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Due to its special role on logical deduction and practical applications of attribute 
implications, canonical basis has attracted much attention and been widely studied in 
Formal Concept Analysis. Canonical basis is constructed on pseudo-intents and, as an 
attribute implication basis, possesses of many important features, such as completeness, 
non-redundancy and minimality among all complete sets of attribute implications. In this 
paper, to deduce an analogous basis for decision implications, we introduce the notion of 
decision premise and form the so-called decision implication canonical basis. Furthermore, 
we show that the basis is complete, non-redundant and minimal among all complete sets 
of decision implications. We also present an algorithm to generate this canonical basis and 
analyze time complexity of this algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

R. Wille [26] introduced Formal Concept Analysis (FCA) as an order-theoretic method for the mathematical analysis of 
binary data. The starting point of FCA is based on a formalization of the philosophical understanding of a concept as a unit 
of thought constituted by its extent and intent. The extent of a concept is understood as the set of all objects belonging 
to the concept and the intent as the multitude of all attributes common to all those objects. The transformation from 
two-dimensional incidence tables to concept lattices structure is a crucial keystone from which FCA derives much of its 
power and versatility as a modeling tool. The concept lattices obtained the way turn out to be exactly the complete lattices, 
and the particular way in which they structure and represent knowledge is very appealing and natural from the perspective 
of many scientific disciplines. Over the past thirty years, FCA has been widely studied [9,8,20,24,4] and become a powerful 
tool for machine learning [11,29], software engineering [24] and information retrieval [4].

One of the aspects of FCA is attribute logic on attribute implication [22,9]. In FCA, an attribute implication is of the form 
A → B , meaning that one can derive B from A. Then an attribute implication is valid in a set of data, if no data violates 
the attribute implication. A set of valid attribute implications may also be complete and non-redundant. A complete set of 
attribute implications carries all information from the data and thus one can reconstruct the data from the set, whereas a 
non-redundant set is a compact representation of attribute implications, indicating that the attribute implications in the set 
are independent of one another.

Concerning complete sets of attribute implications, [19] provided a complete, but redundant set of attribute implications, 
and described an algorithm for generating the set with a NextClosure-based algorithm [7]. More well-known is a complete 
and non-redundant set generated from proper premises [9], which produces its premises by removing some redundant infor-
mation from closures. Pseudo-intent, introduced by V. Duquenne and J.L. Guigues [6], has obtained wide interests [9,12,2], 
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Table 1
A formal context.

a1 a2 a3 a4 a5 a6 d1 d2

x1 × × × × ×
x2 × ×
x3 × × × ×
x4 ×
x5 × × × × × × ×
x6 × ×
x7 × × × × ×
x8 × × × × × ×

because it corresponds to an optimal representation of implications. Canonical basis, whose premises are exactly pseudo-
intents, is proven to be complete, non-redundant, and more importantly, minimal among all complete sets of implications. 
However, finding a pseudo-intent is not an easy problem. There are some open problems [18] concerning the complexity of 
generating and finding pseudo-intents. For example, it has been proven that checking whether a subset is a pseudo-intent is 
coNP-complete [15,2], and that counting the number of pseudo-intents is even #P-hard [12,14]. To overcome this problem, 
Obiedkov etc. [16] showed some “genealogic” properties of attribute implications and presented an attribute-incremental 
algorithm for computing canonical basis. Experiment results showed that this algorithm is quite competitive. Valtchev etc. 
[25] adapted the divide-and-conquer policy and presented a method for computing canonical basis, which outperformed 
NextClosure on some datasets.

On the other hand, decision-based FCA (including decision context and decision implication) has been widely studied 
[10,11,13,20,28,27]. In the literature [20], Qu etc. presented a special inference rule, called α-decision inference rule, which 
may deduce other decision implications by enlarging premises of implications and/or reducing corresponding consequences. 
In the setting, [20] obtained an α-complete and α-non-redundant set of decision implications and showed that the complete 
set can be characterized by minimal generators [21,23,5]. In addition, an algorithm for generating the complete set was then 
given based on minimal generators and NextClosure algorithm. Afterwards, Zhai etc. [27] formulated decision implications 
and presented logical characteristics of decision implications. Specifically, [27] introduced the notions of closure and unite 
closure and established the semantical aspect of decision implications; [27] then formed two deduction rules and showed 
that the two rules are complete with respect to the semantical aspect, which established the syntactical aspect of decision 
implications.

Following [20] and [27], the paper intends to construct a canonical basis for decision implications. This canonical basis, 
called decision implication canonical basis is with the so-called decision premises (d-premises) as its premises of decision 
implications and closures on decision subcontext as its consequences of decision implications. Decision implication canonical 
basis is semantically complete and non-redundant, and furthermore it contains the least number of decision implications 
among all complete subsets of implications. In other words, d-premise is a counterpart of pseudo-intent in the case of 
decision implications.

This paper is organized as follows. Section 2 presents some basic notions about FCA and decision contexts, which are 
taken from [9,13,20]. We reformulate decision implication in terms of logic in Section 3. In Section 4, we introduce the 
notion of decision premise and prove that the so-called decision implication canonical basis is complete and non-redundant. 
Besides, we also show that the canonical basis contains the least number of decision implications among all complete 
subsets of implications. Section 5 discusses how to generate d-premises and decision implication canonical basis. Section 6
concludes the paper and lists some further remarks.

2. Formal concept analysis

2.1. Basic notions of FCA

This subsection provides a brief overview of FCA, and for more extensive introduction refer to [9].
A triple K = (G, M, I) is a formal context, if G and M are sets, and I ⊆ G × M is a binary relation. In the case, the 

elements of G are called objects, the elements of M are called attributes, and I is viewed as an incidence relation between 
objects and attributes.

Example 1. Formal contexts are mostly represented by rectangular tables and an example is illustrated by Table 1. In the 
table, a cross means that the row object has the column attribute.

Within formal context, we can define some operators on object subsets and attribute subsets. Specifically, for a subset 
A ⊆ G of objects we define:

AI = {m ∈ M | gIm,∀g ∈ A}



210 Y. Zhai et al. / Journal of Computer and System Sciences 81 (2015) 208–218
Fig. 1. Hasse diagram of concept lattice of context in Example 1.

that is, the set of attributes common to the objects in A. Correspondingly, for a subset B ⊆ M we define:

B I = {g ∈ G | gIm,∀m ∈ B}
that is, the set of objects that have all attributes in B .

A pair C = (A, B) is called a formal concept of K , if AI = B, B I = A. In the case, A is the intent of C and B the extent 
of C. B(K ) denotes the set of all concepts of K .

Formal concepts can be partially ordered in a natural way. For two concepts C1 = (A1, B1), C2 = (A2, B2) ∈ B(K ), we 
define:

C1 � C2 ⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2).

In the case, C2 is a superconcept of C1 and C1 is a subconcept of C2. The relation ‘�’ is called the hierarchical order of the 
concepts. The set of all concepts ordered in the way is called the concept lattice of K .

Example 2. Fig. 1 illustrates Hasse diagram representation of concept lattice of Table 1.

An attribute implication between attributes in M is a pair of subsets of M , denoted by B1 → B2. The set B1 is the 
premise of the implication B1 → B2, and B2 is its conclusion. Formally,

Definition 1. Let K = (G, M, I) be a formal context, B1, B2 ⊆ M . B1 → B2 is called an attribute implication of K if each 
object having all attributes from B1 also has all attributes from B2.

We can easily check the following theorem, and in the sequel we may make use of them without quotation.

Theorem 1. Let K = (G, M, I) be a formal context, A, A1, A2 are sets of objects and B, B1, B2 are set of attributes. Then:

(1) A1 ⊆ A2 ⇒ AI
2 ⊆ AI

1

(
1′) B1 ⊆ B2 ⇒ B I

2 ⊆ B I
1

(2) A ⊆ AII (
2′) B ⊆ BII

(3) AI = AIII (
3′) B I = BIII

(4) A ⊆ B I ⇐⇒ B ⊆ AI

2.2. Decision contexts and decision implications

In this subsection, we provide some notions such as decision context and decision implication [10,11,13,20,27].

Definition 2. (See [20].) A formal context K = (G, M, I) is called a decision context if M = C ∪ D , C ∩ D = ∅ and I = IC ∪ I D , 
where C is the set of condition attributes, D is the set of decision attributes, IC ⊆ G × C is the set of condition incidence 
relations, and I D ⊆ G × D is the set of decision incidence relations.
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Fig. 2. Hasse diagram of concept lattice of subcontext KC in Example 1.

Fig. 3. Hasse diagram of concept lattice of subcontext K D in Example 1.

Clearly, a decision context consists of two sub-contexts, the condition sub-context KC = (G, C, IC ) and the decision 
sub-context K D = (G, D, I D). For A ⊆ G , BC1 ⊆ C and B D1 ⊆ D , the symbols AIC , AI D , B IC

C1, B I D
D1 will be abbreviated to 

AC , AD , BC
C1, B

D
D1.

Example 3. Take Table 1 as a decision context, in which the condition attributes are {a1, a2, · · · , a6} and the decision 
attributes are {d1, d2}. Hasse diagrams of concept lattices of subcontexts are shown in Fig. 2 and Fig. 3 respectively.

Definition 3. A decision context K = (G, C ∪ D, IC ∪ I D) is consistent if for all g , h ∈ G , gCC = hCC implies g D D = hD D .

Definition 3 expresses that, in a consistent decision context, if two objects possess the same condition attributes (i.e. 
gCC = hCC ), then their decision attributes are also identical. That is to say, when we make some decisions (i.e., decision 
implication, see below), the same conditions (i.e., premises) will result in the same decisions (i.e., consequences). Throughout 
our paper, we assume that all decision contexts are consistent.

Also note that Definition 3 presents a similar notion of the absence of hopeless (positive or negative) examples (see [8]
for details).

In consistent decision contexts, we can introduce decision implication.

Definition 4. Let K = (G, C ∪ D, IC ∪ I D) be a decision context, and B1, B2 are subsets of attributes. An implication B1 → B2
of K is called a decision implication of K , if B1 ⊆ C and B2 ⊆ D .
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Example 4. The system of decision implications of Table 1 is shown in the following:

∅ → ∅ {a1,a4} → {d1} {a5,a6} → {d1}
{a1} → {d1} {a1,a5} → {d1} {a1,a2,a3} → {d1,d2}
{a2} → ∅ {a2,a3} → {d2} {a1,a3,a4} → {d1,d2}
{a3} → ∅ {a2,a4} → {d1} {a1,a3,a5} → {d1,d2}
{a4} → ∅ {a1,a2} → {d1} {a2,a3,a5} → {d1,d2}
{a5} → ∅ {a3,a4} → {d2} {a3,a4,a5} → {d1,d2}
{a6} → ∅ {a1,a3} → {d1} {a3,a5,a6} → {d1,d2}
{a2,a6} → ∅ {a3,a6} → ∅
{a3,a5} → ∅ {a4,a5} → {d1}

We can easily prove the following characteristic of decision implications.

Proposition 1. Let K = (G, C ∪ D, IC ∪ I D) be a decision context, B1 ⊆ C and B2 ⊆ D. Then B1 → B2 is a decision implication of K
if and only if BC

1 ⊆ B D
2 , if and only if B2 ⊆ BC D

1 .

3. Semantic aspects of decision implications

For developing canonical bases for decision implications, we first need to formulate decision implication in terms of 
logic.

Definition 5. (See [9,27].) For an attribute set M with M = C ∪ D and C ∩ D = ∅, a decision implication between subsets of C
and D is of the form B1 → B2 such that B1 ⊆ C and B2 ⊆ D . Here B1 is the premise of the decision implication and B2
the consequence of the decision implication. A subset T ⊆ M respects B1 → B2, denoted by T |� B1 → B2, if B1 � T ∩ C or 
B2 ⊆ T ∩ D (equivalently, B1 ⊆ T ∩ C implies B2 ⊆ T ∩ D). T respects a set L of decision implications, denoted by T |� L, if 
T |� B1 → B2, for any B1 → B2 ∈L. B1 → B2 holds in a set {T1, T2, · · · , Tn} if each Ti respects B1 → B2.

Different from Definition 36 in [9], decision implication is constructed on, instead of M , two disjoint subsets of M . Think 
of M as a set of attributes; C and D are then called condition attributes and decision attributes respectively in accordance 
with Definition 2.

Note that a decision implication of the form B1 → B2 is merely a syntactical formula without any meaning. The validity 
of decision implication has its effect only after defining the notion “respect”. Then we say, a decision implication B1 → B2
is valid with respect to a subset T if and only if T |� B1 → B2. In this case, we also say that T is an interpretation or a model
of B1 → B2.

Note that the above definition is unrelated to decision context. Thus, applying the above notion to decision context, we 
say:

Definition 6. A decision implication holds in a decision context if it holds in the system {gC ∪ g D | g ∈ G}.

Intuitively, a decision implication holds in a decision context if all objects having attributes from the premise also have 
the attributes from the consequence.

Although Definition 6 seems different from Definition 4, we can conclude that

Theorem 2. (See [9].) For a decision context K and B1 ⊆ C , B2 ⊆ D, the following statements are equivalent:

1. The system {AC ∪ AD | A ⊆ G} respects B1 → B2 (seems stricter than Definition 6);
2. B1 → B2 holds in K (Definition 6);
3. B1 → B2 is a decision implication of K (Definition 4).

Generally speaking, the number of decision implications in a decision context is quite large, since there are lots of 
redundant decision implications, which can be deduced from other decision implications.

Definition 7. (See [27].) A decision implication B1 → B2 semantically follows from a set L of decision implications if for any 
T ⊆ M , T |� L implies T |� B1 → B2, denoted by L � B1 → B2. A set L of decision implications is closed if any decision 
implication following from L is contained in L. L is non-redundant if any B1 → B2 ∈L does not follow from L\{B1 → B2}. 
For a closed set L of decision implications, a subset D ⊆L is complete with respect to L if L semantically follows from D.

Transferring the definition to the case of decision context, we have the counterpart of “closed”.
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Definition 8. A set L of decision implications of K is complete if any decision implication of K follows from L. A set L of 
decision implications of K is non-redundant if any B1 → B2 ∈L does not follow from L\{B1 → B2}.

In classic FCA [9], a set L of implications is complete if and only if every set respecting L is an intent. In the case of 
decision context, this is not true, since, for example, all subsets of D will respect all decision implications of K .

As an application of Definition 7, we can prove the following theorem.

Theorem 3. Let K = (G, C ∪ D, IC ∪ I D) be a decision context, BC1, BC2 ⊆ C , B D1, B D2 ⊆ D, and BC1 → B D1 is a decision implication 
of K . If BC1 ⊆ BC2 and B D1 ⊇ B D2 , then BC2 → B D2 is also a decision implication of K .

Proof. Let T |� BC1 → B D1. If BC1 � T , then BC2 � T , since BC2 ⊇ BC1. Otherwise, if B D1 ⊆ T , by B D1 ⊇ B D2, B D2 ⊆ T . �
In fact, Theorem 3 was first shown in [20] with the name “α-decision inference rule”, but as an inference rule, instead 

of a semantical counterpart.

4. D-premise and decision implication canonical basis

In this section, we introduce the notion of decision premise and show that a set of decision implications, called decision 
implication canonical basis consisting of all decision implications whose premises are decision premises and whose conse-
quences are the closures of the decision premises in the decision subcontext, are complete and non-redundant. Furthermore, 
we will show an interesting characteristic of this basis, namely the set contains the least number of decision implications 
among all complete sets of decision implications.

We first present the notion of decision premise in terms of logic, and then apply it to decision context.

Definition 9. (See [27].) For a set L of decision implications, the closure of P ⊆ C with respect to L is the set

PL =
⋃

{B2 | B1 → B2 ∈ L and B1 ⊆ P }.
And the set P ∪ PL is called the unite closure of P with respect to L.

Definition 10. Let L be a set of decision implications on C and D . An L-decision premise of L is a subset P ⊆ C such that

1. P is minimal with respect to PL , i.e., if Q ⊂ P , then Q L ⊂ PL;
2. P is proper, i.e.,

PL �=
⋃{

BL
1

∣∣ B1 is an L-decision premise and B1 ⊂ P
}
.

To apply Definition 10 to decision context, we need the following lemmas.

Lemma 1. Let K be a decision context. Then B1 → B2 is a decision implication of K if and only if for any P ⊆ C , P ∪ P C D |� B1 → B2 .

Proof. Necessity: To prove P ∪ P C D |� B1 → B2, it suffices to show that B1 ⊆ P implies B2 ⊆ P C D . Since B1 ⊆ P , we have 
BC D

1 ⊆ P C D . Since B1 → B2 is a decision implication of K , we obtain B2 ⊆ BC D
1 by Proposition 1, which yields B2 ⊆ P C D .

Sufficiency: Since for any P ⊆ C , we have P ∪ P C D |� B1 → B2. Setting P = B1, we obtain B1 ∪ BC D
1 |� B1 → B2, yielding 

B2 ⊆ BC D
1 . By Proposition 1, B1 → B2 is a decision implication of K . �

Lemma 2. (See [27].) Let L be a set of decision implications. Then a subset T ⊆ C ∪ D respects L if and only if (T ∩ C)L ⊆ T ∩ D. In 
particular, for any P ⊆ C , P ∪ PL |�L.

Lemma 3. (See [27].) Let L be a set of decision implications and P ⊆ C. Then L � P → PL .

Lemma 4. Let K be a decision context and L be a complete set of decision implications of K . Then for any P ⊆ C , we have P C D = PL .

Proof. By Proposition 1, we know that P → P C D is a decision implication of K . By definition of completeness, P → P C D

follows from L. Since P ∪ PL is a model of L (by Lemma 2), P ∪ PL is also a model of P → P C D , which implies P C D ⊆ PL .
Conversely, since each decision implication of L holds in K , we have P ∪ P C D |� L by Lemma 1. Since L � P → PL (by 

Lemma 3), we know P ∪ P C D |� P → PL , i.e., PL ⊆ P C D . �
Now, since for any P ⊆ C , we have P C D = PL , Definition 10 can be applied to decision context.
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Definition 11. Let K be a decision context. A decision premise of K (d-premise for short) is a subset P ⊆ C such that

1. P is minimal with respect to P C D , i.e., if Q ⊂ P , then Q C D ⊂ P C D ;
2. P is proper, i.e.,

P C D �=
⋃{

BC D
1

∣∣ B1 is a d-premise and B1 ⊂ P
}
.

Note that the two conditions above are independent just as the following example shows.

Example 5. Here we list all d-premises of Table 1 in the following:

∅ {a2,a3} {a4,a5} {a1,a3,a4} {a1,a3,a5} {a3,a5,a6}
{a1} {a2,a4} {a5,a6} {a3,a4,a5} {a2,a3,a5}

After simple checking, {a1, a2, a3} is minimal with respect to {a1, a2, a3}C D = {d1, d2}, but not proper, since we can merge 
the two consequences of decision implications, {a1} → {d1} and {a2, a3} → {d2}, and obtain {d1, d2}. On the other hand, 
there are lots of decision implications meeting condition 2 but violating condition 1, for example the subset {a1, a2}.

From each subset P ⊆ C , in particular for a d-premise, one can produce a valid decision implication P → P C D . Further-
more, the set of decision implications whose premise are d-premises is complete and non-redundant.

Definition 12. Let L be a set of decision implications on C and D . The set of decision implications

DL = {
P → PL ∣∣ P is a d-decision premise

}
is called decision implication canonical basis on L.

Applying Definition 12 to decision context, we have the following definition.

Definition 13. Let K be a decision context. The set of decision implications

D = {
P → P C D

∣∣ P is a d-premise
}

is called decision implication canonical basis of K .

Now we will prove that DL is complete and non-redundant. It is easy to see that the completeness and non-redundancy 
of D is just a consequence of this result. We first need some lemmas.

Definition 14. Let L be a set of decision implications on C and D . We define

L̄ = {B1 → B2 | L � B1 → B2}

It is to check that L̄ is closed in the sense of Definition 7, and thus, we call L̄ the corresponding closed set of L.

Lemma 5. (See [27].) Let L be a set of decision implications. Then a decision implication B1 → B2 follows from L if and only if 
B2 ⊆ BL

1 .

Lemma 6. Let L be a set of decision implications on C and D. If T |� B1 → BL
1 and B1 → B2 ∈ L̄, then T |� B1 → B2 .

Proof. If B1 → B2 ∈ L̄, then L � B1 → B2. Then by Lemma 5, we have B2 ⊆ BL
1 . To prove T |� B1 → B2, we assume 

B1 ⊆ T ∩ C . Since T |� B1 → BL
1 , we have BL

1 ⊆ T ∩ D , yielding B2 ⊆ BL
1 ⊆ T ∩ D . �

Now we prove the following theorem.

Theorem 4. DL is complete and non-redundant with respect to L̄, where L̄ is the corresponding closed set of L.

Proof. Completeness: To prove the completeness of DL , we need to prove that B1 → B2 ∈ L̄ follows from DL , i.e., T |�DL
implies T |� B1 → B2. By Lemma 6, it suffices to show T |� B1 → BL

1 . We list three cases:

1. B1 is minimal with respect to BL
1 and is proper. In this case, B1 is an L-decision premise and B1 → BL

1 ∈ DL . The 
assertion follows;
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2. B1 is minimal with respect to BL
1 but is not proper. Since B1 is not proper, then we know

BL
1 =

⋃{
BL

3

∣∣ B3 is an L-decision premise and B3 ⊂ B1
}
.

To prove T |� B1 → B2, by Lemma 6, we need to prove T |� B1 → BL
1 . Let us assume B1 ⊆ T . Since T |� DL , in 

particular, T |� B3 → BL
3 for each L-decision premise B3 with B3 ⊂ B1, then by B3 ⊂ B1 ⊆ T , we have BL

3 ⊆ T ∩ D ⊂ T . 
Thus BL

1 = ⋃
BL

3 ⊆ T , yielding T |� B1 → BL
1 .

3. B1 is not minimal with respect to BL
1 . In the setting, we can find a minimal subset B3 ⊂ B1 with BL

3 = BL
1 . Next, 

replacing B1 with B3 and processing according to the case (2), one can confirm the result.

Non-redundancy: It remains to show that DL is non-redundant, i.e., DL\{B1 → BL
1 } � B1 → BL

1 , for B1 → BL
1 ∈ DL . 

Now we want to seek a model respecting DL\{B1 → BL
1 } but not respecting B1 → BL

1 .
Set

T = B1 ∪
⋃{

BL
3

∣∣ B3 is an L-decision premise and B3 ⊂ B1
}
,

and then we assert that

1. T |�DL\{B1 → BL
1 }, but

2. T �|� B1 → BL
1 ,

which actually means DL\{B1 → BL
1 } � B1 → BL

1 .
For the first assertion, we take a decision implication B3 → BL

3 ∈ DL\{B1 → BL
1 } and need to prove T |� B3 → BL

3 . If 
B3 ⊆ T ∩ C = B1, then B3 ⊂ B1 (obviously, B3 �= B1) and thus BL

3 ⊆ ⋃
B3⊂B1

BL
3 = T ∩ D .

For the second assertion, since B1 is an L-decision premise, then we have

BL
1 ⊃

⋃{
BL

3

∣∣ B3 is an L-decision premise and B3 ⊂ B1
} = V

There must exist an attribute m ∈ BL
1 \V . In this case, we have B1 ⊆ T ∩ C = B1, and m ∈ BL

1 � T ∩ D = V , i.e., T �|� B1 →
BL

1 . �
Similarly, Theorem 4 holds when starting from a decision context and a complete set of decision implications:

Corollary 1. Let K be a decision context and L a complete set of decision implications of K . Then decision implication canonical basis 
of K is complete and non-redundant.

Example 6. The decision implication canonical basis for Table 1 is shown in the following:

∅ → ∅ {a4,a5} → {d1} {a1,a3,a5} → {d1,d2}
{a1} → {d1} {a5,a6} → {d1} {a2,a3,a5} → {d1,d2}
{a2,a3} → {d2} {a1,a3,a4} → {d1,d2} {a3,a4,a5} → {d1,d2}
{a2,a4} → {d1} {a3,a5,a6} → {d1,d2}

For comparison purpose, we also list the system of α-maximal decision implications [20]:

∅ → ∅ {a4,a5} → {d1} {a1,a3,a5} → {d1,d2}
{a1} → {d1} {a5,a6} → {d1} {a2,a3,a5} → {d1,d2}
{a2,a3} → {d2} {a1,a2,a3} → {d1,d2} {a3,a4,a5} → {d1,d2}
{a2,a4} → {d1} {a1,a3,a4} → {d1,d2} {a3,a5,a6} → {d1,d2}

It is easily seen that {a1, a2, a3} → {d1, d2} has been removed from the list of decision implication canonical basis, since it 
can be obtained by merging two decision implications, {a1} → {d1} and {a2, a3} → {d2}.

It turns out that d-premise is a counterpart of pseudo-intent in the setting of decision contexts. Theorem 4 and 
Corollary 1 have shown that DL and D are complete and non-redundant. The following theorem will show the optimal 
characteristic of DL .

Theorem 5. Let L be a set of decision implications on C and D, and P be an L-decision premise of L. Then we have P → PL ∈ L or 
L � P → PL .
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Proof. We assume P → PL /∈ L and need to prove L � P → PL . It suffices to show that T |� L but T �|� P → PL . Now we 
define

L′ = {
B1 → BL

1

∣∣ B1 → B2 ∈ L
}

By Lemma 6, it is easy to see that if T |�L′ , then T |�L. We thus need to prove if T |�L′ , then T �|� P → PL .
Let P → PL /∈L and T |�L′ . Assume P ⊆ T . Since P is an L-decision premise, then

PL ⊃
⋃{

BL
1

∣∣ B1 is an L-decision premise and B1 ⊂ P
}
.

We now assert that⋃{
BL

1

∣∣ B1 is an L-decision premise and B1 ⊂ P
} = W

⊇
⋃{

BL
1

∣∣ B1 → BL
1 ∈ L′} = V (1)

which will be proven below. If Eq. (1) holds, then PL ⊃ V and there exists m ∈ PL\V . Set

T = P ∪
⋃{

BL
1

∣∣ B1 is an L-decision premise and B1 ⊂ P
}
,

and then, similar to the proof of Theorem 4, we can show that T |� L′ but T �|� P → PL , which yields L′ � P → PL and 
thus L � P → PL .

Now let us prove Eq. (1). For each B1 → BL
1 ∈L′ , three cases are possible:

1. B1 is an L-decision premise. In this case, BL
1 ⊆ W and the conclusion holds;

2. B1 is minimal with respect to BL
1 but not proper. In this case, we have

BL
1 =

⋃{
BL

3

∣∣ B3 is an L-decision premise and B3 ⊂ B1
}
,

which means that BL
1 can be formed by union of some subsets of W , and thus Eq. (1) holds;

3. B1 is not minimal. Then we can find a minimal subset B3 ⊂ B1 with BL
3 = BL

1 , and following, the process of case 2, we 
can complete the proof. �

Let L be a set of decision implications on C and D , and L̄ be the closed set of L. Following the theorem above, we 
have:

Theorem 6. DL contains the least number of decision implications among all complete sets of L̄.

Proof. Let F be a complete set of L̄ and P be an L-decision premise. By Theorem 3 of [27], we have PL = PF for any 
P ⊆ C . Thus, by Lemma 3, we have F � P → PF (= PL), and, by Theorem 5, we have P → PF (= PL) ∈ F . Thus P → PL

has to be in F since F is complete. In view of arbitrariness of P , we know each decision implication from DL is contained 
in L. Thus DL contains the least number of decision implications among all complete sets of L̄. �

Similarly, we have:

Corollary 2. Let K be a decision context. Then D contains the least number of decision implications among all complete sets of K .

Theorems 4 and 6 state that DL is a counterpart of pseudo-intent in terms of logic, whereas Corollaries 1 and 2 state 
that D is a counterpart of pseudo-intent in term of decision contexts. In other words, decision implication canonical basis 
is a natural basis for decision implications.

5. Generating decision implication canonical basis

To generate decision implication canonical basis, an intuitive way is to check validity of all subsets of C according to 
Definition 11. However the approach is quite impractical even for not so large-scale contexts.

An alternative way is based on [20], where we provided an algorithm to compute the system Σ of α-maximal decision 
implications.

First we adopt a sufficient and necessary condition for α-maximal decision implication, taken from [20].

Lemma 7. Let K = (G, C ∪ D, IC ∪ I D) be a decision context. Then BC1 → B D1 is an α-maximal decision implication of K if and only 
if
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1. BC1 is a minimal generator of the condition sub-context KC ;
2. B D1 = BC D

C1 ;
3. If BC2 ⊂ BC1 , then BC D

C1 �= BC D
C2 .

In fact, the condition (1) of Definition 11 is the same as the condition (3) of Lemma 7, and moreover it implies the 
condition (1) of Lemma 7:

Theorem 7. If BC1 is minimal with respect to BC D
C1 , then P is a minimal generator of the condition sub-context KC

Proof. If BC1 is not a minimal generator of (BC
C1, B

CC
C1 ), then there exists a minimal subset BC2 ⊂ BC1 such that BCC

C2 = BCC
C1 , 

which yields BC
C2 = BCCC

C2 = BCCC
C1 = BC

C1. Thus BC D
C2 = BC D

C1 , which contradicts with the fact that BC1 is minimal with respect 
to BC D

C1 . �
Thus decision implication canonical basis is contained in the system Σ of α-maximal decision implications, and in order 

to obtain decision implication canonical basis, the remaining work is to check Σ and remove the decision implications that 
violates condition (2) of Definition 11, as shown by Algorithm 1.

Algorithm 1 Generating Decision Implication Canonical Basis Based on Minimal Generators (GDCBonMG).
Input: Decision context K
Output: Decision implication canonical basis D;

1: D = ∅ {decision implication canonical basis}
2: M = ∅ {the set of minimal generators}
3: T = ∅ {accumulating variable for checking condition (2) of Definition 11}
4: Generate all minimal generators M of (G, C, IC ) [21,23,5] and sort M in lectical order
5: for all BC1 ∈ M do
6: for all BC2 ∈ D with BC2 ⊂ BC1 do
7: if BC D

C1 �= BC D
C2 then

8: T = T ∪ {BC D
C2 }

9: else
10: break
11: end if
12: end for
13: Remove BC1 from M
14: if BC1 �= T then
15: Generate decision implication BC1 → BC D

C1 and add to D
16: end if
17: end for
18: return D

In line 4 of Algorithm 1, the time complexity of extracting and sorting minimal generators is, at most,

O

(
|M| ·

(
db +

( |M|
� |M|

2 �
)

· |G| · |M|
))

where db is the access time of the formal context. After the optimization of sort in line 4, the time-consuming of processing 
lines 5–17, which clearly depends on the number of minimal generators, will be, at worst, O (|M|2), where M is the 
number of minimal generators. To sum up, Algorithm 1 will have the time complexity of

O

(
|M| ·

(
db +

( |M|
� |M|

2 �
)

· |G| · |M|
)

+ |M|2
)

So the algorithm is also impractical especially for large contexts.

6. Conclusion and further remarks

In this paper, we introduce the notion of “d-premise” and decision implication canonical basis, and prove that decision 
implication canonical basis is complete and non-redundant, and moreover the basis contains the least number of decision 
implications among all complete sets of decision context.

Additionally, further research can be conducted from the following perspectives:

1. Just as mentioned, d-premise has recursive characteristic in nature, so how to compute d-premise efficiently is worth 
further studies. Here we note down two possible ways to improve Algorithm 1: (1) to characterize some properties of 
d-premise and merge lines 5–17 with line 4; and (2) to develop some efficient approach to generate minimal generators 
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(see [23,5,21]). On the other hand, we want to know whether or not the problem of checking whether a subset P ⊆ C
is a d-premise is NP-hard or, as in the case of pseudo-intent, coNP-complete;

2. By examining Example 6, we find that only one decision implication is minimal but not proper. It would be interesting 
to know how different decision implication canonical basis and the set of α-maximal decision implications are. Possibly, 
we conjecture, the difference might rely chiefly on number of decision attributes, i.e., the less the number of decision 
attributes, the more close the two sets, partially because less decision attributes will provide less chances to violate 
condition (2) of d-premise;

3. Interesting works also include how to extend decision implication canonical basis to the setting of information system 
[17] (or many-valued context in FCA [9]), to the decision case of association rules [1], and to the decision case of fuzzy 
concept lattice [3].
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