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An ensemble clusterer of multiple fuzzy k-means
clusterings to recognize arbitrarily shaped clusters

Liang Bai, Jiye Liang, Yike Guo

Abstract—Fuzzy cluster ensemble is an important research
content of ensemble learning, which is used to aggregate several
fuzzy base clusterings to generate a single output clustering
with improved robustness and quality. However, since clustering
is unsupervised, where the “accuracy” does not have a clear
meaning, it is difficult for existing ensemble methods to integrate
multiple fuzzy k-means clusterings to find arbitrarily shaped
clusters. To overcome the deficiency, we propose a new ensemble
clusterer (algorithm) of multiple fuzzy k-means clusterings based
on a local hypothesis. In the new algorithm, we study the
extraction of local-credible memberships from a base clustering,
the production of multiple base clusterings with different local-
credible spaces, and the construction of cluster relation based on
indirect overlap of local-credible spaces. The proposed ensemble
clusterer not only inherits the scalability of fuzzy k-means but
also overcomes its limitation that it can not find arbitrarily
shaped clusters. We compare the proposed algorithm with other
cluster ensemble algorithms on several synthetical and real data
sets. The experimental results illustrate the effectiveness and
efficiency of the proposed algorithm.

Index Terms—Fuzzy cluster ensemble, arbitrarily shaped clus-
ters, fuzzy k-means, local hypothesis.

I. INTRODUCTION

CLUSTERING is an important problem in statistical mul-
tivariate analysis, data mining, and machine learning.

The goal of clustering is to group a set of objects into clusters
so that the objects in the same clusters are highly similar
but remarkably dissimilar with objects in other clusters. To
tackle this problem, various types of clustering algorithms
have been developed in the literature (e.g., [1] and references
therein), including partitional, hierarchical, density-based, and
grid-based clustering and so on. Among them, fuzzy k-
means [2], [3] is one of the most computationally efficient
clustering techniques, which is widely used to effectively solve
many problems in real applications, such as image processing,
automatical control, information retrieval, and bioinformatics.
Its advantage is that it has linear time complexity and can deal
with large-scale data sets. However, its disadvantage is that it
is sensitive to the selection of initial points and only can find
out spherical and uniform-sized clusters [4]. Currently, several
complex clustering algorithms, such as spectral clustering [5],
[6], density-based clustering [7], [8], and kernel clustering [9],
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have been developed to recognize arbitrarily shaped clusters.
However, they need expensive time costs, i.e., the pairwise-
objects distance calculations, which is not suitable for large-
scale data sets. Therefore, it has been an urgent issue how to
rapidly recognize different shaped clusters.

In this paper, we wish to integrate multiple fuzzy k-
means clusterings to quickly cluster data sets with different
distributions, instead of complex algorithms. Cluster ensemble
[10], [11] is a very popular technique to integrate several base
clusterings into a final clustering with improved robustness and
quality. Currently, there are various types of cluster ensemble
methods, such as pairwise similarity, graph-based, relabeling-
based, and feature-based methods [12]. Among them, some
ensemble algorithms have been developed to integrate fuzzy
clusterings. Su et al. [13] proposed link-based consensus
methods for the ensemble of fuzzy k-means. Yu et al. [14]
proposed a random double clustering based fuzzy cluster en-
semble framework to perform tumor clustering based on gene
expression data. Rathore et al. [15] proposed a fuzzy cluster
ensemble framework based on random projection which uses
a cumulative agreement (voting) method to merge fuzzy base
clusterings.

However, different from classifier ensemble, where the
“accuracy” has a clear meaning, cluster ensemble is thought
as an unsupervised ensemble learning [12]. It is very difficult
for cluster ensemble to recognize the major strength and
weakness of a base clustering on an unlabeled data set [16].
Therefore, the ensemble objective of most existing cluster
ensemble methods is to obtain the most consensus clustering
with all the base clusterings. Their ensemble results strongly
depend on the qualities of base clusterings. Thus, they cannot
integrate multiple clusterings with low qualities into a good
final clustering to realize “multiple weak clusterings equal
to a strong clustering”. To solve the problem, we propose a
novel ensemble clusterer of multiple fuzzy k-means clusterings
to simulate a complex clustering. We assume that a cluster
center of a base clustering can well represent the objects in its
neighborhood. Based on the assumption, we propose an evalu-
ation function of membership credibility and a multiple fuzzy
k-means clustering algorithm to produce multiple clusterings
with different local-credible spaces. Furthermore, we construct
a relation graph for all the clusters from base clusterings based
on the indirect overlap of their local-credible spaces. Finally,
we determine the final clustering based on the membership
credibility function and relation graph.

The outline of the rest of this paper is as follows. Section
2 reviews the related work of the cluster ensemble problem.
Section 3 presents an ensemble clusterer of multiple fuzzy
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k-means clusterings. Section 4 demonstrates the performance
of the proposed ensemble clusterer. Section 5 concludes the
paper with some remarks.

II. RELATED WORK

Cluster ensemble, also called consensus clustering, is a
kind of unsupervised ensemble learning. Generally speaking,
cluster ensemble includes two major research tasks: (1) con-
structing a generator to produce a base clustering set and (2)
devising an ensemble strategy to produce the final partition.
Their results affect the performance of a cluster ensemble
method. In the following, we introduce the related work of
the two tasks, respectively.

In ensemble learning, it is observed that the diversity among
classification results of base classifiers or clusterers, to some
extent, can enhance the performance of the ensemble learner.
Currently, several heuristics have been proposed to produce
different clusterings on a data set, which can be classified into
three categories:

• Repeatedly run a single clustering algorithm with dif-
ferent parameters to produce base clusterings [17], [18],
[19]. Fred and Jain [17] applied k-means with the dif-
ferent numbers of clusters to produce a clustering set.
Kuncheva and Vetrov [18] used k-means with randomly
selected different cluster centers. Liu et al. [19] aggre-
gated multiple spectral clusterings with different kernel
parameters.

• Run different types of clustering algorithms to produce
base clusterings [11], [20]. Gionis et al. [11] used several
hierarchical clustering and k-means to produce a clus-
tering set. Law et al. [20] applied multiple clustering
algorithms with different objective functions as base clus-
terings and transformed a clustering ensemble problem as
a multi-objective optimization.

• Run one or more clustering algorithms on different sub-
spaces or subsamples from a data set [21], [22], [23],
[24], [25], [23], [15], [26], [27]. Fischer and Buhmann
[21] applied the bootstrap method to obtain several data
subsets. Rathore et al. [25] used the random projection
method to obtain several feature subspaces. Y. Yang et
al. [27] proposed a novel hybrid sampling method for
cluster ensemble by combining the strengths of boosting
and bagging.

For ensemble strategy, there are several representative meth-
ods which can be classified into the following four categories:

• The pairwise similarity approach that makes use of co-
occurrence relationships between all pairs of data objects
to aggregate multiple clusterings [28], [29], [30], [31],
[13], [14]. Fred and Jain [28] proposed an ensemble al-
gorithm based on evidence accumulation and constructed
a co-association (CO) matrix. Yang et al. [29] made use
of clustering validity functions as weights to construct
a weighted similarity matrix. Iam-On et al. [30], [31]
defined a link-based similarity matrix which sufficient-
ly considers the similarity between clusters. Su et al.
[13] extended the link-based similarity matrix to deal
with fuzzy clusterings. In the fuzzy cluster ensemble

framework, Yu et al. [14] measures the label consistency
between two objects on different subspace clusterings to
construct the pairwise similarity matrix.

• The graph-based approach that expresses the base clus-
tering information as an undirected graph and then derives
the ensemble clustering via graph partitioning [10], [32],
[33], [34]. Strehl et al. [10] proposed three hypergraph
ensemble algorithms CSPA, HGPA, and MCLA. CSPA
creates a similarity graph, where the vertices represent
objects and the weights of edges represent similarity.
HGPA constructs a hypergraph, where the vertices repre-
sent objects and the same weighted hyperedges represent
clusters. MCLA generates a graph where the vertices
represent clusters and the weights of edges reflect the
similarity between clusters. Fern and Brodley et al. [32]
proposed the HBGF algorithm where vertices represent
both objects and clusters.

• The relabeling-based approach that expresses the base
clustering information as label vectors and then aggre-
gates via label alignment [23], [22], [37], [38], [35]. Its
representative methods can be classified into two types:
crisp label correspondence and soft label correspondence.
The crisp methods [23], [22], [37] transfer the relabeling
problem into a minimum cost one-to-one assignment
problem. Long et al. [38] used an alternating optimiza-
tion strategy to solve the soft label alignment problem.
Rathore et al. [15] proposed an efficient fuzzy ensemble
framework which uses a cumulative agreement scheme
to aggregate fuzzy clusters.

• The feature-based approach that treats the problem of
cluster ensemble as the clustering of categorical data [39],
[40], [41], [42], [43], [44]. Cristofor and Simovici [39]
integrated the information theory and genetic algorithms
to search for the most consensus clustering. Topchy et al.
[40] proposed a probabilistic framework and used the EM
algorithm for finding the consensus clustering. Nguyen et
al. [43] made use of the k-modes [44] as the consensus
function for cluster ensemble.

It is worth noting that the research objective of this paper is
different from those of existing cluster ensemble algorithms.
Most existing algorithms mainly focus on how to obtain the
most consensus clustering from base clusterings, which can
improve the clustering quality and robustness. However, these
algorithms do not consider the credibility of memberships,
which imposes difficulties at realizing “multiple weak cluster-
ings equal to a strong clustering”. Therefore, this paper mainly
study how to integrate multiple fuzzy k-means clusterings to
rapidly recognize a complex clustering.

III. NEW CLUSTER ENSEMBLE ALGORITHM

A. Cluster ensemble problem

Let X = {xi}Ni=1 be a set of N objects, Π = {πh}Th=1 be
a set of T base clusterings, πh = {Chl}kh

l=1 be the hth base
clustering where kh is the number of clusters and Chl is the lth
cluster in πh, W = {Wh}Th=1 be a set of membership matrices
and Wh = [whli]1≤l≤kh,1≤i≤N be the membership matrix of
the hth clustering, where whli is the membership of object
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xi to cluster Chl. K = {kh}Th=1 be a set of the number of
clusters in each base clustering. The cluster ensemble problem
aims to finding out a final clustering π∗ of data set X based
on the clustering set Π.

In this paper, the fuzzy k-means algorithm is used as a base
clusterer. Its objective function F is described as

F (Wh, Vh) =

kh∑
l=1

N∑
i=1

(whli)
m ∥xi − vhl∥2,

where Vh = {vhl}kh

l=1 and vhl is the lth cluster center and√
∥xi − vhl∥2 is Euclidean distance between the object xi and

the center vhl of the lth cluster. Fuzzy k-means makes use
of alternatively updating Wh and Vh to solve the problem
of minimizing F in finding cluster solutions. Its clustering
results are often different, while it runs with different initial
cluster centers. Therefore, we attempt to produce multiple base
clusterings by fuzzy k-means and integrate them to rapidly
generate a good clustering result on data sets. However, there
are three important factors which often affect the effectiveness
of cluster ensemble as follows.

• The membership credibility. In a base clustering, there
are some objects whose memberships may be correct.
If these objects have consistently incorrect memberships
in the base clusterings, these memberships are combined
into the final clustering, which leads to reducing the ef-
fectiveness of ensemble. It is a key task for enhancing the
ensemble effectiveness to provide an evaluation criterion
for membership credibility.

• The difference among base clusterings. In cluster en-
semble, people wish base clusterings are different to
some extent from each other. The ensemble learning
uses the difference to find out a robust clustering result.
If most base clusterings in Π are very similar, it is
not worth integrating them. Thus, we wish to obtain
multiple complementary clusterings of fuzzy k-means to
adequately describe the entire data.

• The relation of clusters. Unlike classification, each base
clustering may have a different representation of labels.
Thus, we need to judge which cluster labels represent
the same clusters. Obtaining a good relation of clusters
is the prerequisite to cluster ensemble. It is noted that
the relation of clusters is different from that of most
existing relabeling methods. Since the clusters from the
same clustering also may represent the same cluster, we
should reflect the relation of all the clusters from the same
and different base clusterings.

In the following, we will propose an ensemble clusterer of
multiple fuzzy k-means clusterings which can fully consider
these factors.

B. Membership credibility function

In fuzzy k-means, a cluster center is used to represent a
cluster. However, if a cluster is non-linearly separable with
other clusters, the objects represented by a cluster center may
come from different clusters. Take a clustering of fuzzy k-
means shown in Fig. 1 for example. We can see that Cluster
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Fig. 1. A clustering of fuzzy k-means.

1 consists of objects from different “true” clusters. Thus, the
cluster center obtained by fuzzy k-means is not suitable to
represent a non-linear cluster. According to Fig. 1, we also
can find that as the size of a local space represented by the
cluster center is gradually reduced, the “true” cluster labels of
objects in the local space are more consistent.

Therefore, we evaluate the credibility of a cluster member-
ship based on a local hypothesis. We think that a cluster center
only can represent the objects in its neighborhood space, and
the membership credibility of an object to a cluster should
be inversely proportional to the distance between the object
and the cluster center. Thus, we use the following equation to
evaluate the membership credibility

exp
(
−||xi − vhl||2

)
N∑
j=1

exp (−||xj − vhl||2)
, (1)

which is the probability that object xi is as the neighbor of
vhl. The closer object xi is to vhl, the higher the probability
is. We use the probability to reflect the membership credibility
of xi to Chl. The higher the probability is, the more possibly
vhl is representative of xi. Therefore, based on Eq.(1), the
membership credibility function is defined as

λhli =


exp (−||xi−vhl||2)

N∑
j=1

exp (−||xj−vhl||2)
, if xi ∈ B(vhl),

0, otherwise,

(2)

where B(vhl) = {xj ∈ X|
√
||xj − vhl||2 ≤ ϵ} is the ϵ-

neighborhood of the cluster center vhl which is also called
as the local-credible space of the cluster Chl, for 1 ≤ i ≤ N
and 1 ≤ h ≤ T . The definition shows that we only retain the
membership information of the objects in the ϵ-neighborhood
of a cluster center.

C. Production of multiple base clusterings

To obtain multiple fuzzy k-means clusterings with different
local-credible spaces, we extend the objective function of
fuzzy k-means to define an optimization problem of producing



1063-6706 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2018.2835774, IEEE
Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS 4

base clusterings as follows.

min
W

[
Z(W) =

T∑
h=1

N∑
i=1

θhi

kh∑
l=1

λhli (whli)
m ||xi − vhl||2

]
.

(3)
In this function, except for λ, we introduce a new parameter
θhi ∈ [0, 1] which is used to reflect the importance of xi
playing a role in producing the hth base clustering. The more
the θhi value is, the more important the role of object xi is. We
hope that different clusterings are produced based on different
distribution of θ.

We propose an incremental learning method to solve the op-
timization problem. The method gradually produces multiple
base clusterings by trying to optimize an incremental problem
at each stage. The incremental problem is described as follows.
Given W′

including the membership matrices of the first hth
obtained base clusterings (0 ≤ h < T ),

min
Wh+1

Z(W
′
∪ {Wh+1}), (4)

subject to

θh+1i =

θhi exp

(
− kh
max
l=1

λhli

)
∑N

j=1 θhj exp

(
− kh
max
l=1

λhlj

) (5)

for 1 ≤ i ≤ N . According to Eq.(5), we see that the higher
kh
max
l=1

λhli is, the lower θh+1i is. This means that its importance
in producing next clustering is reduced, if object xi has a
high credible membership in the hth clustering. Such setting
θ can help us to produce clusterings with different credible
memberships.

The incremental learning method, called the multiple fuzzy
k-means clustering (MFKM) algorithm, is described in Al-
gorithm 1. In the method, we initially set h = 1, θhi = 1

N
for 1 ≤ i ≤ N and S = X which is used to store objects
whose credible memberships are equal to zero at the obtained
clusterings. At the hth stage, we randomly select kh objects
as initial cluster centers from S and apply fuzzy k-means
with a new updating formula of Vh to cluster the data set.
In this, the cluster centers are updated by only considering
the objects in their ϵ-neighborhoods, which makes the final
obtained cluster centers better represent the objects in their
local-credible spaces. After fuzzy k-means runs, we update
S = S−S′, where S′ is a set of the objects whose maximum
of local-credible memberships is more than 0 in the hth base
clustering. Furthermore, we update θh+1i for 1 ≤ i ≤ N . The
above procedure is repeated until the number of the objects
in S is less than k or the number of base clusterings is
equal to T which is the desired number of base clusterings.
If |S| < kh, we cannot select kh initial cluster centers. In this
case, the number of obtained clusterings may be less than T .
The incremental procedure makes the cluster centers obtained
at each time represent different local-credible spaces.

The time complexity of the MFKM algorithm is
O(N

∑T
h=1 thkh), where th is the number of iterations of

fuzzy k-means in the process of producing the hth base

clustering and T is the number of the produced base cluster-
ings. The outputs of the algorithm are membership matrices
W = {Wh, 1 ≤ h ≤ T} and cluster center sets V = {Vh, 1 ≤
h ≤ T} of base clusterings.

Algorithm 1: The MFKM algorithm
Input: X , K, ϵ, T
Output: W, V
Initialize Π = ∅, V = ∅, h = 1, S = X and θ1i =

1
N for

1 ≤ i ≤ N ;
while h ≤ T do

if |S| < kh then
Break;

Vh is made up of randomly selected kh objects on S;
Compute λhli for 1 ≤ l ≤ kh and 1 ≤ i ≤ N ;
while F < F ′ do

F ′ = F ;
for i = 1 : N do

for l = 1 : kh do
whli =

1∑kh
f=1

[
||xi−vhl||2

||xi−vhf ||2

]1/(m−1) ;

for l = 1 : kh do

vhl =

N∑
i=1

θhiλhli(whli)
mxi

N∑
i=1

θhiλhli(whli)
m

;

Update λhli for 1 ≤ l ≤ kh and 1 ≤ i ≤ N ;

F =
N∑
i=1

θhi
kh∑
l=1

λhli (whli)
m ||xi − vhl||2;

Update S = S − {xi ∈ S|maxkh

l=1 λhli > 0}, θh+1i

for 1 ≤ i ≤ N , W = W
∪
{Wh}, V = V

∪
{Vh}, and

h = h+ 1;

D. Construction of cluster relation

Unlike classification where the labels represent specific
classes, the cluster labels only express grouping characteristics
of the data and can not be directly comparable across different
clusterings in cluster analysis. Therefore, in cluster ensemble,
the labels of different clusterings should be aligned. Besides,
since the fuzzy k-means algorithm only can recognize linearly
separable clusters, two clusters from a base clustering may
represent the same cluster. Therefore, we need to analyze the
relation of all the clusters from base clusterings.

Currently, there are several similarity or dissimilarity mea-
sures between clusters proposed in existing cluster ensemble
algorithms [12]. Among these measures, the degree of overlap
between two clusters, i.e., the number of their common objects,
is widely used to reflect their similarity, which can be seen in
the graph-based algorithms proposed by Strehl et al. [10] and
the relabeling-based algorithms proposed by Z.H. Zhou et al.
[23]. However, this measure cannot be used to evaluate the
similarity between clusters from the same clusterings, since
they have no common objects. To solve the problem, Iam-On
et al. [30] proposed a link-based similarity measure between
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clusters, which compares the overlap of them with other
clusters. Although these existing measures already have good
practical contributions, they do not consider the credibility
of cluster memberships which may affect the performance of
these measures. Therefore, we need to design a new similarity
measure to overcome the shortcoming.

According to the MFKM algorithm, we know that the
produced base clusterings Π are with different local-credible
spaces. Thus, we hope to measure the overlap between the
local-credible spaces of two clusters to reflect their similarity.
Let Chl and Cpq be two clusters, vhl and vpq be their cluster
centers. If

√
||vhl − vpq||2 is no more than 2ϵ, their local-

credible spaces are overlapped. However, for any two clusters,
the overlap of their local-credible spaces is generally small or
null, due to the producing mechanism of the base clusterings
by the MFKM algorithm. Therefore, we introduce a latent
cluster to evaluate their “indirect” overlap. Let vhl+vpq

2 be the
midpoint of the two centers vhl and vpq. We assume there
is a latent cluster C(hl,pq) whose cluster center is vhl+vpq

2 . If√
||vhl − vpq||2 is no more than 4ϵ, the local-credible spaces

of both the clusters Chl and Cpq are overlapped with that of
the latent cluster C(hl,pq), which can be seen in Fig.2(a). In this
case, we define that the local-credible spaces of Chl and Cpq

are indirectly overlapped with respect to the latent cluster. We

(a) (b)

Fig. 2. (a) A latent cluster between clusters. (b) Similarity between clusters.

consider the following two factors to measure the “indirect”
overlap between the local-credible spaces of clusters Chl and
Cpq as follows.

• The similarity between their cluster centers.
• The density in the local-credible space of their latent

cluster.
The similarity between two cluster centers is defined as

σ(hl,pq) =

 exp
(
−||vhl − vpq||2

)
, if

√
||vhl − vpq||2 ≤ 4ϵ,

0, otherwise.
(6)

We know that the smaller ||vhl − vpq||2 is, the more over-
lapped the local-credible spaces between them and C(hl,pq)

are. Therefore, we think their “indirect” overlap should be
proportional to σ(hl,pj). Besides, since the fuzzy k-means
algorithm is a linear clusterer, the spaces of any two clusters
are separated by the midline between their cluster centers. If
the surrounding area of their midpoint includes few objects,
they can be clearly distinguished. Let us consider an example
in Fig.2(b). We see that the center distance between clusters A
and B is equal to that between clusters B and C. However, we
find out that the boundary between clusters A and B is clearer

than that between clusters B and C. Thus, if the clarity of the
boundary between clusters is considered, clusters A and B are
better separated than clusters B and C. Therefore, we think that
the “indirect” overlap of two clusters should be proportional to
the density in the local-credible space of their latent cluster. In
this, we use the sum of membership credibility of each object
to the latent cluster to reflect its density. The density in the
local-credible space of C(hl,pq) is defined as

ρ(hl,pq) =


N∑
i=1

λ(hl,pq)i, if
√
||vhl − vpq||2 ≤ 4ϵ,

0, otherwise,

(7)

where λ(hl,pq)i is the membership credibility of object xi to
cluster C(hl,pq), which can be computed by Eq.(2). Therefore,
we integrate σ and ρ to define the similarity measure for two
clusters as follows.

δ(hl,pq) =

(
σ(hl,pq) −minσ

maxσ −minσ

)(
ρ(hl,pq) −min ρ

max ρ−min ρ

)
. (8)

According to the definition, we see that the similarity measure
is the product of the normalizations of σ and ρ. Based
on the similarity measure, we construct an undirected and
weighted graph G =< A,∆ > to reflect the relation of
these clusters. In the graph G, A = {hl}1≤h≤T,1≤l≤kh

is
a set of vertices each representing a cluster label from Π.
Thus, A is also seen as a set of all the cluster labels in
Π. ∆ = {δ(hl,pq)}1≤h,g≤T,1≤l,j≤kh

is a weight set of edges
between clusters. For any two clusters, we use their similarity
as the weight of the edge between them. The higher similarity
they have, the more possibly they represent the same cluster.

After the weighted graph is obtained, the problem of con-
structing a cluster relation can be transferred to a normalized
graph cut problem which is described as follows [5].

min
Ω

Q(Ω) =
1

k

k∑
j=1

∑
hl∈Aj ,pq∈A−Aj

δ(hl,pq)∑
hl∈Aj ,pq∈A

δ(hl,pq)

 , (9)

where Ω = {Aj}kj=1 is a partition of vertices in the graph
G and Aj is the jth subset of A. we wish to obtain such
a partition by minimizing the objective function Q that the
vertices in the same subsets have very high similarity but are
very dissimilar with vertices in other subsets. In order to solve
the optimization problem, we apply the normalized spectral
clustering (NSC) algorithm [6] to obtain a final partition of
A. The vertices in the same subsets are used to represent a
cluster. Thus, let L(Chl) be the label of the subset which Chl

belongs to, we have

L(Chl) = j, if hl ∈ Aj , (10)

for 1 ≤ j ≤ k. The time complexity of constructing cluster
relation is O(N(

∑T
h=1 kh)

2). Let us consider the example of
the data set Flame to show a procedure of constructing cluster
relation. The MFKM algorithm produces 12 clusters. Figs. 3(a)
shows their relation graph. We employ the NSC algorithm to
obtain a min-cut of this graph which is shown in Fig.3(b). All
the clusters in each subgraph are used to represent the same
cluster.
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Fig. 3. Example about a procedure of constructing cluster relation. (a) A
graph of cluster relation. (b) A min-cut of graph.

After relabeling the clusters from base clusterings, the
membership matrix W ∗ of the final clustering π∗ is obtained
as follows.

w∗
ji =

∑
hl∈Aj

λhliwhli∑
pq∈A λpqiwpqi

, (11)

for 1 ≤ i ≤ N and 1 ≤ j ≤ k. Given W ∗, we can obtain the
final clustering as follows.

π∗(xi) = arg
k

max
j=1

w∗
ji, (12)

for 1 ≤ i ≤ N . The time complexity of generating the final
clustering is O(NT ).

E. Overall implementation

We integrate the above steps to form a new multiple
fuzzy k-means clustering ensemble (FKMCE) algorithm. This
algorithm is described in Algorithm 2. The overall time
complexity of the FKMCE algorithm is O(N

∑T
h=1 thkh +

N
∑T

h=1 kh + N(
∑T

h=1 kh)
2 + NT ). We see that the time

complexity is linear with the number of objects. Generally,(∑T
h=1 kh

)2

≪ N . In this case, the time complexity is
less than O(N2). We know that the time complexities of
most existing complex clustering algorithms are no less than
O(N2). This indicates that the FKMCE algorithm is suitable to
deal with large-scale data sets, compared to existing complex
clustering algorithms.

IV. EXPERIMENTAL ANALYSIS

In this section, we carry out the FKMCE algorithm on 8
synthetic and 5 real data sets to illustrate its effectiveness and
efficiency.

A. Data sets

Table I shows the details of these tested data sets. The data
distributions of the synthetic data sets are shown in Fig. 4.
These sets can be downloaded from [47], [48], [49].

Algorithm 2: The FKMCE algorithm
Input: X , k, K, ϵ, T
Output: π∗

W = argminZ(W) by Algorithm 1;
Compute λhli by Eq.(2), for 1 ≤ h ≤ T , 1 ≤ l ≤ kh,
1 ≤ i ≤ N ;
A = a set including all the cluster labels in Π;
for hl, pq ∈ A do

Compute δ(hl,pq) by Eq.(8);

Obtain a graph of cluster relation G =< A,∆ >;
Ω = argminQ(Ω) by the NSC algorithm;
Obtain the final membership matrix W ∗ by Eq.(11);
Obtain the final clustering π∗ by Eq.(12);

TABLE I
DESCRIPTION OF DATA SETS: NUMBER OF DATA OBJECTS (N), NUMBER

OF DIMENSIONS (D), NUMBER OF CLUSTERS (K).

Data set N D k

Synthetic data

Ring [48] 1,500 2 3
Jain [47][48] 373 2 2
Flame [47][48] 240 2 2
Agg [47][48] 788 2 7
T4.8k [47][48] 7,235 2 6
T7.1k [48] 3,031 2 9
Chain [48] 1,000 3 2
Atom [48] 800 3 2

Real data

Iris [47][49] 150 4 3
Wine [47][49] 178 13 3
Breast [47][49] 569 30 2
Digits [49] 5,620 63 10
Statlog [49] 6,435 36 7

B. Evaluation criteria

We employ the two widely-used external criteria ARI [50]
and NMI [51] to measure the similarity between the clustering
result and the true partition on a data set. Given a data
set X with N objects and two partitions of these objects,
namely C = {c1, c2, · · · , ck} (the clustering result) and
P = {p1, p2, · · · , pk′} (the true partition), the overlappings
between C and P can be summarized in a contingency table
(Table II) where nij denotes the number of common nodes
of groups ci and pj : nij = |ci ∩ pj |. The adjusted rand index

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Data distribution of synthetic data. (a) Ring. (b) Jain. (c) Flame. (d)
Agg. (e) T4.8k. (f) T7.1k. (g) Chain. (h) Atom.
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TABLE II
NOTATION FOR THE CONTINGENCY TABLE FOR COMPARING TWO

PARTITIONS.

C\P p1 p2 · · · p
k
′ Sums

c1 n11 n12 · · · n
1k

′ b1
c2 n21 n22 · · · n

2k
′ b2

...
...

...
. . .

...
...

ck nk1 nk2 · · · n
kk

′ bk
Sums d1 d2 · · · d

k
′

[50] is defined as

ARI =

∑
ij

(
nij

2

)
− [

∑
i

(
bi
2

)∑
j

(
dj

2

)
]/
(
N
2

)
1
2 [
∑

i

(
bi
2

)
+
∑

j

(
dj

2

)
]− [

∑
i

(
bi
2

)∑
j

(
dj

2

)
]/
(
N
2

)
where nij , bi, dj are values from the contingency table (Table
II). The normalized mutual information (NMI) [51] is defined
as

NMI =
2
∑

i

∑
j nij log

nijN
bidj

−
∑

i bi log
bi
N −

∑
j dj log

dj

N

.

If a clustering result is close to the true partition, then its ARI
and NMI values are high.

C. Compared methods

In order to properly examine the performance of the pro-
posed algorithm, we compare it with the following cluster
ensemble algorithms. The codes of these compared algorithms
are open and accessible, which can be found from the personal
homepage of these authors.

• Pairwise similarity algorithms include the co-association
similarity matrix (CO) proposed by A.L.N. Fred and A.K.
Jain [17] and the three link-based similarity matrices WC-
T, WTQ and CSM proposed by Iam-On et al.[30], and the
two fuzzy similarity matrices FLink and FCTS proposed
by Su et al. [13]. The average-link (AL) algorithm is used
to derive the final solution.

• Graph-based algorithms include the cluster-based simi-
larity partitioning (CSPA) algorithm, hyper graph parti-
tioning (HGPA) algorithm and meta-clustering (MCLA)
algorithm proposed by A. Strehl and J. Ghosh [10].

• Relabeling-based algorithms include the selectively un-
weighted and weighted ensemble algorithms SV and
SWV proposed by Z.H. Zhou and W. Tang [23], the
cumulative agreement-based fuzzy k-means (CAFCM)
algorithm proposed by Rathore et al. [15].

• Feature-based algorithms include the expectation maxi-
mization (EM) algorithm for cluster ensemble proposed
by Topchy et al. [40] and the iterative voting consensus
(IVC) algorithm proposed by Nguyen et al.[43].

Besides, we compare FKMCE with three complex cluster-
ing algorithms including the normalized spectral clustering
algorithm (NSC) [6], the density-based spatial clustering of
applications with noise (DBSCAN) [7] and the clustering by
fast search and find of density peaks (CFSFDP) [8]. The aim
of the comparison is to show the simulation of FKMCE for
complex clustering.

D. Experimental Settings

To compare these different algorithms, we need to introduce
the settings of their related parameters are listed as follows.

• For the compared cluster ensemble algorithms, we run
fuzzy k-means T times, each with a random and different
initialization of cluster centers, to produce base cluster-
ings on a data set. The number of clusters kh in each
base clustering is equal to the true number of classes on
each of the given data sets. We set the number of base
clusterings T = 40 and the fuzzy index m = 2. For other
parameters of these algorithms, we set them according to
the suggestions of the authors.

• The DBSCAN, CFSFDP and FKMCE algorithms are
required to input the parameter ϵ. We estimate the ϵ value
by using d̄ = 1

n

∑n
i=1

√
||xi − x̄||2 where x̄ =

∑n
j=1

xj
n .

However, each of these algorithms may need different ϵ
values on a data set. Thus, we select the parameter in
the interval [d̄/10, d̄] with the step size as d̄/10. We test
each of these algorithms with the 10 different values and
select the highest ARI and NMI values on each data set
for comparison. However, different from DBSCAN and
CFSFDP, the FKMCE algorithm has a certain random-
ness. Therefore, we need to run the FKMCE algorithm
50 times on each data set and compute the average ARI
and NMI values for comparison. For the parameters kh,
T and m of FKMCE, we set the same values as those of
other cluster ensemble algorithms.

• For the NSC algorithm, we use Gaussian kernel to obtain
a pairwise-objects similarity matrix and set the kernel
parameter δ2 in the interval [0.1,2] with the step size
as 0.1. We select the highest ARI and NMI values for
comparison.

E. Experimental Results

We first test these algorithms on the given data sets to
compare their clustering accuracies. Tables III and IV show the
ARI and NMI values of existing cluster ensemble algorithms
on synthetic and real data sets, respectively. According to these
tables, we see that the clustering accuracies of the FKMCE
algorithm are obviously superior to other cluster ensemble
algorithms on these tested data sets. The main reason is that
the base clusterings produced by fuzzy k-means include lots
of incredible memberships, while we are clustering these data
sets with different shaped clusters. The existing ensemble
algorithms cannot integrate them to recognize these clusters,
due to the lack of evaluation about the membership credibil-
ities. But our proposed algorithm can recognize the credible
memberships to effectively discover different shaped clusters
and improve the performance of the fuzzy k-means algorithm.
Besides, Tables III and IV also show the comparison results of
the FKMCE algorithm with the NSC, DBSCAN and CFSFDP
clustering algorithms on the given data sets. We can see that
the clustering validity of the FKMCE algorithm is superior or
close to the best results of these algorithms. The experiments
tell us that the proposed algorithm can well simulate complex
clustering results. Furthermore, we compare the efficiency of
the FKMCE algorithm with the NSC, DBSCAN and CFSFDP
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TABLE III
ARI MEASURES OF DIFFERENT METHODS

Methods Synthetic data sets Real data sets
Ring Jain Flame Agg T4.8k T7.1k Chain Atom Iris Wine Breast Digits Statog

CO-AL 0.1305 0.5853 0.4880 0.6245 0.5098 0.3726 0.0927 0.1456 0.7302 0.8471 0.7302 0.6050 0.5700
WCT-AL 0.1382 0.5853 0.4880 0.7342 0.4952 0.3635 0.0927 0.1456 0.7302 0.8471 0.7302 0.6046 0.5699
WTQ-AL 0.1389 0.5853 0.4880 0.7081 0.3326 0.3705 0.0927 0.1456 0.7302 0.8471 0.7302 0.6049 0.5699
CSM-AL 0.1448 0.5853 0.4880 0.7192 0.4956 0.4199 0.0927 0.1456 0.7302 0.8471 0.7302 0.6146 0.5699
FLink-AL 0.0009 0.5853 0.4880 0.8205 0.4707 0.3422 0.0903 0.2321 0.7149 0.8498 0.7305 0.2888 0.5086
FCTS-AL 0.0016 0.5853 0.4880 0.6131 0.4796 0.3280 0.0903 0.1672 0.7149 0.8498 0.7305 0.2609 0.3891
CSPA 0.3163 0.2774 0.4312 0.5365 0.5010 0.3418 0.0927 0.0021 0.6521 0.7808 0.3414 0.7573 0.4329
HGPA 0.0004 0.0021 0.0038 0.3621 0.4012 0.1966 0.0010 0.0013 0.1026 0.1286 0.0007 0.3750 0.2619
MCLA 0.0004 0.5853 0.4880 0.5778 0.5018 0.3736 0.0927 0.1554 0.7302 0.8471 0.7302 0.6935 0.5127
SV 0.0847 0.5853 0.4763 0.3343 0.2443 0.1406 0.1002 0.1736 0.0067 0.8685 0.7302 0.3244 0.4533
SWV 0.1809 0.5853 0.4763 0.4612 0.2621 0.1966 0.1002 0.1736 0.0002 0.8685 0.7302 0.4641 0.4546
CAFCM 0.0440 0.5853 0.4880 0.7241 0.4272 0.4204 0.0915 0.2827 0.7149 0.8498 0.7305 0.2121 0.5248
EM 0.0302 0.5151 0.4164 0.5682 0.4775 0.3240 0.0896 0.2617 0.6008 0.7855 0.6328 0.6205 0.5074
IVC 0.3231 0.1288 0.3708 0.5783 0.4894 0.4097 0.0927 0.1178 0.5970 0.6875 0.0487 0.6006 0.4188
NSC 1.0000 1.0000 0.8382 0.9045 0.9260 0.9848 1.0000 1.0000 0.7455 0.9310 0.7493 0.7536 0.5308
DBSCAN 1.0000 0.2824 0.2270 0.6294 0.7780 0.8513 0.4947 0.3786 0.5162 0.3587 0.0478 0.5052 0.4319
CFSFDP 0.3227 0.6438 0.9337 0.9898 0.6098 0.8043 0.6853 0.4154 0.7028 0.7414 0.7305 0.7584 0.4963
FKMCE 1.0000 1.0000 0.9539 0.9909 0.9786 0.9891 1.0000 1.0000 0.8296 0.8834 0.7700 0.8430 0.6544

TABLE IV
NMI MEASURES OF DIFFERENT METHODS

Methods Synthetic data sets Real data sets
Ring Jain Flame Agg T4.8k T7.1k Chain Atom Iris Wine Breast Digits Statog

CO-AL 0.2112 0.5533 0.4420 0.7522 0.6601 0.6343 0.0686 0.2631 0.7582 0.8347 0.6231 0.7307 0.6322
WCT-AL 0.2162 0.5533 0.4420 0.8291 0.6546 0.6302 0.0686 0.2631 0.7582 0.8347 0.6231 0.7305 0.6321
WTQ-AL 0.2174 0.5533 0.4420 0.8003 0.5027 0.6370 0.0686 0.2631 0.7582 0.8347 0.6231 0.7306 0.6321
CSM-AL 0.2211 0.5533 0.4420 0.7993 0.6563 0.6630 0.0686 0.2631 0.7582 0.8347 0.6231 0.7309 0.6321
FLink-AL 0.0020 0.5533 0.4420 0.8874 0.6301 0.6099 0.0669 0.3133 0.7304 0.8336 0.6152 0.4307 0.5840
FCTS-AL 0.0032 0.5533 0.4420 0.8033 0.6234 0.5900 0.0669 0.1646 0.7304 0.8336 0.6152 0.4031 0.5175
CSPA 0.3785 0.3631 0.4049 0.7200 0.6233 0.6071 0.0686 0.0024 0.6803 0.7771 0.2981 0.7857 0.5425
HGPA 0.0008 0.0000 0.0000 0.4088 0.5170 0.3656 0.0000 0.0000 0.1609 0.1705 0.0007 0.4932 0.326
MCLA 0.0013 0.5533 0.4420 0.7515 0.6418 0.6334 0.0686 0.2713 0.7582 0.8347 0.6231 0.7627 0.5903
SV 0.1758 0.5533 0.4343 0.3690 0.3672 0.2049 0.0743 0.2863 0.0183 0.8529 0.6231 0.3782 0.4481
SWV 0.2487 0.5533 0.4343 0.6481 0.3971 0.4339 0.0743 0.2863 0.0110 0.8529 0.6231 0.6085 0.5248
CAFCM 0.1548 0.5533 0.4420 0.8163 0.5786 0.6368 0.0678 0.2243 0.7304 0.8336 0.6152 0.3676 0.5248
EM 0.1495 0.4869 0.3780 0.7295 0.6197 0.5730 0.0663 0.3404 0.6727 0.7980 0.5400 0.7271 0.5837
IVC 0.3813 0.1217 0.3360 0.7303 0.6342 0.6467 0.0686 0.1942 0.6801 0.7281 0.0415 0.7208 0.5256
NSC 1.0000 1.0000 0.7770 0.9271 0.9538 0.9853 1.0000 1.0000 0.7980 0.9016 0.6328 0.8119 0.6243
DBSCAN 1.0000 0.2561 0.2070 0.6835 0.7926 0.8719 0.4828 0.2773 0.5904 0.4451 0.0303 0.7163 0.5021
CFSFDP 0.3792 0.5960 0.8883 0.9851 0.7131 0.8451 0.6544 0.4592 0.7277 0.7528 0.6152 0.8645 0.5644
FMKCE 1.0000 1.0000 0.9028 0.9869 0.9840 0.9946 1.0000 1.0000 0.8381 0.8667 0.6667 0.8919 0.6774

algorithms on the KDD-CUP’99 data set. In the experiment,
we fix k = 2 and ϵ = 0.14. Fig. 5 shows the running time
of these algorithms with different numbers of objects. We can
see that the proposed algorithm is very efficient, compared to
other algorithms. This indicates that the FKMCE algorithm is
a good choice for clustering large-scale data sets.

Due to the fact that the FKMCE algorithm has a certain
randomness, we test it 50 times on each data sets. Table
V shows the standard deviation (std) of the ARI and NMI
values for its 50 clustering results. We can see that the std
value is less than 0.1 on each data set. This indicates that
the randomness has a limited impact on the performance of
the FKMCE algorithm. Furthermore, we test the effect of the
parameter ϵ on the performance of the FKMCE algorithm by
the experiments. We take the iris and wine data for example.
According to Fig. 6, we see that the clustering accuracy of
the FKMCE algorithm is very poor while the ϵ value is very
low. As the ϵ value is further growing, the performance of
the algorithm is becoming better. However, while the ϵ value
is increasing to a certain extent, the clustering accuracy is
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Fig. 5. Time comparison of different algorithms

decreasing. This experimental result tells us that the ϵ value is
too large or small to obtain a good ensemble result. Since
the performance of the FKMCE algorithm depends on the
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TABLE V
STANDARD DEVIATION OF THE FKMCE ALGORITHM FOR THE ARI AND NMI MEASURES

Indices Synthetic data sets Real data sets
Ring Jain Flame Agg T4.8k T7.1k Chain Atom Iris Wine Breast Digits Statog

ARI(std) 0.0000 0.0000 0.0486 0.0032 0.0614 0.0121 0.0000 0.0000 0.0906 0.0431 0.0650 0.0517 0.0293
NMI(std) 0.0000 0.0000 0.0542 0.0038 0.0367 0.0127 0.0000 0.0000 0.0508 0.0384 0.0631 0.0249 0.0182

parameter setting, we should select a suitable value of ϵ on
each data set. However, there are few theoretical guidelines for
setting the parameter. In this paper, we provide a rule of thumb
that the parameter value is selected from the interval [d̄/10, d̄]
where d̄ is the average distance between each object and the
center of a data set. We tested the DBSCAN, CFSFDP, and
FKMCE with different parameter values on the given data sets.
We found that these algorithms can obtain better clustering
results if the parameter is selected from the interval.
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Fig. 6. (a) Effect of the parameter ϵ on the iris data. (b) Effect of the
parameter ϵ on the wine data.

V. CONCLUSIONS

Fuzzy k-means is a widely-used clustering algorithm for its
low computational cost. However, it is a linear clusterer and its
performance tends to be affected by data distributions. In this
paper, we have proposed a new cluster ensemble algorithm

for integrating multiple fuzzy k-means clusterings, which is
called FKMCE. The new algorithm includes three main steps:
producing multiple fuzzy k-means clusterings, evaluating the
local credibility of memberships, and building the relation
between clusters. It improves the robustness and quality of
fuzzy k-means and can rapidly recognize different shaped
clusters. In the experimental analysis, we have compared the
FKMCE algorithm with existing cluster ensemble algorithms
and three complex clustering algorithms on synthetic and
real data sets. The comparison results have illustrated that
the performance of the proposed algorithm is very effective.
Furthermore, we have analyzed the efficiency of the FKMCE
algorithm which is suitable to deal with large-scale data sets.
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