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a b s t r a c t 

In the field of text mining, topic modeling and detection are fundamental problems in public opinion 

monitoring, information retrieval, social media analysis, and other activities. Document clustering has 

been used for topic detection at the document level. Probabilistic topic models treat topics as a distribu- 

tion over the term space, but this approach overlooks the semantic information hidden in the topic. Thus, 

representing topics without loss of semantic information as well as detecting the optimal topic is a chal- 

lenging task. In this study, we built topics using a network called a topic graph, where the topics were 

represented as concept nodes and their semantic relationships using WordNet. Next, we extracted each 

topic from the topic graph to obtain a corpus by community discovery. In order to find the optimal topic 

to describe the related corpus, we defined a topic pruning process, which was used for topic detection. 

We then performed topic pruning using Markov decision processes, which transformed topic detection 

into a dynamic programming problem. Experimental results produced using a newsgroup corpus and a 

science literature corpus showed that our method obtained almost the same precision and recall as base- 

line models such as latent Dirichlet allocation and KeyGraph. In addition, our method performed better 

than the probabilistic topic model in terms of its explanatory power and the runtime was lower com- 

pared with all three baseline methods, while it can also be optimized to adapt the corpus better by using 

topic pruning. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Due to the rapid development of computer networks and social

media, the volumes of various types of data have been increasing

rapidly, especially user-generated content. Therefore, there is an ur-

gent need to discover interesting patterns hidden in these massive

volumes of data. In this study, we focused on text data because

texts are generated in natural human language and the semantic

information hidden per unit size in text is richer than that in other

data formats such as video, images, and audio. We aimed to dis-

cover latent hierarchical structures called topics in large-scale cor-

pora by topic detection. 

Topic detection was initiated in the topic detection and track-

ing (TDT) research program early in 1998, which aimed to discover

topics or trends in various type of online media text data. TDT has

attracted much attention in the last two decades in many applica-

tion areas, such as online reputation monitoring [6] , public opin-

ion detection [7] , and user interest modeling [18] . Topic detection

is a fundamental application area in the text mining community,
∗ Corresponding author. 
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ncluding text classification and clustering, information retrieval,

nd document summarization. [1] . Topic detection plays an im-

ortant role in information retrieval and data mining, and it is

n effective tool for organizing and managing text data such as

ewswire archives and research literature. 

Unlike other existing applications in text mining and informa-

ion retrieval, topic detection is an entirely unsupervised learn-

ng task without any topic classes or structure labels. In general,

 topic is represented as related sets of keywords, and thus im-

ortant descriptions can be given to topics or events. Many text

lustering algorithms that typically compute similarities have been

eveloped for topic detection, such as single pass incremental clus-

ering algorithms [2] and incremental clustering algorithms [10] .

ince the latent Dirichlet allocation (LDA) method was proposed by

lei in 2003 [4] , the probabilistic topic model (pTM) has attracted

uch attention in the fields of information retrieval, text mining,

nd other areas. Essentially, pTM is a type of probabilistic model

sed for topic modeling, including L SA, pL SA , LDA , and various ex-

ension versions of pTM, which treat a topic as a distribution over

he term space. 

Despite the success of pTM, it has several drawbacks, as fol-

ows. (1) The inference algorithm used in the model can be too

omplex and much time is required to generate the topic word

http://dx.doi.org/10.1016/j.neucom.2017.02.020
http://www.ScienceDirect.com
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istribution, especially for large noisy and unbalanced corpora such

s social media data. (2) There is a lack of explanatory power be-

ause the methods mentioned above ignore the semantic relation-

hips between terms as well as topics. Existing explicit semantic

opic detection methods usually build an ontology or some other

tructure containing rich semantic information, before employing

ntology mapping, calculating, and reasoning to compute the simi-

arity among terms to identify semantic relationships and facilitate

emantic-based topic detection. However, building a general ontol-

gy requires a long time, despite the relatively low workload of

uilding domain ontology. (3) Most importantly, to the best of our

nowledge, topic optimization is not considered in the topic detec-

ion algorithm, which aims to optimize the topics generated and

elect appropriate topic words. Therefore, designing a new topic

etection method that considers semantics and automatically se-

ects the optimal topic set with low complexity in terms of time

nd space is a new challenge. In this study, we investigated the

mportance of topic semantic explicability and topic optimization,

nd we developed a topic graph establishment method, which rep-

esent topics using a network, where topics are represented as

oncept nodes and their semantic relationships using WordNet. In

rder to find the optimal topic that describes the related corpus,

e define a topic pruning process and perform topic pruning us-

ng Markov decision processes (MDPs). 

After completing our study, we recently found that Sayyadi and

aschid [11] proposed a graph analytical approach for topic de-

ection by representing a topic as a graph based on keyword co-

ccurrence, as in our proposed method. However, there are two

ifferences: (1) in our topic representation, we focus mainly on se-

antic information using an external knowledge-base; and (2)we

ropose a topic pruning process based on Markov decision pro-

esses, whereas Sayyadi and Raschid [11] did not consider topic

ptimization. Nevertheless, the conclusion of Sayyadi and Raschid

11] that word co-occurrence can obtain superior runtime perfor-

ance compared with other solutions demonstrates that a similar

pproach can outperform pTM in terms of its lower time complex-

ty. 

In our proposed method, we first abstract the topics using a

ovel network called a topic graph, where the topics are repre-

ented as concept nodes and their semantic relationships using the

ordNet database. Second, in order to find the optimal topic that

escribes the related corpus, we define a topic pruning processes,

hich is then used for topic detection. Third, we perform topic

runing using MDPs, which transforms topic detection into a dy-

amic programming problem. The main contributions of this study

re summarized as follows. 

(1) We propose a novel graphical representation for topics,

which can identify related concept nodes as well as con-

sidering the relationships between concept nodes to detect

deep semantic information hidden in the topics. 

(2) We define a drill-down operator and we perform topic prun-

ing using MDPs, thereby transforming topic detection into a

dynamic programming problem, and thus the optimized top-

ics can be adapted better to the corpus. 

(3) We annotated the NIPS12 corpus, which include 1740 arti-

cles, and we also evaluated our approach using two differ-

ent categories of corpus, i.e., newsgroup100 and NIPS12, in

terms of the precision and recall, where the experiment re-

sults verified the efficiency of our approach. 

The remainder of this paper is organized as follows. Related

esearch is introduced in Section 2 . We formulate the problem

n a formal manner in Section 3 and Section 4 explains the

opic graph construction process. We define topic optimization in

ection 4 and the topic pruning algorithm is described in Section 5 .
ection 6 presents the details of our experiments and performance

valuations. Finally, we give our conclusions in Section 7 . 

. Related work 

In general, topic detection can be divided into two modes: on-

ine and off-line. Online topic detection aims to discover dynamic

opics over time as new topics appear. Many studies have focused

n new approaches to event detection, novel topic discovery, on-

ine topic evolution, and other problems in the online mode, which

equires an incremental algorithm. Off-line topic detection is also

nown as retrospective topic/event detection, and it treats all doc-

ments in a corpus as a batch, before detecting topics one at a

ime [20] . In this study, we focused mainly on the off-line mode.

opic detection methods can be categorized according to three

ypes: document clustering-based topic detection, pTM-based topic

etection, and graph-based topic detection. 

In document clustering-based topic detection, each document

s represented as a vector using TF-IDF or improved TF-IDF, and

ach topic is simply a set of keywords. Brants proposed a variation

f TF-IDF for detecting topics [19] . Many studies have considered

etrospective topic detection using document clustering, including

he well-known augmented group average clustering (GAC) method

20] . 

The LDA model is a Bayesian hierarchical probabilistic gener-

tive model, which was first proposed by Blei et al. [4] . In this

ethod, each document is modeled as a discrete distribution over

opics, and each topic is regarded as a discrete distribution over

erms. LDA is used widely in text mining and other fields, and it

s regarded as a powerful tool for topic modeling. The original LDA

ethod used a variational expectation maximization (VEM) algo-

ithm to infer topics for LDA [4] , but stochastic sampling inference

ased on Gibbs sampling was proposed by Steyvers and Griffiths

12] for LDA. Similar to Sayyadi and Raschid [11] , we denote LDA-

S as LDA with Gibbs sampling and LDA with VEM as LDA-VEM. 

The two types of topic detection methods mentioned above

nly consider words, especially in the LDA model, where words are

enerated conditionally independent of a given distribution. In fact,

here are richer relationships between words. Graph-based topic

etection methods focus on between-words relationships. The co-

ccurrence patterns between words were considered in previous

tudies. For example, Petkos [3] treated the topic detection prob-

em as a frequent pattern mining problem and proposed a soft fre-

uent pattern mining algorithm. Cataldi also built a co-occurrence

raph for tweets with an extra temporal dimension [21] . Sayyadi

nd Raschid proposed a graph analytical approach for topic de-

ection called KeyGraph (KG) [11] . KG is essentially a keyword co-

ccurrence graph based on an off-the-shelf community detection

lgorithm for grouping co-occurring keywords into communities.

ach community was a constellation of keywords representing a

opic. Inspired by KG, we use betweenness-metric-based commu-

ity detection for topic extraction in our proposed method. 

Many studies have aimed to extend the LDA model. Some ex-

ended LDA models have been used to model authorship informa-

ion [22] , while others aim to capture the most recent language

sage for sentiments and topics [23] . The biterm topic model is

pplied to short texts such as tweets based on an extension of the

DA [24] . The inverse regression topic model combines metadata

ith the LDA to utilize structural information in each document

25] . The correlated topic model is used to model the correlations

etween topics to remove the assumption of independence in the

DA [16] . Recently, deep learning techniques have been used to ob-

ain low-dimensional representations of word and documents by

ord embedding. Thus, anovel neural topic model [15] was pro-

osed to combine the advantages of topic models and neural net-

orks, but it is essentially a supervised learning model. In pTM,
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Table 1 

Notations and their corresponding descriptions. 

Token Description 

D Corpus and | D | is the number of documents in corpus D 

V Concept vocabulary and | V | is the size of the concept vocabulary 

G Topic graph generated from D denoted as G = (C, E) 

K Number of topics or communities in a topic graph 

C Concept nodes set in a topic graph G 

E Edges set in a topic graph G 

Q Modularity of a topic graph G 

CC ( c i ) Closeness centrality of a concept node c i 
R Quantity representing instant reward in drill-down operation 

T Topic sub-graph, or a topic or community in a topic graph G 

A Action set in TG-MDPs 

S A state set in TG-MDPs, where s t is a state variable in step t , which 

takes values in the set S 

L Number of steps iterated and l denotes the current step 

λ Smoothing parameter in the TF-IDF formulation 

δ Threshold parameter for removing weak edges 

γ Discount factor in [0,1) 
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many variations of LDA are employed, but we focused mainly on

retrospective topic detection in this study. According to this re-

view of previously proposed methods, we performed experiments

to compare our method with three representative methods, i.e., KG,

LDA-GS, and GAC, in terms of their time complexity, precision, re-

call, and F1-score. 

3. Framework for semantic-based topic detection 

In this section, we provide an overview of our semantic-based

topic detection framework. We refer to our approach as topic

graph-MDPs (TG-MDPs). First, we give formal definitions of the

terms used in this study. 

Definition 3.1. Topic graph: a topic graph is a graph structure con-

taining nodes and edges between nodes denoted by G = (C, E) ,

where C represent a concepts set and the edges set E comprises

the semantic relationships between concepts. 

The topic graph has two differences compared with the KG pro-

posed in a previous study [11] : (1) each node contains semantic

information based on the external knowledge-base Wordnet; (2)

each edge has a weight and relationship class information. If we

consider a topic graph as a network, then many concepts related to

a topic exist, thereby forming a community of high co-occurrence

concepts. A topic can be viewed as a subgraph of a topic graph or
Fig. 1. Framework of the 
 community of the topic graph network, which is similar to the

oncept of a community in social networks. 

efinition 3.2. Topic pruning: Topic pruning is a process for opti-

izing topic selection in order to maximize the reduction of du-

licated concepts based on the initial topic graph. 

The symbols used in this study are shown in Table 1 . 

Currently, a topic model can output several keywords for each

opic in a corpus, but the system does not know the meanings of

he set of keywords Thus, there is a semantic gap between the key-

ords and events or topics, so the final decision about the actual

opic represented by an extracted topic still depends on human

ntelligence. Therefore, it is very important to develop a method

or inferring topics. In our proposed method, we use a novel net-

ork to describe topics as concepts as well as the relationships

etween pairs of concepts and a general otology in order to ex-

end the topic’s semantic information; thus, a topic model is a

oncept network that describes the corresponding events or topic-

elated keywords. The second feature of a topic comprises a hier-

rchical structure as well as the related concepts. After the top-

cs have been extracted from the corpus, redundant information is

idden in each topic, and it is usually unclear whether a concept

ode is redundant or not. Thus, topic pruning is an important step

n topic detection. The topics obtained from a corpus typically in-

lude redundant information because there are duplicate semantic

elationships among words and concepts. Therefore, it is necessary

o refine the topics in a process called topic pruning. 

As demonstrated by our framework in Fig. 1 , before building a

ocument-term matrix based on a vector space model, a prepro-

essing step should be performed for stop-words removal, token

egmentation, and stemming operations. There are three compo-

ents in this framework, i.e., building a topic graph based on the

ector space model, topic extraction based on community discov-

ry, and topic pruning using MDPs. Topic graph generation is em-

loyed to generate a topic graph for a large corpus, which is then

sed by our topic detection algorithm. Topic extraction mainly

ims to recover single topics using several methods. In our pro-

osed method, we can either consider an unconnected graph as a

opic or detect a community based on social network theory. Topic

runing is regarded as a tuning step for a topic sub-graph in or-

er to optimize the final semantic structure of the topic. It should

e noted that the topic concept extracted by our topic extrac-

ion method differs slightly from that obtained by previous graph-

ased methods because only the intercommunity edges were re-

oved by [11] , whereas we retain important between-community
TG-MDPs approach. 
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nformation in our approach. This is because two different topics

an share the same concept, e.g., neuron can be a topic word in

oth artificial neural networks and biology, which are completely

ifferent topic areas. In the next three sections, we describe the

hree core components in detail. 

. Building a topic graph 

In order to embody the semantic characteristics of a topic, we

onsider the concept as well as the relationships between con-

epts by using an adjacent matrix over the term space, where the

eight of the relationship between any two concept nodes denotes

ts strength. Furthermore, the relationship type can be assigned ac-

ording to a universal semantic base, and WordNet [5] is used by

ur proposed method because of its versatility and generality. 

The basis for building a topic network from a corpus is the vec-

or space model. Given a real world corpus, we can build a term-

ocument matrix, where each column is a vector representing a

ocument. The size of each document vector is | V | where the value

f each element in that vector denotes a weight, and | D | document

ectors fill the whole vector space, which can be represented as 

 = ( � d 1 , � d 2 , ..., � d | D | ) = 

⎛ 

⎝ 

w 11 · · · w 1 | D | 
. . . 

. . . 
. . . 

w | V | 1 · · · w | V || D | 

⎞ 

⎠ , (1)

here D is the vector space model of the corpus, � d k is the k th doc-

ment vector, which has | V | weight elements ( k ∈ 1 , 2 , . . . , | D | ), | V |

s the size of the concept vocabulary, | D | is the size of the corpus,

nd w ik denotes the weight, which corresponds to the number of

oncept c i appearing in document d k . Thus, we have 

 ik = (1 + t f ik ) · idf i = (1 + t f ik ) · ln 

(
λ + | D | 
λ + df i 

)
, (2)

here tf ik denotes the number of concept word c i occurring in doc-

ment d k , idf i denotes the inverse frequency of concept word t i ,

nd df i is the number of documents containing concept word t i . λ
s a Laplace factor used for smoothing. 

Next, the term-document matrix is decomposed and trans-

ormed into a term-term adjacent model using Eq. (3) . 

 i j = 

{
0 if i = j , ∑ | D | 

k =1 
min (w ik , w jk ) if i � = j . 

(3) 

Finally, we draw a line between the members of a term pair

ith a non-zero weight. We set a threshold parameter δ to remove

eak edges if the corresponding weight is less than the threshold,

nd a large topic network called a topic graph is built for the cor-

us. Clearly, a denser network is obtained when the threshold is

maller. 

Next, we use WordNet to add semantic information to the topic

raph. WordNet is a large English dictionary created by Miller [5] .

he words in WordNet are actually grouped by their semantics to

orm 117,0 0 0 synonym sets. Each synonym set can be treated as a

emantic concept, and it also provides the semantic relationships

etween words, so semantically related words form a network.

ordNet can be treated as a general ontology and it has been used

idely in the fields of natural language processing, computational

inguistics, text mining, artificial intelligence, and other related ar-

as. For topic graphs, the information provided by WordNet is very

mportant. All of the synonym sets in WordNet provide collections

f concepts and all of the relationship types in WordNet provide

he types of semantic relationships. Furthermore, nearly 80% of the

elationship types reflect the hierarchy of the semantics. In con-

rast to Wikipedia and Freebase, the features of WordNet can help

o reduce the semantic dimensions. In addition, WordNet provides

PIs for developers, which make it easy to use. 
A topic graph is a complex network where the node is a con-

ept from a vocabulary and the relationship between a pair of con-

epts has a weight. All of the words can be found in WordNet and

ach relationship type can be labeled using WordNet. In fact, each

ode in a topic can be viewed as an ontology concept or instance,

nd each edge expresses the semantic relationships between con-

epts. Thus, a topic graph can be built into a novel network with

oth directed and undirected types of edges. For both the nodes

f an edge, we consider the terms that the nodes represent and

earch for a semantic relationship with WordNet. If there is a re-

ationship, we add the semantic relationship as the weight value.

n order to reflect the semantic structure of a topic more concisely

nd hierarchically, we simply use the top-down relationship. For

nstance, we only use the hypernym but not the hyponym, and

he holonym but not the meronym. If no relationship can be found

n WordNet, we define the relationship as an undirected edge. In

ummary, a topic graph can be established based on the external

nowledge-base WordNet to obtain a complex network that re-

ects the deep semantic of a topic. 

. Topic extraction based on community discovery 

In the previous section, we described how to build a topic

raph, which is essentially a social network of concepts. The topics

mbedded in the network can be extracted. In general, two meth-

ds can be used to address this problem. We can simply segment

he subgraphs in the original network based on unconnected sub-

raph theory. Indeed, we extracted the topics using unconnected

ub-graph from the NIPS literature corpus and the experimental

esults were not ideal because this method ignores the fact that

dges between two communities may have greater values than

dges within one community. Therefore, our approach employs a

econd method based on a community discovery algorithm from

he social networks field. We note that finding communities within

n arbitrary network can be a computationally demanding task. 

A community is a subgraph containing nodes that are more

ensely linked to each other than the remainder of the graph [26] .

any approaches can be used for community detection but we

mploy the modularity maximization strategy and the well-known

tate-of-the-art Louvain method (LM), which is a widely used com-

unity detection method (as described in detail by [9] ) because

t is computationally feasible even with large networks. The LM

ethod comprises two simple steps: (1) each node is assigned to

 community that is selected in order to maximize the network

odularity Q; (2) a new network is made comprising nodes found

reviously in these communities. The process iterates until a sig-

ificant improvement in the network modularity is obtained. 

Consider a topic graph G = (C, E) partitioned into K topics,

here n k is the number of edges between concept nodes in the

 -th topic and d k is the sum of the degrees of the concept nodes

n the k -th topic. The topic graph G has a modularity Q given by

9] 

 = 

K ∑ 

k =1 

{
n k 

| E| −
(

d k 
2 | E| 

)}
. (4) 

The gain �Q derived by moving a concept node i into a com-

unity T can simply be calculated by computing the change in

he modularity when node i is removed from its community (as

escribed in more detail by [9] ). Using this algorithm, we can re-

over a latent community with low time complexity, as shown in

ection 7.4 . 

In order to assign topics to each document, we must com-

ute the similarities between the topics and documents. We tem-

orarily transform a topic community or subgraph into a vector,

here each element represents a unique concept node’s impor-

ance. Three methods can be used to evaluate the importance of



44 Q. Chen et al. / Neurocomputing 242 (2017) 40–50 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Drill-down process. 

Require: 

topic T 1 ; concept node c 

Ensure: 

new topic T , reward value R ; 

1: Initialize C ← C 1 , E ← E 1 , R ← 0 , R 1 ← 0 , R 2 ← 0 

2: if ē .asso _ T ype ∈ { hy, ho} && ē ∈ E && ( ̄e .c _ 1 = c or ē .c _ 2 = c) 

then 

3: ē .c _ 1 ⇐ e.c _ 1 

4: if ∃ ̂ e ∈ E such that ˆ e = ē then 

5: if ˆ e .asso _ T ype � = ē .asso _ T ype then 

6: if ē .asso _ T ype = r then 

7: ē .asso _ T ype ⇐ ˆ e .asso _ T ype 

8: end if 

9: if ē .asso _ T ype � = r && ˆ e .asso _ T ype � = r then 

10: if ˆ e .weight ≥ ē .weight then 

11: ē .asso _ T ype ⇐ ˆ e .asso _ T ype 

12: end if 

13: end if 

14: end if 

15: ē .weight ⇐ max ( ̄e .weight, ̂  e .weight) 

16: E ← E − { ̂ e } 
17: end if 

18: E ← E − { e } 
19: end if 

20: C ← C − { c} 
21: R 2 ⇐ ( 

∑ 

∀ e ′′ ∈ E e ′′ .weight) / | E| 
22: R ← R 2 − R 1 , T = C, E 

23: return R, T 

6

 

m  

a  

fi  

u  

i  

i  

e  

c

 

t  

a  

b  

h  

i

D

S  

w  

s  

t  

t  

m  

a  

p  

e

D

A  

w  

b  
nodes [8] : (1) the degree centrality (DC) for the importance of a

node depends on the number of adjacent nodes connected to it;

(2) the closeness centrality (CC) emphasizes the importance of cen-

tral nodes because these nodes diffuse information more rapidly

than other nodes; and (3) the betweenness centrality (BC) consid-

ers the number of shortest paths that go through a specified node.

Unlike Sayyadi and Raschid [11] , we employ a CC metric-based ap-

proach because the DC metric is very simple and it ignores inter-

course nodes, while the BC metric focuses on inter-community in-

formation, thereby leading to a more discriminative degree for the

inter-community nodes of a topic compared with the real inner-

community nodes. The CC is defined as follows: 

 C (c i ) = 

[ 

1 

D − 1 

D ∑ 

i � = j 
g(c i , c j ) 

] −1 

, (5)

where g ( c i , c j ) denotes the summed weight of edges on the short-

est path from node i to node j . Thus, a topic community can be

vectorized using CC as T = v 1 , v 2 , ..., v D , where v k = C C (w k ) . For

each topic, we compute the similarities using the vector Euclidean

distance between the topic and current document, and thus a topic

with the maximal similarity value is assigned to that document. In

the next section, we explain the topic pruning process. 

6. Topic pruning using MDPs 

The topic sub-graph or community might not be the optimal

topic structure for the redundant information hidden in the topic

because two words may express the same or a very similar mean-

ing. Thus, a topic graph needs to be pruned in order to obtain the

optimal state. 

6.1. Drill-down operator 

In this section, we define an important operator for topic prun-

ing, i.e., a drill-down operator that can only be performed for two

relationships, hypernyms and holonyms, because only these two

semantic relationships are endowed with transitivity and mono-

tonicity. We specify that only edges with hypernym or holonym

semantic relationships are prunable. Drill-down is a binary oper-

ation on a given topic subgraph/community and a prunable edge.

We give the following definition. 

Definition 6.1. Drill-down: T = T o � c. Drill-down is an operation

that takes a topic sub-graph and a node in the graph as inputs to

output a new topic sub-graph with that node removed, where all

the node’s property information is absorbed into its parent node. 

Details of the drill-down process are explained in Algorithm

1. In Algorithm 1 , R is the variation quantity, which is the aver-

age change in the weight relationship after drill-down has been

performed. If R is positive, this means that the total relationship

weight is increasing; otherwise, the weight is decreasing, and we

regard R as the instant reward in the drill-down operation. T is the

new topic sub-graph obtained as an output. 

To clarify the role of the drill-down operation, if we suppose

that the head concept is the parent of the tail concept for a hyper-

nym or holonym, then the drill-up operation involves merging the

concepts that have no parents with this child and we change the

edge type into non-hypernym and non-holonym. We can obtain a

compact formulation using a merging operation conditioned on the

hypernym or holonym relationship between related concept nodes

in a topic. If we suppose that we have a topic graph T 1 = (C 1 , E 1 ) ,

c ∈ C 1 , then a new topic T = (C, E) can be obtained by the pruning

operation on T and concept c . 
1 
.2. Optimal pruning using MDPs 

MDPs is a dynamic programming algorithm for formal decision-

aking problems. MDPs comprises a series of system states and

ctions that control the states [13] . The solution of MDPs involves

nding an optimal strategy that maximizes the performance eval-

ation to achieve the system’s goal. MDPs has been used widely

n programming, robot control learning, and game problems, and

t has important roles in theory and applications in broad areas of

conomic management, computer science, control, and clinical de-

ision making [14] . 

According to the Markov property, topic selection based on

opic pruning can be formalized using MDPs. A topic sub-graph

nd a new topic sub-graph pruned from the original topic can both

e viewed as a certain state. The selection on which the operation

as been performed is regarded as a certain action and a strategy

s a scheme that can be processed according to a certain state. 

efinition 6.2 (State set S ) . 

 = { s 1 , s 2 , . . . , s | S| } (6)

here | S | is the number of states. s init is the initial topic sub-graph

tate, and the topics s 1 can be obtained by a drill-down opera-

ion based on the initial topic and the concept node in the topic;

hus, s 2 is a subsequent state or a new topic pruned from the for-

er topic, and so on. It should be noted that the object pruned is

 topic, topic sub-graph, or topic community, as described in the

revious section. We also note that a certain topic state is in fact

ither the original topic sub-graph or a pruned new topic. 

efinition 6.3 (Action set A ) . 

 = { a 1 , a 2 , . . . , a | A | } , (7)

here | A | is the number of actions, which is equal to the num-

er of edges on which the drill-down operation can be performed.
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ach action a k corresponds to the drill-down operation on some

dge. 

efinition 6.4 (Transition function Trans ) . 

 rans : S × A × S → { 0 , 1 } (8)

he transition function Trans is a process that determines whether

 ∈ S can transform into some new state s ∗ ∈ S after an action a

 A has been performed on s , where the mapping value is either

 or 0. We note that the sum of the transition values of all states

ransformed initially from state s is one, i.e., 
∑ 

s ∗∈ S T rans (s, a, s ∗) =
 . Therefore, the new state performed on state s by action a is fixed

nd unique according to the Markov property: 

 (s l+1 | s l , a l , s l−1 , a l−1 , . . . ) = P (s l+1 | s l , a l ) = T rans (s l , a l , s l+1 ) . (9)

efinition 6.5 (Reward function Rew ) . 

ew : S × A → R (10)

here R is a real number set. The reward function gives the in-

tant reward value after action a ∈ A has been performed on state

 ∈ S . When the real number is a larger positive number, the re-

ult is closer to the expected result, and vice versa. The relation-

hip strength for a topic is expected to be larger after an operation

as been performed on that topic previously. According to the def-

nition of drill-down, the value of R obtained by topic pruning is

uitable for the reward function Rew ( s, a ). 

efinition 6.6. TG-MDPs = < S, A, T rans, Rew >, is a quadruple

omprising the state set, action set, transition function, and reward

unction, which perform the optimal processes for a topic graph

ased on the pruning operation. 

efinition 6.7 (Strategy π ) . 

: S → A (11) 

iven a TG-MDPs < S, A, Trans, Rew > , the strategy π indicates the

ction for each state. 

Strategy solving is actually a topic reduction process based on

he topic pruning operation, i.e., given the current topic, a new

ompact topic at time l + 1 is generated according to the pruning

rocess at time l until all the concept edges that can be pruned

ave been traversed. Given a strategy, we can obtain an action se-

uence as follows [14] 

 1 
a 1 −→ s 2 

a 2 −→ · · · s l 
a t −→ s l+1 

a l+1 −−→ · · · s L −1 
a L −1 −−→ s L , (12)

ased on which the action can be performed from the initial state

o some state until convergence. Assuming that s 1 is the initial

opic, s l+1 is a subsequent topic obtained by pruning based on

ome combinable edge in topic s l . The optimization process does

ot end until a certain state takes no action and we obtain the

tate s L , where s L is the ultimate steady state and L is the number

f iterations. Thus, the optimal strategy solution is the goal of topic

runing. 

efinition 6.8 (Strategy Optimal Criterion (OC) [14] ) . OC is a crite-

ion for selecting an action that maximizes the total reward, i.e.,

nsuring that the expectation of the sum of all the instant re-

ards E[ 
∑ ∞ 

l=1 γ
l Rew l ] is maximized, where γ ∈ [0, 1) is the dis-

ount factor, which means that a later reward will be discounted

ore heavily. Thus, to maximize the expectation, a larger reward

s needed as far ahead as possible. 

efinition 6.9 (Value function, V 

π ( s ) [14] ) . 

 

π (s ) = E π

[ 

∞ ∑ 

k =0 

γ k Rew l+ k | s l = s 

] 

(13)
he value function V 

π ( s ) is the expected reward under strategy π
tarting from state s . Thus, a strategy is evaluated based on OC. 

efinition 6.10 (Bellman optimal equation [14] ) . 

 

ˆ π (s ) = max 
a ∈ A 

∑ 

s ∗∈ S 
T rans (s, a, s ∗)(Rew (s, a ) + γV 

π (s ∗)) (14)

The Bellman optimal equation gives the expected reward from

he best strategy ˆ π . 

ˆ (s ) = argma x 
a ∈ A 

∑ 

s ∗∈ S 
T rans (s, a, s ∗)(Rew (s, a ) + γV 

π (s ∗)) (15)

There are two main optimal strategy iterative solution ap-

roaches: strategy iteration and value iteration. Strategy iteration

pecifies a random strategy π and establishes an equation set with

 S| = N unknown variables and N equations according to the Bell-

an equation. Each unknown variable represents a value function

 

π ( s ) for one state s under the current strategy π ; therefore, the

alue function of the current strategy under all states can be solved

y linear programming. 

Value iteration does not require the solution of an equation set.

n this method, the Bellman optimal equation (14) is regarded as a

alue function update rule, as shown in Eq. (16) . We set the value

unctions of all states V π
1 

(s 1 ) , V π
1 

(s 2 ) , . . . , V π
1 

(s N ) to 0. Each value

unction can then be updated with an update rule and we obtain

 

π
2 

(s 1 ) , V π
2 

(s 2 ) , . . . , V π
2 

(s N ) . When the update process reaches con-

ergence, we have V π
K 

(s 1 ) , V π
K 

(s 2 ) , . . . , V π
K 

(s N ) , i.e., the value func-

ion of each state no longer changes, where k ∈ 1 , 2 , . . . , K is the

urrent number of iterations and K is the total number of itera-

ions. 

 

π
k +1 (s ) = max 

a ∈ A 

∑ 

s ∗∈ S 
T rans (s, a, s ∗)(Rew (s, a ) + γV 

π
k (s ∗)) (16)

Finally, the optimal strategy can be solved by substituting the

nal value function into Eq. (15) . To simplify value iteration, there

s no need to solve the optimal strategy for all states, so we em-

loy this approach to solve topic pruning, where the process starts

rom the initial topic graph and the best action is found to move

o the next state in a new topic graph, and vice versa, until the

alue function of the current state no longer increases. We refer to

his process as topic pruning . Thus, the topic graph for the ultimate

tate can be generated by the topic pruning process. 

In summary, topic pruning using MDPs can be described as fol-

ows. 

(i) Define the MDP of a topic graph. < S, A, Trans, Rew > . 

(ii) Solve to obtain the optimal strategy using value iteration. 

(iii) According to the optimal strategy, topic pruning starts from

the initial state s 1 , and a state sequence and action sequence

can be obtained s 1 
a 1 −→ s 2 

a 2 −→ · · · s l 
a l −→ s l+1 

a l+1 −−→ · · · s L −1 

a L −1 −−→
s L . ... 

. Experiments and results 

We evaluated TG-MDPs and several benchmark algorithms, i.e.,

G, LDA-VEM, LDA-GS, and GAC. The experiments showed that

G-MDPs had similar precision to the benchmarks with the well-

nown newsgroup100 corpus and NIPS12 data set. The runtime for

G-MDPs was much lower than that for LDA-GS but slightly more

han that using KG with NIPS12. The computer environment used

or our experiments comprised Windows Server 2008 OS, an Intel

eon CPU, and 128 GB memory. 

.1. Data sets 

We performed experiments using two types of data sets, i.e.,

cience technology literature and newsgroup data sets, in order to

valuate our method for retrospective topic detection. 
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Table 2 

Performance of the four approaches with the 20newsgroup and NIPS12 data sets. 

Method p avg r avg F 1 micro F 1 macro Corpus 

GAC 0.50 0.37 0.43 0.45 20newsgroup 

LDA-GS 0.79 0.63 0.70 0.72 

KG 0.74 0.62 0.67 0.70 

TG-MDPs 0.75 0.62 0.68 0.71 

GAC 0.66 0.83 0.76 0.79 NIPS12 

LDA-GS 0.89 0.82 0.85 0.88 

KG 0.85 0.80 0.82 0.86 

TG-MDPs 0.84 0.81 0.83 0.85 

Table 3 

Topic results generated by TG-MDPs for the 20newsgroup data set. 

Topic From_Concept To_concept Weight 

T 1 2 (baseball) 67 (players) 0.626273138 

32 (games) 89 (team) 0.567995959 

40 (hockey) 89 (team) 0.566330093 

67 (players) 89 (team) 0.564255106 

80 (season) 89 (team) 0.544760983 

89 (team) 97 (win) 0.571708643 

32 (games) 40 (hockey) 0.460989716 

32 (games) 2 (baseball) 4.097686362 

T 2 8 (case) 26 (fact) 0.921666535 

12 (course) 26 (fact) 0.974940341 

23 (email) 38 (help) 1.381296748 

23 (email) 66 (phone) 0.980282199 

38 (help) 70 (problem) 1.40 0 04035 

8 (case) 73 (question) 0.808660943 

12 (course) 73 (question) 0.916499888 

26 (fact) 73 (question) 0.912370452 

38 (help) 73 (question) 0.893294911 

70 (problem) 73 (question) 0.967571099 

11 (computer) 78 (science) 0.916058685 

38 (help) 88 (system) 0.838474 

70 (problem) 88 (system) 1.028261524 

11 (computer) 91 (university) 0.89448725 

23 (email) 91 (university) 1.080396027 

86 (state) 91 (university) 1.085699047 

T 3 26 (god) 100 (world) 0.766409743 

10 (christian) 46 (jesus) 0.838817506 

33 (god) 46 (jesus) 1.207593033 

3 (bible) 33 (god) 1.019431822 

10 (christian) 33 (god) 1.167747896 

T 4 7 (card) 93 (video) 1.0 0 0 021589 

T 5 19 (dos) 98 (windows) 1.158041473 

71 (program) 98 (windows) 0.841958527 
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20newsgroup . The 20newsgroup data set is a well-known

text collection comprising approximately 20,0 0 0 newsgroup doc-

uments, which are partitioned (nearly) evenly across 20 differ-

ent newsgroups. We downloaded a processed version of 20news-

bydate 1 . which is easy to read into Octave as a sparse matrix. This

collection comprised 18774 documents and 61188 words in the vo-

cabulary. We performed stop-words removal using a long stop-

word list 2 and the feature dimensionality was still high. In order

to make the algorithm run faster, we retained 20 0 0 items from the

vocabulary using standard idf filtering. 

NIPS12 . The NIPS12 corpus accessed from the homepage of

Roweis 3 is an archive of complete texts comprising 1740 papers

from the NIPS conference published from 1987 to 1999, and it

was obtained using optical character recognition technology. The

collection comprises 130 articles per year on average and it cov-

ers subjects such as brain imaging, control, learning theory, speech

processing, and algorithms. In total, there are 1740 documents in

the NIPS corpus with about 3172.34 words in each document.

In order to speed up the implementation of the algorithm, we

pre-processed the data set to reduce noise, including lower-case

words, where we ignored non-alphabet characters and removed

rare words that occurred less than 50 times in the corpus. 

We needed to transform the pure text in the corpus NIPS12

into a term-document matrix, where the elements represented the

number of times that terms occurred in a certain document. 

7.2. Methods compared and the evaluation metric 

We evaluated TG-MDPs based on comparisons with the follow-

ing benchmark algorithms. 

(1) GAC . GAC was proposed by Yang et al. [20] almost 20 years

ago but in terms of empirical results, it is still one of the

best algorithms for TDT task evaluation. To accelerate the

process, GAC split the corpus into 400 bins in its initial-

ization step and clustering was then performed within each

bin. The tuning parameters in GAC were set to the same val-

ues described in a previous study [20] in retrospective mode.

(2) LDA-GS . This LDA algorithm implementation uses the col-

lapsed Gibbs sampler described by Newman, 4 , where the

parameters were α = 0 . 05 × N/ (D × T ) and β = 0 . 01 , with

K = 20 and K = 50 for the newsgroup and NIPS12 data sets,

respectively, because the newsgroup data set had 20 topics

and NIPS covered almost 50 research sub-directions accord-

ing to the CFP for the NIPS conference. As shown by [17] for

several data sets containing between 10 0 0 and 20,0 0 0 docu-

ments, LDA-GS converges in less than 500 iterations of sam-

pling. We set the maximum iteration number parameter as

iter = 10 0 0 for both NIPS12 and 20newsgroup. 

(3) KG . KG is based on the method proposed by Sayyadi and

Raschid, but we only used the terms in each document as

features to ensure a fair comparison. KG parameters such as

node_min_df and edge_min_df had the same settings given

in Table 1 in [11] . 

We did not use other LDA variations due to the reasons given

in Section 2 , and we did not make a comparison with LDA-VEM

because LDA-GS outperforms LDA-VEM in terms of precision, recall,

and the macro-average F1 score according to [11] , especially with

a formal corpus. 

The results are expressed as the average topic precision, av-

erage topic recall, micro-average F1 score, and macro-average
1 http://www.qwone.com/ ∼jason/20Newsgroups/20news-bydate-matlab.tgz . 
2 Downloaded from http://www.ranks.nl/stopwords . 
3 http://www.cs.nyu.edu/ ∼roweis/data/nips12raw _ str602.tgz . 
4 Code can be downloaded from http://www.ics.uci.edu/ ∼newman/code . 

c  

w  

m  

f  

s

1 score, which are denoted simply by p avg , r avg , F1(micro-

vg) , and F1(macro-avg) , respectively. F 1(macro - a v g) = 2 p a v g ∗
 a v g / (p a v g + r a v g ) . We obtained the precision and recall first, be-

ore taking the average to obtain the corresponding F1(micro-avg) ,

hile the F1(mac-avg) is produced by determining the per-topic

erformance measures first and then averaging the corresponding

easures. 

.3. Experimental results 

We used the APIs provided by WordNet 2.1 to determine the

emantic relationships between nodes in the topics and to build

he topic graph. The results are shown in Table 2 . 

The topic results generated by TG-MDPs for the 20newsgroup

ata set are shown in Table 3 . 

When we selected topic T 1 , there were three prunable edges

alled e 1 , e 2 , e 3 , with three actions called a 1 , a 2 , a 3 , respectively,

hereas another action a 4 was called a motionless action, which

eans that no action was taken. Thus, four actions could be per-

ormed for each state and the overall state transition chart is

hown in Fig. 3 . 

http://www.qwone.com/~jason/20Newsgroups/20news-bydate-matlab.tgz
http://www.ranks.nl/stopwords
http://www.cs.nyu.edu/~roweis/data/nips12raw_str602.tgz
http://www.ics.uci.edu/~newman/code
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Fig. 2. Chart showing all the states for topic T 1 . 
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p Fig. 3. State transitions generated for topic T 1 as described in the experimental 
When the number of prunable edges in the topic graph T 0 
as N , there were 

∑ N 
i =1 (C 

i 
N 
) + 1 states in total starting from the

opic graph, each of which corresponded to a certain topic graph.

hus, eight states started from topic graph T 2 and all of these

tates are shown in Fig. 2 . There were two types of edges and

hree directed edges, i.e., 89.team to 67.players was a holonym re-

ationship, and game to baseball or hockey were both hypernym

elationships. 

We calculated the value of R in terms of each state s and each

ction taken by s using Algorithm 1 , and we present the Rew func-

ions for topic graph T 1 in Table 4 . 

Note that the R value for actions that were not defined for a

ertain state were set to −100 in order to give a higher penalty and

uarantee that no action would be taken. A self-transition action

as set to 0 because the state did not change when action a 4 was

erformed during the iterative process. 

section. 
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Table 4 

Reward function table for certain states and actions. 

State a 1 a 2 a 3 a 4 

S 1 0.16211 −0.44253 0.06224 0 

S 2 −100 −0.58711 0.11957 0 

S 3 0.01752 −100 −0.00346 0 

S 4 0.21943 −0.50824 −100 0 

S 5 −100 −100 0.00591 0 

S 6 −10 0 0 0 −0.70077 −100 0 

S 7 0.0269 −100 −100 0 

S 8 −100 −100 −100 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

a  

O  

c  

p  

i  

s  

i  

p  

t  

a  

m  

e  

n  

p  

w  

p  

|  

w  

1  

c  

c  

s  

i  

s  

f  

L

 

i  
7.4. Time complexity analysis 

As described in the previous section, compared with LDA-GS

and LDA-VEM, our approach performed better in terms of the time

cost. However, due to the pruning process, our approach required

slightly more time compared with KG. Nevertheless, the GAC algo-

rithm was the fastest because of the simplicity and high efficiency

of hierarchical clustering, but at the cost of losing semantic infor-

mation. We analyzed the complexity of TG-MDPs compared with

KG, LDA-GS, and GAC in order to theoretically verify the time and

space complexities of our TG-MDPs approach. 

In Table 1 , | D | is the number of documents and | V | is the num-

ber of unique words in the corpus. Assuming that there are M

words in a document, the number of edges in a topic graph is N .

For the 20newsgroup data set, we can see that | D | � | V |, whereas

in NIPS | D | � | V |, K is the number of topics, which is much smaller
Table 5 

Iteration values for the value function in TG-MDPs. 

γ = 0 Iter = 1 2 3 π γ

s1 0 0 0 1 s1

s2 −1 −0.0 0 01 0 3 s2

s3 0 −1 0 1 s3

s4 0 −0.0 0 01 −1 1 s4

s5 −1 −1 0 3 s5

s6 −1 −0.0 0 01 −1 4 s6

s7 0 −1 −1 1 s7

s8 −1 −1 −1 4 s8

γ = 0 . 5 iter = 1 2 3 π γ

s1 0.2219 −0.4323 0.172 1 s1

s2 −100 −0.5842 0.1196 3 s2

s3 0.0205 −100 0.01 1 s3

s4 0.2194 −0.4 94 8 −100 1 s4

s5 −100 −100 0.0059 3 s5

s6 −100 −0.7008 −100 4 s6

s7 0.0269 −100 −100 1 s7

s8 −100 −100 −100 4 s8

γ = 0 . 6 iter = 1 2 3 π γ

s1 0.2339 −0.4299 0.1939 1 s1

s2 −100 −0.5836 0.1196 3 s2

s3 0.0211 −100 0.0127 1 s3

s4 0.2194 −0.4921 −100 1 s4

s5 −100 −100 0.0059 3 s5

s6 −100 −0.7008 −100 4 s6

s7 0.0269 −100 −100 1 s7

s8 −100 −100 −100 4 s8

γ = 0 . 7 iter = 1 2 3 π γ

s1 0.2458 −0.4274 0.2159 1 s1

s2 −100 −0.583 0.1196 3 s2

s3 0.0217 −100 0.0154 1 s3

s4 0.2194 −0.4894 −100 1 s4

s5 −100 −100 0.0059 3 s5

s6 −100 −0.7008 −100 4 s6

s7 0.0269 −100 −100 1 s7

s8 −100 −100 −100 4 s8
han both | D | and | V |. The complexity of TG-MDPs is explained

s follows. The production of the document-terms matrix requires

 (| D | · M ), the topic graph is created in O (| V | 2 ), semantic con-

ept and edge assignment requires | V | + N, and thus the first com-

onent runs in O (| D | · M + | V | 2 + | V | + N) = O (| D | · M + | V | 2 ) . Dur-

ng topic extraction, the complexity depends on LM and we as-

ume that a “pass” is a combination of the two phases described

n Section 5 . The number of sub-communities decreases in each

ass, and thus most of the computational time is consumed in

he first pass. Passes are iterated until no more changes occur

nd the maximum modularity is attained. Communities of com-

unities are built during this process and the height of the hi-

rarchy constructed is determined by the number of passes, de-

oted by L , which is generally a small number. Thus, the com-

lexity of topic extraction is not related to the size of the net-

ork and the time complexity is extremely low. The third com-

onent is MDPs, and we see can that | S | is the number of states,

 A | is the number of actions, and L is the number of iterations,

here L is usually a low number less than 50 for topics with

0 0 0 concept nodes when using the value iteration strategy. Typi-

ally, | A | < | S | � | V |, which is much less than the number of con-

ept nodes. Thus, topic pruning is achieved in O (| A | · | S | · | L |). In

ummary, the total runtime for our approach can be completed

n O (| D | · M + | V | 2 + | L | 2 + | A | · | S| · | L | ) , which is relatively much

maller than those of O (| D | · | V | · KI ) for LDA-VEM and O (| D | MKI )

or LDA-GS, where I is the number of iterations in each version of

DA. 

For the GAC algorithm, assuming that the number of bins

s B , then in each iteration, it divides the current set of active
= 0 . 4 Iter = 1 2 x3 π

 0.2099 −0.4346 0.15 1 

 −100 −0.5847 0.1196 3 

 0.0199 −100 0.0073 1 

 0.2194 −0.4975 −100 1 

 −100 −100 0.0059 3 

 −100 −0.7008 −100 4 

 0.0269 −100 −100 1 

 −100 −100 −100 4 

= 0 . 8 itepr = 1 2 3 π

 0.2578 −0.4247 0.2378 1 

 −100 −0.5824 0.1196 3 

 0.0223 −100 0.0181 1 

 0.2194 −0.4867 −100 1 

 −100 −100 0.0059 3 

 −100 −0.7008 −100 4 

 0.0269 −100 −100 1 

 −100 −100 −100 4 

= 0 . 9 iter = 1 2 3 π

 0.2697 −0.422 0.2597 1 

 −100 −0.5818 0.1196 3 

 0.0228 −100 0.0208 1 

 0.2194 −0.484 −100 1 

 −100 −100 0.0059 3 

 −100 −0.7008 −100 4 

 0.0269 −100 −100 1 

 −100 −100 −100 4 

= 1 . 0 iter = 1 2 3 π

 0.2817 −0.4191 0.2817 3 

 −100 −0.5812 0.1196 3 

 0.0234 −100 0.0234 3 

 0.2194 −0.4813 −100 2 

 −100 −100 0.0059 3 

 −100 −0.7008 −100 4 

 0.0269 −100 −100 1 

 −100 −100 −100 4 
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Table 6 

Detailed topic label information for the 20newsgroup data set. 

T1 T2 T3 T4 

alt.atheism comp.sys.ibm.pc.hardware rec.autos sci.crypt 

talk.politics.guns comp.graphics rec.motorcycles sci.electronics 

talk.politics.mideast comp.os.ms-windows.misc rec.sport.baseball sci.spaces 

talk.politics.misc comp.sys.mac.hardware rec.sport.hockey sci.med 

talk.religion.misc comp.windows.x 

soc.religion.christian misc.forsale 

Table 7 

Topic results generated by LDA using the 20newsgroup data set. 

Topic Top 10 concept words 

T 1 god Jesus Bible does Christian people question believe sin lord 

T 2 car BMW health drive question power engine email course university 

T 3 problem help Windows edu problem university case fact medicine doctor 

T 4 team games win players league human baseball season hockey car 

T 5 email problem software hard system PC university computer help program 

T 6 space NASA shuttle data citizens Moon Earth system orbit secure 

T 7 God Jews religion Christian fact Jesus faith question life world 

T 8 Windows program DOS card software help files system problem email 

T 9 key government use clipper law enforcement public fact course phone 

T 10 NSA Clinton security new enforcement encryption people archive technology board 

T 11 cancers UIUC help disease red right health food used science 

T 12 mideast gun believe religion crisis contradictions holy east road African 

T 13 image black graphic Holloway paper ink beam pink enlightening view 

T 14 motorcycles car new engine Louis motor assembly make company traffic 

T 15 tax year income federal bills pay amount service million economic 

T 16 police arrest officer charge law enforcement drug cocaine authorities last 

T 17 weapon nuclear military base strategy baker missile help arms soviet 

T 18 CBS network television show time homes series coverage news week 

T 19 waste garbage company park town dump year trash Disney recycling 

T 20 space Mars rocket satellite telescope Earth mission shuttle launch flight 
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lusters/documents into bins and performs local clustering within

ach bin. The process is repeated to generate clusters at increas-

ngly higher levels, until a pre-determined number of top-level

lusters are obtained. Thus, GAC typically has a complexity of

 (| D | · B ). 

.5. Analysis of robustness for the model parameters 

We investigated the sensitivity of TG-MDPs with respect to δ
nd γ , where we ran TG-MDPs using the 20newsgroup data sets.

n Table 1 , a smoothing parameter is shown and according to pre-

ious studies, we set λ = 0 . 5 so the TF-IDF value could reach a

ood result. 

For the discount factor γ , we checked whether the final state

as sensitive to γ . We performed topic pruning using TG-MDPs

nd the iteration process is shown in Table 5 with different val-

es of γ from 0 to 1. We can see that the ultimate stable state

equence was not variable in terms of the value of the discount

actor γ . Thus, the long-term expected reward with respect to a

xed action was the same as the short-term reward, so our results

ere not sensitive to γ . This was the case for our topic graph with

ight states and three pruning edges. We used the ultimate sta-

le strategy π = [1 , 3 , 1 , 1 , 3 , 4 , 1 , 4] to determine the best pruning

ath s 1 
a 1 −→ s 2 

a 3 −→ s 6 , except when γ = 1 . 0 , where the stable opti-

al strategy was π = [3 , 3 , 3 , 2 , 3 , 4 , 1 , 4] , and thus the best prun-

ng path was s 1 
a 3 −→ s 4 

a 2 −→ s 7 
a 1 −→ s 8 . 

The threshold parameter δ controls the final topic number, so

he F1-score is inevitably sensitive to δ. In the initial experiment,

e fixed δ according to the empirical results. We set δ = 0 . 85 for

he 20newsgroup data set and δ = 0 . 62 for NIPS12 to ensure that

he topic number corresponded to the ground truth information. 
.6. Topic visualization 

In order to evaluate the semantic topic detection approach, we

how the topic information results generated by LDA-GS [4] only

or the 20newsgroup data set using the detailed labeled topic in-

ormation in Table 6 with four topics and 20 sub-topics. The top

0 words for each of the 20 sub-topics are shown in Table 7 . 

The experimental results show that most of the topics are cov-

red in Table 6 . The types of redundant information between T 1 
nd T 7 , and T 6 and T 20 were related to each other. However, LDA

ould not tell the difference or perform a merge operation to re-

ove redundant information. Furthermore, our approach was eas-

er to adapt to a corpus and it automatically selected the topic

umber, whereas the topic number must be manually specified in

DA. 

. Conclusions 

In this study, we presented a novel graph-based topic detection

pproach called TG-MDPs. Our goal was to design a new topic

etection method that considers semantic information as well as

utomatically selecting the optimal topic set with low time com-

lexity. TG-MDPs is essentially based on word co-occurrence and

t captures semantic information based on an external knowledge-

ase. TG-MDPs comprises three steps: topic graph building, topic

xtraction, and topic pruning. First, topic graph building represents

opics as concept nodes and their semantic relationships using

ordNet. In topic extraction, we employ a Louvain modularity-

ased community discovery algorithm to extract topic communi-

ies from a corpus and we assign each topic using the CC metric.

n order to identify the optimal topic that describes a related cor-

us, we defined a topic pruning process, which is used for topic

etection. Finally, we perform topic pruning using MDPs, which

ransforms topic detection into a dynamic programming problem.
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The experimental results obtained using a newsgroup corpus and

science literature corpus showed that our method had almost the

same precision and recall as baseline models such as LDA and KG.

In addition, our method performed better than pTM in terms of

its explanatory power and the runtime was lower compared with

the three baseline methods. In contrast to KG, our approach can

be optimized to adapt to a corpus better by using topic pruning. 

As discussed in Section 2 , several problems are still challenging,

such as topic detection in a dynamic text stream and online event

detection. Our proposed approach is not suitable for these tasks,

which require incremental algorithms, and we will investigate this

issue in future research. We will combine metadata, including au-

thor and time information, in unstructured text data to improve

the performance of our algorithm. Novel topic detection involves

one-class classification without any previous knowledge, especially

in social media. Much research has focused on social media be-

cause of the massive volumes of data generated, high dynamics in

terms of temporal dimensionality, frequent interactions, and great

variation in sample size. In our future research, we will mainly fo-

cus on topic detection and evaluation in social media. 
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