

ayer

For ELM, the number of neurons has a great influence on the

erformance of the algorithm (Mirza, Lin, & Liu, 2015). If the num-

er is too few, ELM can complete the classification task in a short

ime, but the classifier is unable to cope with data well due to the

nder fitting, so the error rate is very high. If the number of neu-

ons is too many, the structure of ELM will be very complicated

nd the over-fitting will happen. To obtain the optimal number of

eurons, one method for conventional ELM algorithms (Liang et al.,

006; Silva, Pacifico, & Ludermir, 2011) is to train a series of ELMs

ith different numbers of neurons, and then selects a ELM with

inimum error rate as the last result; another way is to add neu-

on into hidden layer one by one until the accuracy is no longer

ncreased or the increasing level is very small.

It is obvious that the above methods are time-consuming, so

hey cannot be applied in data streams environment. For the sake

f getting the suitable number of neurons in a short time, in this

aper, an algorithm similar to the binary search is proposed. For

LM, the number of neurons L should not be too large; in the al-

orithm, we limit L in (0, num], where num = min(N, q); q is the di-

ensions of the training data and N is the number of samples. We

ompare the current accuracy of ELM with the last one, if the dif-

erence between the two accuracies is less than ε(ε is determined

y Hoeffding bound and the details can be seen in Section 3.2), the

umber of the neurons in hidden layer of the current ELM is the

nal result. The algorithm is showed as follows:

lgorithm 2. A training set, a validation set, the upper bound of L

s num, L is initialized to 1
2 num, m = 1;

tep 1 . Utilize Algorithm 1 to produce ELM with L hidden neurons

and calculate the accuracy v 1 of the validation set.

tep 2 . L 0 =

1
2 (L+m) , train an ELM with L 0 hidden neurons and cal-

culate the accuracy v 2 of the validation set.

tep 3 . If v 2 − v 1 > ε, L = L 0 and v 1 = v 2 , go to step 2 ; else go to

step 4 ;

tep 4 . L 2 =

1
2 (L + num) , train an ELM with L 2 hidden neurons and

calculate the accuracy v 3 of the validation set.

tep 5 . If v 3 − v 1 > ε, m = L, L = L 2 and v 1 = v 3 goto step 2 ; else goto

step 6 .

tep 6 . Terminate Algorithm 2 and output L .

From Algorithm 2 , a suitable number L for ELM hidden neurons

an be found, then we use L to train a series of ELMs.

.2. Incrementally updating for IDS-ELM

In data streams, when the change of the data is not appar-

nt, e.g. gradual concept drift, conventional data streams classifica-

ion algorithms deem no change has happened, so classifiers will

eep immobile (Webb, Hyde, Cao, Nguyen, & Petitjean), however,

t is not consistent with the fact, so the performance of classifiers

ill be dropping with time going on. In order to handle a slight

hange in data streams, we use online sequential learning algo-

ithm (OS-ELM) (Liang et al., 2006) to update every classifier. From

ection 3.2 , we have known that the number of the neurons L in

LM is less than N , so the output weight is calculated as the for-

ula (15) .

336 S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344

c

t

l

c

K

i

s

r

c

3

o

C

c

g

g

d

o

n

u

s

T

2

T

d

v

a

a

t

t

d

c

(

c

s

l

a

c

c

C

W

c

A

fi

b

s

S

S

Given an initial data block D = { x i , t i } N 0 i =1
, the hidden layer out-

put matrix is

H 0 =

⎡

⎣

G (a 1 , b 1 , x 1) . . . G (a L , b L , x 1)
. . .

. . .
. . .

G (a 1 , b 1 , x N 0) . . . G (a L , b L , x N 0)

⎤

⎦ (22)

And

T 0 =

⎡

⎣

t T 1
. . .

t T N 0

⎤

⎦ (23)

Form the formula (15) , we have

β(0) =

(
I

C
+ H

T
0 H 0

)−1

H 0 T 0 (24)

Let K 0 =

I
C + H

T
0 H 0 , the formula (24) can be transformed into the

formula (25)

β(0) = K

−1
0 H

T
0 T 0 (25)

We suppose a new data block D 1 = { (x i , t i) } N 0 + N 1 i = N 0 +1
coming after

getting β0 , then we use the new data block to update classifier, so

β(1) is

β(1) =

(

I

C
+

[
H 0

H 1

]T [
H 0

H 1

]) −1 [
H 0

H 1

]T [
T 0
T 1

]

= K

−1
1 (H

T
0 T 0 + H

T
1 T 1) (26)

Where

H 1 =

⎡

⎣

G (a 1 , b 1 , x N 0 +1) . . . G (a L , b L , x N 0 +1)
. . .

. . .
. . .

G (a 1 , b 1 , x N 0 + N 1) . . . G (a L , b L , x N 0 + N 1)

⎤

⎦ (27)

T 1 = [t N 0 +1 , . . . , t N 0 + N 1]
T
N 1 ×m

(28)

K 1 =

I

C
+

[
H 0

H 1

]T [
H 0

H 1

]
= K 0 + H

T
1 H 1 (29)

We can transform the formula (26) into (30)

β(1) = K

−1
1 (H

T
0 H 0 + H

T
1 H 1)

= K

−1
1 K 0 β

(0) + K

−1
1 H

T
1 T 1 (30)

Unite the formulas (29) and (30) , we can conclude

β(1) = β(0) + K

−1
1 H

T
1 (T 1 − H 1 β

(0)) (31)

From the formulas (29) and (31) , when the (k +1)th data block

D k +1 = { (x i , t i) }
∑ k +1

i =0
N j

i = ∑ k
j=0 N j +1

coming, we can summarize

K k +1 = K k + H

T
k +1 H k +1 (32)

β(k +1) = β(k) + K

−1
k +1

H

T
k +1 (T k +1 − H k +1 β

(k)) (33)

Where

H k =

⎡

⎢ ⎣

G (a 1 , b 1 , x ∑ k
j=0 N j +1

) . . . G (a L , b L , x ∑ k
j=0 N j +1

)

. . .
. . .

. . .
G (a 1 , b 1 , x ∑ k +1

j=0 N j
) . . . G (a L , b L , x ∑ k +1

j=0 N j
)

⎤

⎥ ⎦

(34)

T k +1 =

[
t T

1+ ∑ k
j=0 N j

, . . . , t T
1+ ∑ k +1

j=0 N j

] T
N ×m

(35)

k +1
From the formulas (32) and (33) , when output weight β is cal-

ulated, we need to carry out an matrix inversion calculation, but

he calculated amount of the pseudo inverse of the matrix is very

arge, so we use Woodbury formula (Zhang, 2013) to diminish the

omputation and the method is as

−1
k +1

= (K k + H

T
k +1 H k +1)

−1

= K

−1
k

− K

−1
k

H

T
k +1 (I + H k +1 K

−1
k

H

T
k +1)

−1 H k +1 K

−1
k

(36)

From the formulas (33) and (36) , we can learn a new data block

ncrementally based on current classifiers. If the change in data

treams is sight, owing to updating mechanism, the classifier can

ecursively learn the new concept which does not need to retrain

lassifiers over and over again.

.3. Concept drift detection based on IDS-ELM

Concept drift is very common in data streams; different types

f concept drift have different processing methods (Webb, Hyde,

ao, Nguyen, & Petitjean). From Section 3.2 , we know IDS-ELM

easelessly corrects the classification models, so it can handle

radual concept drift. When the concept in data streams changes

reatly, the current classification models are not fit for the current

ata stream, so the error rate will be distinctly increased; many

f them have to be deleted and the remainders need to learn the

ew concept. In data streams classification problem, accuracy is

sually used to detect the change of concept; if accuracy changes

ignificantly, the algorithm will deem a concept drift has appeared.

o measure the significance, Hoeffding Bound (Domingos & Hulten,

0 0 0; Rutkowski, Pietruczuk, Duda, & Jaworski, 2013) is used.

heorem 1 (Hoeffding Bound) . By observing an independent ran-

om variable r for n times, the range of r is R and the observed mean

alues of r is r̄ . With the confidence level 1- α, the true value of R is

t least r̄ − ε, where ε =

√

R 2 ln (1 α)

2 n .

According to the theorem, we know if the difference of the

ccuracies of the two adjacent data blocks is more than ε, it is

hought that concept drift has occurred; if the difference is less

han or equal to ε, it reveals that the data distribution is stable in

ata streams, at this time, the algorithm will incrementally update

lassifiers using the method showed in Section 3.2 . The literature

 Zhang et al., 2009) tells us that the performance of the ensemble

lassifiers can be improved by increasing the diversity of classifiers,

o in this paper, the activation function of ELM is randomly se-

ected from the formulas (6) –(11) and the ensemble classifiers use

 weighted voting mechanism to make decision. Assuming the ac-

uracy of a classifier C j is v k , for a data block B k , the weight of the

lassifier is as

 j .weight =

1

1 − v k + μ
(37)

here μ is a positive and small constant to avoid the divisor be-

oming zero.

From the above, IDS-ELM algorithm is summarized as follows.

lgorithm 3. IDS-ELM

Data stream S ; the maximum number of the ensemble classi-

ers k ; the neurons’number of ELM in hidden layer L = 0; the num-

er of instances in data block winsize ; threshold ε; ensemble clas-

ifiers ensemble = NULL; signal = 1;

tep 1 . If S = NULL , goto step 7 ; else get winsize new instances to

form a data block B i from S ;

tep 2 . If size (ensemble) < k , use algorithm 2 and the data block to

determine the number of hidden layer neurons L , goto step

3 ; else goto step 5 ;

S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344 337

S

S

S

S

S

E

a

o

b

T

r

4

fi

p

2

H

2

(

L

2

o

4

g

e

k

4

g

m

f

w

f

i

g

c

a

t

c

a

t

i

i

Table 1

Specifications of the data sets.

Data sets Attri class instance Types

Artificial data sets STAGGER 3 2 50,0 0 0 categorical

Waveform 21 3 50 ,0 0 0 numerical

LED 24 10 50 ,0 0 0 categorical

Hyperplane 40 2 50 ,0 0 0 numerical

Agrawal 9 2 50 ,0 0 0 mixed

RandomTree 25 6 50 ,0 0 0 mixed

SEAGenerator 3 2 50 ,0 0 0 numerical

Practical data sets Bank 16 2 45 ,211 numerical

Letter 15 26 20 ,0 0 0 numerical

EEG Eye 14 2 14 ,980 numerical

Magic 10 2 19 ,020 numerical

Mushroom 21 2 8124 categorical

Nursery 7 5 12 ,960 categorical

Student 32 3 5820 mixed

Adult 14 2 32 ,561 mixed

Shuttle 8 5 58 ,0 0 0 numerical

d

t

s

s

s

i

a

e

s

m

t

B

T

s

r

p

v

t

t

i

i

s

o

i

o

a

i

p

4

v

a

o

t

r

a

s

b
tep 3 . Use algorithm 1 to train a new ELM C j as a base classifier;

the number of the neurons in hidden layer of C j is L ; the

activation function of ELM is randomly selected from the

formulas (6) –(11) ; C j .weight = 1; ensemble ← ensemble ∪ C j ;

if signal = 1, goto step 4 ; else goto step 5 ;

tep 4 . Repeat step 1 – step 3 until there are k ELMs existing in

system; signal = 0;

tep 5 . Use classifiers to calculate the accuracy v i of B i with

weighted voting mechanism, if v i −1 − v i � ε, incrementally

update ensemble , recalculate the weights of ensemble , then

goto step 1 ; else concept drift has appeared, then goto step

6 ;

tep 6 . Recalculate the weights of ensemble ; sort ensemble accord-

ing to the weights in ascending order; delete the first half

of classifiers in ensemble ; then goto step 1 ;

tep 7 . Terminate algorithm 3 and output ensemble

In the Algorithm 3 , owing to the new search method, IDS-

LM can obtain a good number of neurons in hidden layer with

 fast speed. Additionally, the incremental learning makes IDS-ELM

nly adjust some parameters of neural network to learn new data

locks one by one when no concept drift happens in data streams.

he above measures ensure the algorithm can reach a high accu-

acy in a short time.

. Experimental evaluation

In this section, we conduct our IDS-ELM algorithm on the arti-

cial data sets and practical data sets; the artificial data sets are

roduced by MOA

1 platform (Bifet, Holmes, Kirkby, & Pfahringer,

010) and the practical data sets are selected from UCI data sets 2 .

ere we compare our algorithm with original ELM

3 (Huang et al.,

012; Huang et al., 2006b), Back Propagation neural network (BP)

 Han, Kamber, & Pei, 2011), AUE2 (Brzezinski & Stefanowski, 2014),

earn ++ .MF (Polikar, Depasquale, Mohammed, Brown, & Kuncheva,

010), H-ELM, SRELM, OP-ELM

4 . The experimental configurations

f the computer running algorithms are as follows: Windows 7 OS,

 GB RAM memory, Intel Core 2.94 G dual cores processor. All al-

orithms are implemented in MATLAB R2013a. The related param-

ters in this paper are set as follows: significance level α = 0.05,

 = 5, n = 10 × winsize , μ = 1 × 10 −6 .

.1. Data sets descriptions

In order to fully validate the performance of the proposed al-

orithms, different kinds of data sets are carried out in the experi-

ents, including categorical, numerical and mixed. The related in-

ormation of the data sets is showed in the Table 1 . In this section,

e only give a brief introduction to the artificial data sets. Except

rom the above, the 16 data sets are normalized into [-1,1].

In STAGGER data set, there are three attributes for every

nstance and each attribute has three values: color = { red, blue,

reen }, size = { small, medium, large }, shape = { circle, square, triangle } ;

lass = { false, true }; the numbers of the data for each class are bal-

nced. In Waveform data set, the goal of the task is to differentiate

he three types of waveform, each of which is generated from a

ombination of two or three base waves; in the process of gener-

ting the data set, 2% noise data is added. LED data set represents

he results of seven LED digital tubes display; the display number

s from 0 to 9 and all attributes values are either 0 or 1; accord-

ng to whether the corresponding light is on or not for the decimal
1 http://moa.cms.waikato.ac.nz/ .
2 http://archive.ics.uci.edu/ml/datasets.html .
3 http://www.ntu.edu.sg/home/egbhuang/elm _ codes.html .
4 http://www.gnu.org/copyleft/gpl.html .

a

i

t

s

o

f
igit, so the first 7 attributes represent the lighted state of the digi-

al tubes, and the last 14 attributes are redundant. Hyperplane data

et is a gradual concept drift data set; in the data set, a d dimen-

ions hyperplane X satisfies the following mathematical expres-

ion:
∑ d

i =1 a i x i = a 0 , where a 0 =

1
2

∑ d
i =1 a i , x i ∈ [01], a i ∈ [−10 , 10] ;

f
∑ d

i =1 a i x i � a 0 , the label of instance is marked as a positive ex-

mple, otherwise the label of the instance is marked as a negative

xample; the data set contains 10% noise. In Agrawal data set, in-

tances are produced with nine attributes; the six of them are nu-

erical and the remaining three attributes are categorical. At last,

hese instances are divided into two classes: group A and group

, which represents whether the loan should be approved or not.

he generator producing RandomTree data set constructs a deci-

ion tree by choosing attributes at random to split and assigns a

andom class label to each leaf. Once the tree is built, new exam-

les can be generated by assigning uniformly distributed random

alues to attributes to determine the class labels by traversing the

ree. We can adjust the data set by adjusting the parameters of the

ree. In RandomTree dataset, the first three attributes are categor-

cal and the last 20 attributes are numerical; all data are divided

nto six classes. SEAGenerator is a unbalanced and binary class data

et; it contains three attributes and all of them are numerical, but

nly the first two attributes relate with the labels and the last one

s redundant; there are four concepts in the data set and the data

f every data block satisfy inequation: f 1 + f 2 � θ, where f 1 and f 2
re the values of the first two attributes and θ is a threshold which

s usually selected from 9, 8, 7 and 9.5; four different values of θ
roduces four concepts for SEAGenerator.

.2. Experimental results

In order to compare the performance of IDS-ELM with the con-

entional algorithms: ELM, BP, AUE2 and Learn ++ .MF, we test the

lgorithms on the experimental datasets and we selected a variety

f functions as the ELM and BP activation functions. Considering

he weights of IDS-ELM, ELM and BP were randomly chosen, so we

an these algorithms for 10 times, the final result was from the

verage of the 10 results. The test results and time overhead are

howed in the Tables 2 , 3 and 4 .

From the Table 2 , we can see that the accuracy of IDS-ELM is

etter than AUE2, Learn ++ .MF and ELM on most data sets. For BP

lgorithms, when the activation function is sigmoid , the algorithm

s better than IDS-ELM on 13 data sets; when the activation func-

ion is radbas , BP algorithm is also better than IDS-ELM on 13 data

ets; but when the activation function is hardlim , BP algorithm is

nly better than IDS-ELM on 6 data sets, in other words, the per-

ormance of BP algorithm is worse than IDS-ELM. It is obvious that

http://moa.cms.waikato.ac.nz/
http://archive.ics.uci.edu/ml/datasets.html
http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
http://www.gnu.org/copyleft/gpl.html

338 S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344

Table 2

Results of algorithms testing on the different data sets.

Sigmoid Radbas Hardlim IDS-ELM AUE2 Learn ++ .MF C winsize

ELM BP ELM BP ELM BP

STAGGER 1 0 .9990 0 .9988 0 .9997 0 .9986 1 0 .949 0 .9427 1 .0 0 0 0 3 10 0 0

Waveform 0 .7120 0 .8302 0 .5951 0 .8073 0 .6688 0 .7320 0 .7950 0 .8283 0 .7806 3 10 0 0

LED 0 .7840 0 .9315 0 .4362 0 .9219 0 .7513 0 .5838 0 .7995 0 .7589 0 .6206 3 10 0 0

Hyperplane 0 .7377 0 .8513 0 .5188 0 .7925 0 .7250 0 .6927 0 .7775 0 .7846 0 .6616 10 10 0 0

Agrawal 0 .6974 0 .9635 0 .6618 0 .9496 0 .6114 0 .6588 0 .6722 0 .6282 0 .6204 10 10 0 0

RandomTree 0 .3107 0 .3989 0 .2277 0 .3847 0 .3039 0 .3501 0 .4069 0 .3994 0 .3872 10 10 0 0

SEAGenerator 0 .8622 0 .9689 0 .8706 0 .9670 0 .8774 0 .9167 0 .8880 0 .9374 0 .9467 3 10 0 0

Bank 0 .7282 0 .8549 0 .7885 0 .8396 0 .7901 0 .8522 0 .8530 0 .8846 0 .8739 3 10 0 0

Letter 0 .5345 0 .4463 0 .4274 0 .4600 0 .4190 0 .2220 0 .4151 0 .7917 0 .6576 8 500

EEG Eye 0 .6445 0 .6710 0 .6516 0 .7051 0 .6725 0 .6937 0 .6750 0 .572 0 .5854 3 500

Magic 0 .9659 0 .9734 0 .9675 0 .9614 0 .9677 0 .9635 0 .8400 0 .6316 0 .8717 3 500

Mushroom 0 .9693 0 .9604 0 .9228 0 .9496 0 .9461 0 .8819 0 .9170 0 .8250 0 .9268 3 200

Nursery 0 .4720 0 .8077 0 .6035 0 .7936 0 .6459 0 .6737 0 .6582 0 .6265 0 .6488 3 500

Student 0 .8995 0 .8994 0 .9050 0 .8994 0 .8994 0 .8994 0 .7979 0 .4979 0 .6407 3 200

Adult 0 .7161 0 .8226 0 .7104 0 .7985 0 .7212 0 .7845 0 .7731 0 .7692 0 .7719 3 10 0 0

Shuttle 0 .9441 0 .8346 0 .9629 0 .7622 0 .9874 0 .7205 0 .9218 0 .8665 0 .9877 3 1500

Table 3

Training time of algorithms testing on the different data sets.

Sigmoid Radbas Hardlim IDS-ELM AUE2 Learn ++ .MF

ELM BP ELM BP ELM BP

STAGGER 15 .1879 14 .8460 25 .7894 15 .1672 19 .2133 11 .0526 22 .6291 1 .1056 0 .4771

Waveform 18 .186 180 .192 17 .3215 113 .8716 19 .2032 121 .8453 37 .7122 1 .7999 0 .9129

LED 19 .2827 283 .4271 9 .7364 172 .1357 11 .8113 224 .7418 66 .7037 3 .8668 1 .0318

Hyperplane 15 .4838 88 .2735 17 .0222 162 .3093 18 .1988 253 .0390 55 .3992 2 .1491 1 .2242

Agrawal 17 .0919 36 .9174 16 .9129 42 .6376 13 .6972 28 .2382 18 .7083 1 .1929 0 .4831

RandomTree 16 .2520 368 .8589 11 .9754 515 .5934 19 .7426 198 .4962 44 .1668 3 .0365 1 .1087

SEAGenerator 11 .9504 18 .7776 14 .6287 19 .2220 14 .0446 13 .8478 13 .4078 0 .99352 0 .41556

Bank 14 .0328 44 .2776 12 .2594 44 .0951 16 .1663 27 .7447 14 .4432 1 .0300 0 .5750

Letter 2 .6160 240 .4929 1 .9515 474 .6340 2 .1083 328 .5714 13 .7545 3 .7381 0 .3695

EEG Eye 1 .1651 5 .1201 1 .4788 5 .4994 0 .9122 6 .3952 5 .4400 0 .3575 43 .6958

Magic 1 .5035 6 .14 4 4 1 .8268 5 .3827 2 .2720 4 .8014 5 .2734 0 .4803 0 .2850

Mushroom 0 .3684 5 .6977 0 .3579 6 .3101 0 .2868 5 .8755 3 .5942 0 .6578 0 .2651

Nursery 1 .1248 7 .5555 1 .1968 7 .8134 1 .0472 7 .9494 5 .5113 1 .6967 0 .1902

Student 0 .2333 3 .5093 0 .2394 3 .5559 0 .2362 3 .6291 3 .2706 0 .2915 10 .3783

Adult 13 .4052 76 .7632 11 .0449 68 .2534 9 .0949 24 .3345 17 .8900 0 .5370 0 .4146

Shuttle 40 .9569 100 .3948 28 .8437 162 .7517 34 .7804 61 .5044 36 .8103 8 .4959 0 .5257

Table 4

Testing time of algorithms testing on the different data sets.

Sigmoid Radbas Hardlim IDS-ELM AUE2 Learn ++ .MF

ELM BP ELM BP ELM BP

STAGGER 14 .8161 10 .2161 25 .9204 14 .7542 18 .7005 11 .4936 1 .1861 6 .0040 2 .302

Waveform 18 .2566 172 .8051 17 .5097 111 .9578 19 .1882 107 .1093 4 .3724 15 .8932 4 .5529

LED 19 .3385 268 .3405 9 .8040 165 .2984 12 .1022 209 .3725 10 .2065 16 .5520 5 .0687

Hyperplane 15 .3238 81 .4869 17 .0282 171 .4107 17 .8698 251 .8899 11 .8561 21 .9077 11 .8561

Agrawal 17 .0776 37 .5925 16 .8574 50 .7133 13 .2745 27 .7827 2 .1739 6 .3993 2 .5046

RandomTree 16 .8190 373 .4720 11 .8713 543 .3526 19 .4801 193 .5932 7 .1649 18 .6196 7 .40 0 0

SEAGenerator 11 .7450 18 .7473 14 .5776 20 .1848 13 .7882 13 .2722 1 .2249 5 .2388 2 .2558

Bank 13 .8060 48 .8350 12 .2264 53 .5312 15 .9988 28 .4303 2 .3149 10 .6173 2 .9135

Letter 2 .6006 238 .5782 1 .8361 237 .1080 2 .0602 295 .3646 2 .0418 3 .9935 1 .7646

EEG Eye 1 .0614 4 .9174 1 .4549 5 .6615 0 .8192 5 .9366 1 .1066 1 .9884 1 .2057

Magic 1 .4026 5 .9597 1 .8007 5 .2261 2 .1682 4 .6649 0 .8047 3 .1935 1 .3933

Mushroom 0 .3458 5 .4773 0 .3246 5 .9739 0 .2504 5 .7682 0 .9911 2 .5805 1 .1772

Nursery 1 .1328 6 .8940 1 .0770 8 .2423 1 .0786 7 .5415 0 .5680 6 .7584 0 .88329

Student 0 .2126 3 .3724 0 .2086 3 .4638 0 .2116 3 .4756 1 .0014 1 .3859 0 .8070

Adult 13 .3351 75 .3223 11 .0908 70 .2657 9 .1142 25 .2618 2 .1159 5 .4663 2 .2030

Shuttle 40 .8890 71 .3626 28 .6940 128 .5360 34 .5192 56 .1131 2 .8543 20 .8237 3 .7421

b

m

t

a

t
BP algorithm is very time-consuming and the time consumption of

BP algorithm is several or even several hundred times as much as

IDS-ELM. So if the active function of BP algorithm is selected prop-

erly, it will get a very high accuracy, but we can also know that

activation functions have a great influence on the performance of

BP algorithm and IDS-ELM is better than BP in the aspect of sta-
ility. From the Tables 3 and 4 , the time overhead of IDS-ELM is

ainly spent on the training process; once the classifier is trained,

he testing time of IDS-ELM will be much better than the other

lgorithms. After analyzing the data in the Tables 3 and 4 , the

esting time overhead of IDS-ELM is better than ELM, AUE2 and

S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344 339

Table 5

Winsize values of algorithms testing on the different data sets.

Data set Adult Agrawal Bank EEG Eye Hyperplane Magic Mushroom SEAGenerator STAGGER

winsize 500 10 0 0 10 0 0 500 10 0 0 600 500 10 0 0 10 0 0

Table 6

Results of algorithms testing on the different data sets.

Data set IDS-ELM H-ELM SRELM OP-ELM

Adult 0 .8064 ± 0.0206 0 .7815 ± 0.0202 0 .7675 ± 0.0277 0 .8109 ± 0.0172

Agrawal 0 .6932 ± 0.0301 0 .6481 ± 0.0674 0 .6722 ± 0.0152 0 .6660 ± 0.0252

Bank 0 .8598 ± 0.1398 0 .8803 ± 0.1084 0 .8641 ± 0.1465 0 .8915 ± 0.1136

EEG Eye 0 .7480 ± 0.2515 0 .6296 ± 0.4118 0 .4196 ± 0.3770 0 .6939 ± 0.2281

Hyperplane 0 .8011 ± 0.0206 0 .8853 ± 0.0219 0 .5880 ± 0.0373 0 .7957 ± 0.0193

Magic 0 .7963 ± 0.2654 0 .7058 ± 0.4530 0 .8588 ± 0.3082 0 .9476 ± 0.0802

Mushroom 0 .9560 ± 0.0174 0 .9870 ± 0.0123 0 .7638 ± 0.1990 0 .9755 ± 0.0215

SEAGenerator 0 .9239 ± 0.0265 0 .9535 ± 0.0146 0 .9120 ± 0.0699 0 .9650 ± 0.0091

STAGGER 0 .9794 ± 0.0046 1 .0 0 0 0 ± 0.0 0 0 0 0 .9435 ± 0.0852 1 .0 0 0 0 ± 0.0 0 0 0

Average 0 .8405 ± 0.0568 0 .8301 ± 0.1233 0 .7544 ± 0.1407 0 .8606 ± 0.0571

Table 7

Numbers of neurons testing on the different data sets.

Data set IDS-ELM H-ELM SRELM OP-ELM

Adult 10 .2333 ± 0.5731 50 .7188 ± 1.7083 5 .1250 ± 2.7327 32 .8125 ± 9.6668

Agrawal 6 .1283 ± 0.5970 158 .6800 ± 6.8577 8 .9327 ± 2.1237 31 .20 0 0 ± 6.50 0 0

Bank 9 .4 4 41 ± 1.5172 100 .1500 ± 0.9881 7 .2273 ± 2.4089 36 .1364 ± 9.7507

EEG Eye 10 .4704 ± 0.5534 49 .5833 ± 0.9962 5 .6429 ± 1.7368 36 .4286 ± 15.8634

Hyperplane 35 .2108 ± 2.9075 100 .4783 ± 1.4100 5 .5600 ± 2.2000 53 .40 0 0 ± 4.0104

Magic 6 .8600 ± 0.8222 59 .0769 ± 0.2774 5 .3333 ± 2.4976 19 .6667 ± 12.0218

Mushroom 16 .70 0 0 ± 1.7163 49 .6667 ± 0.8165 6 .50 0 0 ± 3.0237 55 .6250 ± 8.2104

SEAGenerator 1 .8775 ± 0.2823 100 .7826 ± 3.2746 5 .9600 ± 2.5080 5 .40 0 0 ± 11.4492

STAGGER 2 .40 0 0 ± 0.1985 99 .0 0 0 0 ± 0.0 0 0 0 6 .5200 ± 2.2383 27 .80 0 0 ± 4.5826

Average 11 .0360 ± 1.0186 85 .3485 ± 1.8143 6 .3112 ± 2.3855 37 .6077 ± 9.1174

L

m

a

d

e

o

E

t

I

t

h

b

b

n

h

t

E

e

t

c

i

a

0

n

w

c

r

w

E

t

o

g

m

t

S

s

t

L

r

n

t

c

m

s

c

t

C

W

s

a
earn ++ .MF on most data sets and the lager the data set is, the

ore obvious the advantages will be.

According to the results, although BP is better than IDS-ELM in

ccuracy, the time overhead of BP is far more than IDS-ELM; in

ata streams environment, such a high time consumption is inad-

quate for dealing with massive data. In test results, the difference

f the time overheads between ELM and IDS-ELM is small, but IDS-

LM has a better accuracy. As for AUE2 and Learn ++ .MF, although

he algorithms are better than IDS-ELM in training time overhead,

DS-ELM is better than the two algorithms in accuracy and testing

ime; if we require a high accuracy, IDS-ELM should be used with a

igher priority. From the above, we can see IDS-ELM is a relatively

etter algorithm.

BP, ELM and IDS-ELM algorithms are neural networks. The num-

er of the neurons in hidden layer reflects the complexity of the

eural networks and the more neurons the hidden layer has, the

igher the complexity of the neural networks will be. To compare

he complexity of the neural networks, we test H-ELM, SRELM, OP-

LM and IDS-ELM algorithms on 9 representative data sets; in the

xperiment, the value of winsize on different data sets is shown in

he Table 5 and the test results are shown in the Tables 6 and 7 .

From the Table 6 , we can see that, in the aspect of average ac-

uracy, H-ELM and OP-ELM are better than SRELM and IDS-ELM

s better than H-ELM and SRELM; OP-ELM is the best of all. By

nalysing the result, we can observe that OP-ELM is only more

.0201 than IDS-ELM in average accuracy; however, the average

umber of neurons of OP-ELM is 3.4077 times as much as IDS-ELM

hich means the structure of neural network of OP-ELM is more

p

omplex than IDS-ELM; so IDS-ELM gets a balance between accu-

acy and structure of neural network. If we observe the Table 7 ,

e can find SRELM can select fewer neurons for ELM than IDS-

LM. But combining the data from the Tables 6 and 7 , it is obvious

he accuracy of IDS-ELM is better than SRELM. From the execution

f SRELM, we have found because particle swarm optimization al-

orithm (PSO) is used; SRELM costs so much time to find the opti-

al number of neurons, and the elapsed time of SRELM is far more

han IDS-ELM. The advantages of IDS-ELM are more obvious than

RELM although the structure of neural network of SRELM is more

imple.

In order to investigate the effect of sliding window size on

he performance of the algorithms, we test IDS-ELM, AUE2 and

earn ++ .MF with different winsize values. Because the weights are

andomly selected, we perform IDS-ELM for 10 times; every fi-

al result of IDS-ELM is the average value of the 10 results. The

est results are showed in the Tables 8–16 . In the experiments, we

hoose KNN as the base classifiers of AUE2 and Learn ++ .MF. To

easure the performance of IDS-ELM and the conventional data

treams classification algorithms: AUE2 and Learn ++ .MF, we use

oefficient of variation (CV) (Brown, 2008) to judge the stability of

he algorithms and CV is computed as the formula (38) .

V =

std

mean

(38)

here std is standard deviation and mean is average value. The

maller the CV value is, the fewer differences the data will have

nd the performance of algorithm is more steady, otherwise, the

erformance is more fluctuant.

340 S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344

Table 8

Accuracies of IDS-ELM testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 0 .9623 0 .9559 0 .9500 0 .9541 0 .9349 0 .9507 0 .0096

Waveform 0 .7953 0 .7923 0 .7978 0 .7940 0 .8004 0 .7939 0 .0037

LED 0 .7679 0 .7808 0 .7589 0 .7513 0 .7587 0 .7561 0 .0139

Hyperplane 0 .7562 0 .7622 0 .7763 0 .7643 0 .7389 0 .7455 0 .0178

Agrawal 0 .6727 0 .6617 0 .6582 0 .6617 0 .6645 0 .6507 0 .0109

RandomTree 0 .3875 0 .3968 0 .3894 0 .3970 0 .4021 0 .3975 0 .0139

SEAGenerator 0 .8901 0 .8833 0 .8501 0 .8746 0 .8628 0 .8621 0 .0171

Bank 0 .8254 0 .8312 0 .8310 0 .8455 0 .8330 0 .8424 0 .0091

Adult 0 .7884 0 .7846 0 .7847 0 .7874 0 .7874 0 .7771 0 .0053

winsize 100 200 300 400 450 550 CV

Letter 0 .3768 0 .4315 0 .3871 0 .3847 0 .3687 0 .3956 0 .0562

EEG eye 0 .6546 0 .6253 0 .6439 0 .5773 0 .5194 0 .6637 0 .0905

Magic 0 .9692 0 .9357 0 .8838 0 .9330 0 .8601 0 .8266 0 .0595

Nursery 0 .6804 0 .6272 0 .6383 0 .6296 0 .6342 0 .6276 0 .0320

winsize 50 100 150 180 210 250 CV

Mushroom 0 .9635 0 .9322 0 .9347 0 .9225 0 .9117 0 .9093 0 .0213

Student 0 .9635 0 .9322 0 .7382 0 .8211 0 .8538 0 .9263 0 .0969

Table 9

Training time of IDS-ELM testing with different winsize.

winsize 100 300 500 700 900 1200 CV

STAGGER 5 .4017 6 .0509 8 .4669 10 .2734 15 .7565 18 .8592 0 .5019

Waveform 28 .5457 31 .6793 40 .1537 34 .6976 35 .8236 49 .3659 0 .1997

LED 37 .0325 38 .5264 48 .4504 46 .6290 60 .9928 45 .5152 0 .1856

Hyperplane 57 .6496 57 .6974 47 .7636 64 .0210 51 .9482 66 .8727 0 .1241

Agrawal 11 .0167 9 .6954 12 .0931 15 .3048 13 .7612 16 .4409 0 .1980

RandomTree 47 .5039 50 .1525 55 .3900 50 .1951 45 .8725 64 .1405 0 .1279

SEAGenerator 5 .3085 7 .1264 9 .6005 11 .7092 12 .8913 19 .5737 0 .4566

Bank 13 .4965 14 .2977 11 .2994 18 .0477 14 .4821 20 .2007 0 .3386

Adult 9 .6695 8 .7514 11 .2994 18 .0477 14 .4821 20 .2007 0 .3386

winsize 100 200 300 400 450 550 CV

Letter 11 .2838 10 .8711 10 .1828 11 .2241 12 .2078 9 .3462 0 .0910

EEG eye 3 .8596 4 .8860 4 .5188 3 .4731 4 .2372 6 .4224 0 .2266

Magic 5 .8507 5 .6173 6 .0242 7 .5456 6 .9145 7 .1226 0 .1205

Nursery 3 .9804 3 .6900 3 .5504 3 .4152 2 .7649 2 .8859 0 .1393

winsize 50 100 150 180 210 250 CV

Mushroom 3 .1894 4 .0149 4 .9884 4 .3959 4 .8927 4 .0802 0 .1553

Student 3 .3276 4 .5508 3 .2049 2 .8304 4 .6967 3 .1990 0 .2160

Table 10

Testing time of IDS-ELM testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 1 .1606 1 .1812 0 .9499 1 .0104 0 .7809 0 .8537 0 .1629

Waveform 6 .3590 6 .2994 6 .2076 6 .2074 6 .3745 5 .3050 0 .0667

LED 7 .6761 7 .4219 8 .0537 7 .6485 8 .1970 7 .5520 0 .0389

Hyperplane 12 .6290 12 .6731 11 .9149 10 .7473 8 .4256 10 .4123 0 .1122

Agrawal 2 .9517 2 .3963 2 .6189 2 .5994 2 .1567 2 .4259 0 .1060

RandomTree 10 .2111 9 .7626 11 .9149 10 .7473 8 .4256 10 .4123 0 .1122

SEAGenerator 1 .1961 1 .1543 1 .3023 1 .1265 0 .8296 0 .9021 0 .1673

Bank 3 .6127 2 .8925 3 .4595 3 .6347 3 .6526 2 .9415 0 .1053

Adult 2 .3461 2 .1352 2 .1283 2 .2998 1 .8368 1 .7958 0 .1099

winsize 100 200 300 400 450 550 CV

Letter 2 .1862 2 .2888 2 .2485 2 .1244 2 .3340 1 .6540 0 .1164

EEG eye 1 .1510 1 .2227 1 .0105 0 .6936 0 .9756 1 .0714 0 .2030

Magic 1 .5628 1 .3715 1 .1506 1 .4549 1 .3335 1 .1802 0 .1179

Nursery 0 .6670 0 .5501 0 .6293 0 .5938 0 .5157 0 .3581 0 .1981

winsize 50 100 150 180 210 250 CV

Mushroom 0 .8961 1 .1553 1 .0303 0 .9210 1 .223 0 .9115 0 .1358

Student 1 .0390 1 .3399 0 .7292 0 .9409 0 .9796 0 .9052 0 .2035

S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344 341

Table 11

Accuracies of AUE2 testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 0 .9554 0 .9347 0 .9621 0 .9634 0 .9598 0 .9611 0 .0113

Waveform 0 .8574 0 .8508 0 .8440 0 .8438 0 .8355 0 .8313 0 .0118

LED 0 .7606 0 .7335 0 .7168 0 .6883 0 .7973 0 .7815 0 .0550

Hyperplane 0 .7300 0 .7118 0 .6936 0 .6795 0 .6735 0 .7716 0 .0516

Agrawal 0 .6696 0 .6607 0 .6522 0 .6392 0 .6391 0 .6242 0 .0271

RandomTree 0 .4498 0 .4 4 4 4 0 .4319 0 .4245 0 .4173 0 .39829 0 .0440

SEAGenerator 0 .9550 0 .9470 0 .9479 0 .9467 0 .9453 0 .9634 0 .0074

Bank 0 .8857 0 .8861 0 .8939 0 .8935 0 .8887 0 .9011 0 .0066

Adult 0 .7705 0 .7661 0 .7756 0 .7760 0 .7713 0 .7606 0 .0077

winsize 100 200 300 400 450 550 CV

Letter 0 .7582 0 .7604 0 .7846 0 .7956 0 .7988 0 .8192 0 .0292

EEG eye 0 .5669 0 .5612 0 .5293 0 .5864 0 .5124 0 .5387 0 .0571

Magic 0 .6455 0 .6523 0 .6486 0 .6522 0 .6383 0 .6471 0 .0080

Nursery 0 .6489 0 .6525 0 .6414 0 .6352 0 .6471 0 .5990 0 .0310

winsize 50 100 150 180 210 250 CV

Mushroom 0 .7704 0 .7530 0 .8101 0 .7912 0 .8258 0 .8103 0 .0347

Student 0 .6121 0 .6121 0 .5877 0 .6250 0 .5916 0 .5546 0 .0421

Table 12

Training time of AUE2 testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 86 .4369 9 .5433 3 .5644 2 .6798 1 .3104 0 .7206 1 .9555

Waveform 118 .7110 15 .3804 6 .2450 3 .4311 2 .3616 1 .4859 1 .8852

LED 184 .0658 31 .8465 13 .1409 7 .4093 4 .8869 3 .1282 1 .7421

Hyperplane 113 .4361 14 .9986 6 .7833 3 .7935 2 .6126 1 .6941 1 .8477

Agrawal 89 .9786 11 .1038 4 .3476 2 .3850 1 .5053 0 .9140 1 .9200

RandomTree 141 .2959 25 .5404 10 .2509 5 .6624 3 .8518 2 .4168 1 .8212

SEAGenerator 83 .5994 10 .1535 3 .9122 2 .1271 1 .3221 0 .7991 1 .9318

Bank 17 .6726 9 .9511 4 .0319 2 .1864 1 .5230 0 .9022 1 .0881

Adult 39 .6253 4 .9927 1 .9956 1 .1480 0 .7454 0 .4488 1 .90 0 0

winsize 100 200 300 400 450 550 CV

Letter 57 .3281 23 .6322 10 .0918 6 .4147 4 .7862 3 .3782 1 .1813

EEG eye 6 .7568 1 .9257 0 .9278 0 .5769 0 .4684 0 .3453 1 .3520

Magic 11 .2505 2 .6676 1 .2906 0 .7562 0 .6364 0 .4569 1 .4760

Nursery 7 .3178 1 .8908 0 .9046 0 .5681 0 .4365 0 .2842 1 .4290

winsize 50 100 150 180 210 250 CV

Mushroom 6 .8047 2 .5559 1 .2594 0 .8590 0 .7004 0 .4990 1 .1419

Student 4 .2456 1 .1630 0 .5787 0 .4167 0 .3220 0 .2293 1 .3353

Table 13

Testing time of AUE2 testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 396 .3004 45 .4808 18 .0450 11 .9620 6 .7754 3 .8641 1 .7625

Waveform 377 .7649 54 .7613 28 .2951 19 .8391 16 .7249 14 .4533 1 .6884

LED 271 .6658 53 .6601 28 .3774 20 .4123 17 .3045 14 .9604 1 .4892

Hyperplane 389 .5625 59 .9526 34 .9469 26 .2310 22 .9216 20 .2062 1 .5854

Agrawal 406 .2628 49 .7001 20 .5667 11 .6399 7 .6559 5 .0340 1 .9043

RandomTree 287 .3797 59 .5329 30 .7544 22 .7320 19 .4149 17 .3394 1 .4580

SEAGenerator 381 .7968 46 .7684 18 .6917 9 .9837 6 .5192 4 .0371 1 .9196

Bank 69 .0791 42 .9587 21 .4 4 43 15 .3006 12 .8944 10 .3231 0 .8036

Adult 159 .5460 21 .9050 10 .7438 7 .7054 6 .5839 5 .2984 1 .7329

winsize 100 200 300 400 450 550 CV

Letter 34 .2934 17 .4387 8 .222 6 .1741 4 .7602 3 .7146 0 .9480

EEG eye 32 .8668 9 .1448 4 .7331 2 .9223 2 .5626 2 .1636 1 .3172

Magic 60 .8081 15 .1438 7 .4669 4 .6601 4 .0788 3 .0367 1 .4150

Nursery 27 .3966 7 .3897 3 .7455 2 .4804 2 .2467 1 .5572 1 .3362

winsize 50 100 150 180 210 250 CV

Mushroom 25 .7782 9 .94394 4 .6839 3 .2831 2 .6430 1 .9725 1 .1455

Student 19 .0960 5 .1483 2 .5339 1 .8248 1 .3758 1 .0610 1 .3485

342 S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344

Table 14

Accuracies of Learn ++ .MF testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 0 .9587 0 .8463 0 .9548 0 .9581 0 .9363 0 .9275 0 .0463

Waveform 0 .7796 0 .7896 0 .7864 0 .7892 0 .7788 0 .7854 0 .0059

LED 0 .5564 0 .6189 0 .6397 0 .6235 0 .6550 0 .6713 0 .0636

Hyperplane 0 .6491 0 .6582 0 .6608 0 .6618 0 .6734 0 .6533 0 .0127

Agrawal 0 .6399 0 .6397 0 .6858 0 .6182 0 .6548 0 .6760 0 .0386

RandomTree 0 .2972 0 .2996 0 .3218 0 .3284 0 .3433 0 .3217 0 .0551

SEAGenerator 0 .9434 0 .9448 0 .9542 0 .9379 0 .9379 0 .9557 0 .0069

Bank 0 .8918 0 .8937 0 .8958 0 .8926 0 .8870 0 .8974 0 .0040

Adult 0 .7657 0 .7794 0 .7681 0 .7918 0 .7779 0 .7696 0 .0125

winsize 100 200 300 400 450 550 CV

Letter 0 .4596 0 .5837 0 .6126 0 .6589 0 .6717 0 .6883 0 .1378

EEG eye 0 .6203 0 .6142 0 .4521 0 .6259 0 .4857 0 .6639 0 .1447

Magic 0 .9718 0 .9502 0 .9067 0 .8696 0 .8764 0 .8643 0 .0550

Nursery 0 .6852 0 .6625 0 .6975 0 .5252 0 .5395 0 .5648 0 .1270

winsize 50 100 150 180 210 250 CV

Mushroom 0 .9746 0 .9755 0 .9775 0 .97146 0 .9065 0 .8725 0 .0479

Student 0 .9152 0 .8486 0 .7456 0 .7500 0 .6418 0 .6455 0 .1449

Table 15

Training time of Learn ++ .MF testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 3 .5689 1 .2331 0 .7732 0 .5738 0 .4520 0 .3718 1 .0485

Waveform 3 .5367 1 .3525 1 .0362 0 .9315 0 .9511 1 .0181 0 .6951

LED 3 .5904 1 .3955 1 .1046 0 .9938 1 .1194 1 .1430 0 .6449

Hyperplane 3 .8505 1 .5147 1 .1328 1 .1541 1 .2228 1 .3807 0 .6196

Agrawal 76 .5215 24 .9305 0 .8562 0 .6694 0 .5269 0 .4204 1 .7661

RandomTree 3 .6991 1 .4269 1 .1388 1 .0606 1 .0816 1 .2714 0 .6392

SEAGenerator 3 .5589 1 .2577 0 .7695 0 .5847 0 .4692 0 .3863 1 .0343

Bank 3 .4015 1 .2195 0 .8061 0 .6733 0 .5701 0 .5545 0 .9168

Adult 2 .3996 0 .8627 0 .5730 0 .5103 0 .5011 0 .3347 0 .8940

winsize 100 200 300 400 450 550 CV

Letter 1 .4719 0 .7389 0 .5591 0 .4624 0 .4540 0 .3776 0 .6033

EEG eye 67 .2887 74 .7111 115 .3149 114 .8503 66 .6204 71 .3951 0 .2759

Magic 12 .0567 0 .6731 11 .7310 13 .0676 13 .3667 0 .2764 0 .7351

Nursery 0 .8898 0 .4490 0 .3096 0 .2475 0 .2350 0 .2164 0 .6609

winsize 50 100 150 180 210 250 CV

Mushroom 1 .2206 0 .5260 0 .3649 0 .3062 0 .2682 0 .2362 0 .7672

Student 0 .7389 0 .3782 10 .0766 0 .2360 0 .1929 12 .0131 1 .4067

Table 16

Testing time of Learn ++ .MF testing with different winsizes.

winsize 100 300 500 700 900 1200 CV

STAGGER 15 .8610 5 .9542 3 .9385 3 .0836 2 .4853 2 .0443 0 .9407

Waveform 15 .5342 6 .5430 5 .2735 4 .7351 4 .7344 4 .8844 0 .6129

LED 15 .4308 6 .7125 5 .3122 5 .0081 5 .3506 5 .4103 0 .5790

Hyperplane 15 .4308 6 .9472 5 .6906 5 .6798 6 .0222 6 .5979 0 .4927

Agrawal 17 .7274 6 .5224 4 .3272 3 .4938 2 .8739 2 .2494 0 .9417

RandomTree 15 .6474 6 .8312 5 .5149 5 .3069 5 .3105 5 .9445 0 .5473

SEAGenerator 15 .9702 6 .0673 3 .9822 3 .0256 2 .5343 2 .1233 0 .9369

Bank 14 .8611 5 .9201 4 .1278 3 .6502 3 .0429 2 .8818 0 .7998

Adult 10 .7585 4 .1659 2 .9174 2 .5639 2 .4579 1 .6559 0 .8245

winsize 100 200 300 400 450 550 CV

Letter 6 .4091 3 .4819 2 .6907 2 .2360 2 .3449 1 .9146 0 .5253

EEG eye 4 .4751 2 .5025 1 .1388 1 .0777 1 .1039 1 .1987 0 .7146

Magic 5 .7820 3 .0563 2 .1276 1 .6198 1 .5386 1 .3109 0 .6574

Nursery 3 .8084 2 .1287 1 .4780 1 .1962 1 .1566 1 .0024 0 .5927

winsize 50 100 150 180 210 250 CV

Mushroom 4 .4478 2 .3413 1 .5961 1 .3726 1 .1854 1 .0643 0 .6401

Student 3 .1245 1 .6075 1 .0482 0 .9834 0 .7813 0 .6260 0 .6800

S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344 343

E

t

o

s

i

t

o

s

C

s

E

u

c

v

w

f

5

g

p

d

p

u

e

e

t

s

i

c

C

p

s

A

d

g

R

B

B

B

D

D

F

F

F

G

H

H

H

H

H

H

H

H

H

H

I

L

L

L

L

L

L

l

L

M

M

N

O

P

P

R

S

S

S

S

S

S

From the Tables 8 and 11 , we can see, the accuracies of IDS-

LM and AUE2 varies with the change of the winsize values; for

he CV values of the two algorithms, IDS-ELM is better than AUE2

n 8 data sets; it tells us when the number of data increasing in

liding window, the change of the accuracy of IDS-ELM is smaller,

n other words, the stability of IDS-ELM is better than AUE2. From

he Tables 9, 10 and 13 , for CV values, IDS-ELM is better than AUE2

n 15 data sets, so IDS-ELM has more advantages in time con-

umption with winsize increasing. From the Tables 8 and 14 , for

V values, the accuracy of IDS-ELM is better than AUE2 in 15 data

ets. From the Table 9, 10, 15 and 16 , for the time overhead, IDS-

LM is better than Learn ++ .MF on 15 data sets; the test results tell

s IDS-ELM is better than Learn ++ .MF. In summary, we can con-

lude that, in data streams environment, comparing with the con-

entional algorithms for data streams classification with different

insizes, IDS-ELM is more stable than the conventional algorithms

or data streams classification.

. Conclusions

In this paper, a fast incremental extreme learning machine al-

orithm for data streams classification called IDS-ELM was pro-

osed. IDS-ELM uses a fast search method that can effectively re-

uce the number of the neurons in hidden layer and ensure the

erformance of the algorithm is not affected. In addition, IDS-ELM

ses a series of measures to deal with concept drift in data streams

nvironment which extends the scope of the algorithm. In the

xperiments, the results showed that, comparing with the tradi-

ional algorithms, IDS-ELM can improve classification accuracy and

peed; the performance of the algorithm keeps a quite good stabil-

ty when the sliding window changing.

In the work, in order to eliminate the influence of an ill-

onditioned matrix on the classification results, a ridge parameter

 is used in IDS-ELM. However, how to select a reasonable ridge

arameter ensuring the accuracy, speed and stability is our future

tudy.

cknowledgments

This work was supported by the National Natural Science Foun-

ation of China under grant no. 61202018 . Authors would like to

ratefully acknowledge the reviewers for their valuable comments.

eferences

ifet, A. , Holmes, G. , Kirkby, R. , & Pfahringer, B. (2010). MOA: Massive online analy-

sis. Journal of Machine Learning and Research, 11 , 1601–1604 .
rown, C. (2008). Encyclopedia of statistical sciences . John Wiley & Sons, Inc .

rzezinski, D. , & Stefanowski, J. (2014). Reacting to different types of concept drift:
The accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks

& Learning Systems, 25 , 81–94 .

omingos, P. , & Hulten, G. (20 0 0). Mining high-speed data streams. In Proceedings
of the sixth ACM SIGKDD international conference on knowledge discovery and data

mining (pp. 71–80). Boston, Massachusetts, USA: ACM .
u, L. , Song, Q. , & Jia, X. (2014). Detecting concept drift: An information entropy

based method using an adaptive sliding window. Intelligent Data Analysis, 18 ,
337–364 .

arid, D. M. , & Rahman, C. M. (2012). Novel class detection in concept-drifting data

stream mining employing decision tree. In Electrical & computer engineering
(ICECE), 2012 7th international conference on (pp. 630–633) .

arid, D. M. , Zhang, L. , Hossain, A. , Rahman, C. M. , Strachan, R. , Sexton, G. , & Da-
hal, K. (2013). An adaptive ensemble classifier for mining concept drifting data

streams. Expert Systems with Applications, 40 , 5895–5906 .
ernandez-Navarro, F. , Hervas-Martínez, C. , Sanchez-Monedero, J. , & Gutiér-

rez, P. A. (2011). MELM-GRBF: A Modified version of the extreme learning ma-
chine for generalized radial basis function neural networks. Neurocomputing, 74 ,

2502–2510 .

ama, J. , Sebasti, R. , & Rodrigues, P. P. (2009). Issues in evaluation of stream learning
algorithms. In Proceedings of the 15th ACM SIGKDD international conference on

knowledge discovery and data mining (pp. 329–338). Paris, France: ACM .
an, J. , Kamber, M. , & Pei, J. (2011). Data mining: Concepts and techniques . Morgan

Kaufmann Publishers Inc .
uang, G. , Huang, G. B. , Song, S. , & You, K. (2015a). Trends in extreme learning ma-
chines: A review. Neural Networks the Official Journal of the International Neural

Network Society, 61 , 32–48 .
uang, G. B. (2014). An insight into extreme learning machines: Random neurons,

random features and kernels. Cognitive Computation, 6 , 376–390 .
uang, G. B. , Bai, Z. , Kasun, L. L. C. , & Chi, M. V. (2015b). Local receptive fields based

extreme learning machine. Computational Intelligence Magazine IEEE, 10 , 18–29 .
uang, G. B. , Chen, L. , & Siew, C. K. (2006a). Universal approximation using in-

cremental constructive feedforward networks with random hidden nodes. IEEE

Transactions on Neural Networks, 17 , 879–892 .
uang, G. B. , Wang, D. H. , & Lan, Y. (2011). Extreme learning machines: A survey.

International Journal of Machine Learning & Cybernetics, 2 , 107–122 .
uang, G. B. , Zhou, H. , Ding, X. , & Zhang, R. (2012). Extreme learning machine for

regression and multiclass classification. In IEEE transactions on systems man &
cybernetics part b cybernetics a publication of the IEEE systems man & cybernetics

society: 42 (pp. 513–529) .

uang, G. B. , Zhu, Q. Y. , & Siew, C. K. (2006b). Extreme learning machine: Theory
and applications. Neurocomputing, 70 , 489–501 .

uang, Y. W. , & Lai, D. H. (2012). Hidden node optimization for extreme learning
machine. Aasri Procedia, 3 , 375–380 .

ulten, G. , Spencer, L. , & Domingos, P. (2001). Mining time-changing data streams.
In Proceedings of the seventh ACM SIGKDD international conference on knowledge

discovery and data mining (pp. 97–106). San Francisco, California: ACM .

enco, D. , Bifet, A. , Pfahringer, B. , & Poncelet, P. (2014). Change detection in categor-
ical evolving data streams. In Proceedings of the 29th annual ACM symposium on

applied computing (pp. 792–797). Gyeongju, Republic of Korea: ACM .
emaire, V. , Salperwyck, C. , & Bondu, A. (2015). A survey On supervised classifica-

tion on data streams. In E. Zimányi, & R.-D. Kutsche (Eds.), Business intelligence:
4th European summer school, eBISS 2014, Berlin, Germany, July 6–11 (pp. 88–125).

Cham: Springer International Publishing . Tutorial Lectures.

i, P. , Wu, X. , Hu, X. , & Wang, H. (2015). Learning concept-drifting data streams with
random ensemble decision trees. Neurocomputing, 166 , 68–83 .

i, X. , Mao, W. , & Jiang, W. (2014). Multiple-kernel-learning-based extreme learning
machine for classification design. Neural Computing & Applications , 1–10 .

i, X. , & Yu, W. (2015). Data stream classification for structural health monitoring via
on-line support vector machines. In Big data computing service and applications

(bigdataservice), 2015 IEEE first international conference on (pp. 400–405) .

iang, N. Y. , Huang, G. B. , Saratchandran, P. , & Sundararajan, N. (2006). A fast and
accurate online sequential learning algorithm for feedforward networks. IEEE

Transactions on Neural Networks, 17 , 1411–1423 .
ima, A. R. , Cannon, A. J. , & Hsieh, W. W. (2015). Nonlinear regression in environ-

mental sciences using extreme learning machines: A comparative evaluation.
Environmental Modelling & Software, 73 , 175–188 .

iobait, I. , Technol, X. , Bifet, A. , Pfahringer, B. , & Holmes, G. (2014). Active learning

with drifting streaming data. IEEE Transactions on Neural Networks and Learning
Systems, 25 , 27–39 .

iu, X. , Gao, C. , & Li, P. (2012). A comparative analysis of support vector machines
and extreme learning machines. Neural Networks, 33 , 58–66 .

iche, Y. , Sorjamaa, A. , Bas, P. , Simula, O. , Jutten, C. , & Lendasse, A. (2010). OP-ELM:
Optimally pruned extreme learning machine. IEEE Transactions on Neural Net-

works, 21 , 158–162 .
irza, B. , Lin, Z. , & Liu, N. (2015). Ensemble of subset online sequential extreme

learning machine for class imbalance and concept drift. Neurocomputing, 149 ,

316–329 .
ikovski, D. , & Jain, A. (2010). Fast adaptive algorithms for abrupt change detection.

Machine Learning, 79 , 283–306 .
rtíez, D. A. , Del, C.-A. J. , Ramos-Jimenez, G. , Frias, B. I. , Caballero, M. Y. , Muste-

lier, H. A. , & Morales-Bueno, R. (2014). Fast adapting ensemble: A new algorithm
for mining data streams with concept drift. Scientific World Journal, 2015 .

admalatha, E. , Reddy, C. R. K. , & Rani, B. P. (2014). Classification of concept drift

data streams. In information science and applications (ICISA), 2014 international
conference on (pp. 1–5) .

olikar, R. , Depasquale, J. , Mohammed, H. S. , Brown, G. , & Kuncheva, L. I. (2010).
Learn ++ .MF: A random subspace approach for the missing feature problem.

Pattern Recognition, 43 , 3817–3832 .
utkowski, L. , Pietruczuk, L. , Duda, P. , & Jaworski, M. (2013). Decision trees for min-

ing data streams based on the mcDiarmid’s bound. IEEE Transactions on Knowl-

edge and Data Engineering, 25 , 1272–1279 .
haker, A. , & Húllermeier, E. (2012). IBLSTreams: A system for instance-based clas-

sification and regression on data streams. Evolving Systems, 3 , 235–249 .
hao, H. , & Japkowicz, N. (2012). Applying least angle regression to ELM. In L. Kos-

seim, & D. Inkpen (Eds.), Advances in artificial intelligence: th Canadian conference
on artificial intelligence, Canadian AI 2012, Toronto, ON, Canada, May 28–30, 2012.

Proceedings (pp. 170–180). Berlin, Heidelberg: Springer Berlin Heidelberg .

hao, J. , Ahmadi, Z. , & Kramer, S. (2014). Prototype-based learning on concept-drift-
ing data streams. In proceedings of the 20th ACM SIGKDD international conference

on knowledge discovery and data mining (pp. 412–421) .
ilva, D. N. G. , Pacifico, L. D. S. , & Ludermir, T. B. (2011). An evolutionary extreme

learning machine based on group search optimization. In Evolutionary computa-
tion (CEC), 2011 IEEE congress on (pp. 574–580) .

ingh, R. , Kumar, H. , & Singla, R. K. (2015). An intrusion detection system using net-

work traffic profiling and online sequential extreme learning machine. Expert
Systems with Applications, 42 , 8609–8624 .

oares, S. G. , & Rui, A. (2015a). An adaptive ensemble of on-line extreme learning
machines with variable forgetting factor for dynamic system prediction. Neuro-

computing, 171 , 693–707 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0043

344 S. Xu, J. Wang / Expert Systems With Applications 65 (2016) 332–344

Y

Z

Z

Z

Z
Z

Z

Stosic, D. , Stosic, D. , & Ludermir, T. (2016). Voting based q-generalized extreme
learning machine. Neurocomputing, 174 , 1021–1030 .

Sun, Y. , Yuan, Y. , & Wang, G. (2014). Extreme learning machine for classification over
uncertain data. Neurocomputing, 128 , 500–506 .

Tavares, L. D. , Saldanha, R. R. , & Vieira, D. A. G. (2015). Extreme learning machine
with parallel layer perceptrons. Neurocomputing, 166 , 164–171 .

Wang, G. G. , Lu, M. , Dong, Y. Q. , & Zhao, X. J. (2015). Self-adaptive extreme learning
machine. Neural Computing & Applications, 27 , 1–13 .

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (0 0 0 0). Characterizing

Concept Drift. arXiv1511.03816.
Wu, X. , Li, P. , & Hu, X. (2012). Learning from concept drifting data streams with

unlabeled data. Neurocomputing, 92 , 145–155 .
Xin, J. , Wang, Z. , Qu, L. , & Wang, G. (2015). Elastic extreme learning machine for big

data classification. Neurocomputing, 149 , 464–471 .
Xue, X. , Yao, M. , Wu, Z. , & Yang, J. (2014). Genetic ensemble of extreme learning

machine. Neurocomputing, 129 , 175–184 .

Yong, Z. , & Meng, J. E. (2016). Sequential active learning using meta-cognitive ex-
treme learning machine. Neurocomputing, 173 , 835–844 .

Youlu, X. , Shen, F. , Chaomin, L. , & Zhao, J. (2015). l 3 -SVM: A lifelong learning
method for SVM. In 2015 international joint conference on neural networks

(IJCNN) (pp. 1–8) .
Yu, H. , Sun, C. , Yang, W. , Yang, X. , & Zuo, X. (2015). AL-ELM: One uncertainty-based

active learning algorithm using extreme learning machine. Neurocomputing, 166 ,
140–150 .
u, L. , Dai, W. , & Tang, L. (2015). A novel decomposition ensemble model with ex-
tended extreme learning machine for crude oil price forecasting. Engineering Ap-

plications of Artificial Intelligence, 47 .
eng, Y. , Xu, X. , Fang, Y. , & Zhao, K. (2015). Traffic sign recognition using deep con-

volutional networks and Extreme learning machine. In X. He, X. Gao, Y. Zhang,
Z.-H. Zhou, Z.-Y. Liu, B. Fu, F. Hu, & Z. Zhang (Eds.), Intelligence science and big

data engineering. Image and video data engineering: 5th international conference,
IScIDE 2015, Suzhou, China, June 14–16, 2015 (pp. 272–280). Cham: Springer In-

ternational Publishing . Revised Selected Papers, Part I

hang, P. , & Yang, Z. (2015). Ensemble extreme learning machine based on a new
self-adaptive adaboost. RT. In J. Cao, K. Mao, E. Cambria, Z. Man, & K.-A. Toh

(Eds.), Proceedings of ELM-2014 Volume 1: Algorithms and theories (pp. 237–244).
Cham: Springer International Publishing .

hang, P. , Zhu, X. , Shi, Y. , & Wu, X. (2009). An aggregate ensemble for mining concept
drifting data streams with noise . Springer Berlin Heidelberg .

Zhang, R. , Lan, Y. , Huang, G. B. , & Xu, Z. B. (2013). Dynamic extreme learning

machine and its approximation capability. IEEE Transactions on Cybernetics, 43 ,
2054–2065 .

hang, X. (2013). Matrix analysis and application, 2nd ed . Tsinghua University Press .
ong, W. , Huang, G. B. , & Chen, Y. (2013). Weighted extreme learning machine for

imbalance learning. Neurocomputing, 101 , 229–242 .
uo, B. , Huang, G. B. , Wang, D. , Han, W. , & Westover, M. B. (2014). Sparse ex-

treme learning machine for classification. IEEE Transactions on Cybernetics, 44 ,

1858–1870 .

http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0054
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0055
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0056
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0057
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0058
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0058
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0058
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0058
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0059
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0059
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0059
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0059
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0059
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0059
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0060
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0060
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0060
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0060
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0060
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0060
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0061
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0061
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0062
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0062
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0062
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0062
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0062
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0063
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0063
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0063
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0063
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0063
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0063
http://refhub.elsevier.com/S0957-4174(16)30451-1/sbref0063

	A fast incremental extreme learning machine algorithm for data streams classification
	1 Introduction
	2 Related work
	2.1 Data streams classification
	2.2 ELM basics

	3 IDS-ELM algorithm
	3.1 The approach determining the number of the neurons in hidden layer
	3.2 Incrementally updating for IDS-ELM
	3.3 Concept drift detection based on IDS-ELM

	4 Experimental evaluation
	4.1 Data sets descriptions
	4.2 Experimental results

	5 Conclusions
	 Acknowledgments
	 References

