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With the development of data mining and soft computing techniques, it becomes possible to automati-
cally mine knowledge from spatial data. Spatial rule extraction from spatial data with uncertainty is an
important issue in spatial data mining. Rough set theory is an effective tool for rule extraction from data
with roughness. In our previous studies, Rough set method has been successfully used in the analysis of
social and environmental causes of neural tube birth defects. However, both roughness and fuzziness
may co-exist in spatial data because of the complexity of the object and the subjective limitation of
human knowledge. The situation of fuzzy decisions, which is often encountered in spatial data, is beyond
the capability of classical rough set theory. This paper presents a model based on rough fuzzy sets to
extract spatial fuzzy decision rules from spatial data that simultaneously have two types of uncertainties,
roughness and fuzziness. Fuzzy entropy and fuzzy cross entropy are used to measure accuracies of the
fuzzy decisions on unseen objects using the rules extracted. An example of neural tube birth defects is
given in this paper. The identification result from rough fuzzy sets based model was compared with those
from two classical rule extraction methods and three commonly used fuzzy set based rule extraction
models. The comparison results support that the rule extraction model established is effective in dealing
with spatial data which have roughness and fuzziness simultaneously.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Spatial data mining is the process of discovering the interesting
and previously unknown, but potentially useful, patterns and rules
(association and classification rules) from spatial datasets [39,50].
Over the last two decades, spatial data mining has been widely
used in many applications, such as categorizing and localizing
the human action(s) contained in a video [30], evaluating the
structural and topological consistency among multiple representa-
tions of complex regions with broad boundaries [10], mining the
frequent trajectory patterns in a spatial–temporal database [21],
extracting the spatial association rules from a remotely sensed im-
age database [22], generating the appropriate polygons from heter-
ogeneous spatial information [38], and analyzing the change of
land use [9].

Extraction of spatial decision rules is one of the main targets of
spatial data mining [39,40,50] and has been used in many real
applications. Ester et al. [13] used ID3 to extract decision rules
from spatial databases via the so-called generalized attributes
which take the neighborhood relation into consideration through
a predefined position path of neighbors. Pontius et al. [35] pro-
posed a model to select the locations of land-use change by the
decision rules generated using the nearest neighbors. Daniels [8]
introduced domain knowledge base which consists of decision
rules to help classification of land cover types of remotely sensed
imagery. Frank et al. [15] took the spatial and aggregation literals,
such as perimeter, location and area, of spatial objects into account
when mining rules from spatial data via a Voronoi-based approach
to take non-spatial features into the rule extraction process. Zhu
and Hu [54] extracted rules by using support vector machines,
which is originally difficult to explain to users or to be understand
by users as a black box, via analyzing the consistent regions formed
by samples in terms of classification boundary.

In the studies mentioned above, both condition attributes and
decision attributes, which are used to describe the objects in a data
table, are crisp. The extracted rules are also crisp, i.e., the anteced-
ent and consequent of a rule are expressed in some accurate way.
However, because of the complexity of the object world, the
subjective limitation of human knowledge and the uncertainty
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intrinsic of spatial data, there exists fuzziness in the representa-
tions of geographical phenomena [40] such as the classification
of transition zones of land cover types, and the detection of the
influence of environmental factors on the incidence rate of birth
defects [4]. If the traditional models are used in extracting rules
from spatial data with fuzzy descriptions by nature, the fuzzy con-
cepts or fuzzy decisions should be degraded into crisp ones. For
example, the transition zones between grassland and forest should
be assigned to one specific category. The degradation may lead to
information loss and decreases prediction accuracy. Meanwhile,
the rules extracted using classical models will have crisp decision.
These rules are less explainable than the fuzzy decision rules [12].
Some researchers then used fuzzy set theory to handle this issue.
For example, Hu et al. [17] proposed the fuzzy-grid-based rule
mining algorithm to generate fuzzy association rules. Niu et al.
[31] used fuzzy concept lattice to mine the spatial association
rules. In fact, there also exists another kind of uncertainty, i.e.,
roughness, in the geographical data tables.

In general, roughness is interpreted as the uncertainty of a con-
cept while the concept cannot be precisely expressed with other
concepts. In data analysis field, roughness is firstly studied by Paw-
lak in 1982 [34], where a concept is defined as an object subset of
the universe with some property. In rough set theory, two opera-
tors, upper and lower approximations, are designed to roughly de-
pict a target concept. A concept is called to be rough when its
boundary region, i.e., the difference between the upper and lower
approximations, is nonempty. The roughness of a concept derives
from its boundary region. Especially, in geographical phenomena,
roughness means that a target concept cannot be precisely de-
scribed by the available information granules formed by spatial
objects’ features. For example, the spectral information of the re-
motely sensed imagery may not precisely describe a landcover
type in the study area. As the roughness concept can be precisely
defined when more additional features are collected, it is not a fuz-
zy concept by nature. Accordingly, it is inappropriate to use fuzzy
sets to handling roughness. For example, rock and soil are hard to
be discerned using existing band in remotely sensed imagery. But
they may be clearly distinguished using other unavailable bands.
Rock and soil do not have ill definition of boundary in such situa-
tion. Accordingly, fuzzy sets based model is not suitable for such
situation. This means that the existing methods for rule extraction
need to be extended for well working in spatial data analysis.

Rough set theory [34] is an effective tool in dealing with rough-
ness and it can be used in extracting decision rules in spatial data
with roughness [6,7]. However, the classical rough set theory is
only suitable to the cases that objects are described by the nominal
type of condition attributes and the crisp type of decision attri-
butes in a data table. Nonetheless, in many real applications, the
decision value of an object is fuzzy. Taking Heshun Neural Tube
Birth Defects (NTD) data as an example, Bai et al. [3] used rough
set theory to extract spatial decision rules from Heshun NTD data.
However, the decision attribute in that work is ‘‘whether there are
NTD instances in a village’’, i.e., it is a Yes–No type decision attri-
bute, which cannot reflect the severity degree of NTD for each vil-
lage. For example, a village within ten instances suffers more than
that within only one instance. It is obvious that treating NTD birth
defects as a fuzzy concept on the domain of discourse of all villages
in Heshun is a better way than using a Yes–No type decision attri-
bute. It can more intuitively describe the severity degree of NTD
birth defects in villages. By the discussion above there are two
kinds of uncertainties, i.e., roughness and fuzziness, needed to be
handled in this case. Two extensions of rough set theory provide
tools for handling data of this type.

Rough fuzzy sets and fuzzy rough sets [11] were proposed to
extend the classical rough set theory [34] which allows the
existence of fuzziness in decision attributes. They combine the
advantages of rough sets and fuzzy sets [52]. The difference be-
tween fuzzy rough sets and rough fuzzy sets is that fuzzy rough
sets is designed for the cases that both conditional attribute and
decision attribute are fuzzy sets of the universe while rough fuzzy
sets are specialized in dealing with data tables with crisp condi-
tions and fuzzy decisions. Although rough fuzzy sets are special
cases of fuzzy rough sets, the modeling process of fuzzy rough sets
needs the fuzzification of conditional attributes. The fuzzification
process involves the selection of the fuzzification methods, which
will increase the modeling complexity and introduce new source
of uncertainty. Therefore, the fuzzy rough sets based model cannot
completely replace rough fuzzy sets based model.

Many researches on modeling spatial data by using rough set
theory have been reported such as the classification of remotely
sensed imagery, modeling spatial topology between spatial
objects, uncertainty analysis and rule extraction [2,3,22,33,45,51],
while rough fuzzy sets and fuzzy rough sets attract little attention
in spatial data mining. Ahlqvist et al. [1] defined rough fuzzy clas-
sification and proposed various kinds of accuracy measures on
rough fuzzy classification. This model assesses the classification
accuracy using some goodness functions that reflect the features
of the classification result from different perspectives. However,
it did not give the accuracy assessment of prediction result in
terms of reference. Furthermore, little research seems to address
the detailed process of the reduct which is an essential procedure
in spatial data mining using rough fuzzy sets.

In this paper, we focus on the problem of rule extraction from
spatial data with crisp condition attributes and fuzzy decisions.
A rough-fuzzy set based rule extraction model is used to deal
with both fuzziness and roughness in spatial data tables. Unlike
other commonly used spatial rule extraction methods, this mod-
el can simultaneously consider roughness and fuzziness in data.
This model firstly converts the spatial data into a fuzzy decision
information system. Rough fuzzy sets are then used to find a
reduction of the fuzzy decision information system. Next, some
fuzzy decision rules are extracted from the reduced fuzzy deci-
sion information system. Using the extracted rules, unseen ob-
jects can be classified, and the classification result is assessed
by using fuzzy entropy and fuzzy cross entropy. This model is
used in the analysis of Heshun NTD data, which is a very critical
issue in China and has been studied for years by the authors.
The rough fuzzy classification results of NTD data is compared
with the results based on two kinds of classical rule extraction
methods and three fuzzy decision rule extraction methods. The
experimental results show that rough fuzzy set is an appropriate
model for spatial analysis with both roughness and fuzziness in
data.

The present paper has the following organization. Section 2 out-
lines the concepts of fuzzy decision information system and rough
fuzzy sets. Section 3 proposes a model based on rough fuzzy sets to
extract spatial rules from fuzzy decision information system con-
structed from spatial data. An example of NTD data from Heshun,
Shanxi, China is given in Section 4. Section 5 makes detailed dis-
cussion on the effectiveness of the new method via entropy based
accuracy assessment and performs a comparison of the proposed
model with other five commonly used rule extraction methods.
The last section concludes this paper.
2. Fuzzy decision information systems and rough fuzzy sets

A decision information system is defined as a pair (U, AT [ D),
where the universe U is a non-empty finite set of objects, AT is a
non-empty finite condition attribute set which contains mc ele-
ments, D is a non-empty finite decision attribute set which con-
tains md elements (m = mc + md), and AT \ D is empty. Any a e AT
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(d e D) can be regarded as a mapping from U � {a} (U � {d}) to Va

(Vd), where Va (Vd) is the domain of the attribute a (d).
The equivalent class of x e U formed by an attribute set R # AT

(R # D) is defined as the set [x]R = {y e U:a(x) = a(y), "a e R}. Obvi-
ously, if two objects x and y belong to the same equivalent class
[x]R, then a(x) = a(y) for any attribute a in R. So we can use a([x]R)
to represent the value of any object in [x]R under an attribute a e R.

In the classical rough set theory [34], a target concept X # U
can be approximately depicted by two approximation operators
that are associated with a condition attribute set R # AT, i.e., the
upper approximation PRðXÞ ¼ fx 2 U : ½x�R \ X–Ug and the lower
approximation PR(X) = {x e U: [x]R # X}. The boundary of X is de-
fined as BNDðXÞ ¼ PRðXÞ � PRðXÞ. A set is said to be rough if the
boundary region BND(X) is non-empty.

A fuzzy set Z on U can be identified by a membership function
lZ: U ? [0, 1]. The intersection and union of two fuzzy sets X and
Y are defined as lX\Y(x) = min{lX(x), lY(x)} and lX[Y(x) = max{lX(-
x), lY(x)} respectively. The cardinality of a fuzzy set X is defined
as |X| =

P
xeUlX(x). A crisp set X # U can be looked upon as a spe-

cial case of fuzzy sets. The membership function for the crisp set X
can be defined as

lXðx 2 UÞ ¼
1; x 2 X

0; x R X

�

Let (U, AT [ D) be a decision information system. If "d e D is a
fuzzy set on U, (U, AT [ D) is known as a fuzzy decision information
system (FDIS), and "d e D can be considered as a mapping from
U � {d} to [0, 1]. The membership function of a fuzzy decision d,
which is identified as ld: U ? [0, 1], is assigned by users or trans-
formed through some fuzzification methods. An illustrative exam-
ple of FDIS is shown in Table 1. It has three crisp condition
attributes A1, A2 and A3, and two fuzzy decisions D1 and D2. The
three equivalent classes formed by {A1, A2, A3} are C1 = {1, 2, 3},
C2 = {4, 5} and C3 = {6, 7} respectively.

Based on rough sets and fuzzy sets, Dubois and Prade [11] pro-
posed rough fuzzy set theory in dealing with FDIS. Let (U, AT [ D)
be an FDIS, R # AT and F e D. In rough fuzzy set theory, two oper-
ators called as the upper approximation RðFÞ and lower approxi-
mations RðFÞ are designed to approximately represent the fuzzy
concept F. RðFÞ and RðFÞ are two fuzzy sets on U with membership
functions defined by Formulas (1) and (2). For "x e U,

lRðFÞðxÞ ¼ maxflFðyÞ; y 2 ½x�Rg ð1Þ

lRðFÞðxÞ ¼ minflFðyÞ; y 2 ½x�Rg ð2Þ

It is easy to see that for "x e U, lRðFÞðxÞ 6 lFðxÞ 6 lRðFÞðxÞ, i.e.,
the membership of F lays between the memberships of RðFÞ and
RðFÞ. The pair ðRðFÞ;RðFÞÞ is called a rough fuzzy set [11].

For example, when R = {A1, A2, A3}, the upper and lower
approximations of fuzzy decisions D1 and D2 in Table 1 are

RðD1Þ ¼ fð1;0:23Þ; ð2;0:23Þ; ð3;0:23Þ; ð4;0:5Þ; ð5; 0:5Þ; ð6;0:9Þ; ð7;0:9Þg

RðD1Þ ¼ fð1;0:1Þ; ð2;0:1Þ; ð3;0:1Þ; ð4; 0:3Þ; ð5;0:3Þ; ð6;0:8Þ; ð7;0:8Þg
Table 1
An example of fuzzy decision information system.

ID A1 A2 A3 D1 D2

1 x Low High 0.1 0.8
2 x Low High 0.1 0.3
3 x Low High 0.23 0
4 z High Low 0.5 0.9
5 z High Low 0.3 0.9
6 y High Low 0.8 0.2
7 y High Low 0.9 0.1
RðD2Þ ¼ fð1;0:8Þ; ð2;0:8Þ; ð3;0:8Þ; ð4;0:9Þ; ð5;0:9Þ; ð6;0:2Þ; ð7;0:2Þg

RðD2Þ ¼ fð1;0Þ; ð2;0Þ; ð3;0Þ; ð4;0:9Þ; ð5;0:9Þ; ð6;0:1Þ; ð7;0:1Þg

Meanwhile, a rough membership function for x for a fuzzy deci-
sion d e D is defined as ld(x) = |[x]R \ d|/|[x]R|. For example,
ld(1) = |[1]R \ D1|/|[1]R| = (0.1 + 0.1 + 0.23)/3 � 0.143 for the first
object in Table 1.

2.1. Attribute reduction in an FDIS

In an FDIS, attribute reduction is one of the main problems
raised in the applications of rough fuzzy sets. The two main
motivations of attribute reduction are the removal of redundant
attributes and simplification of decision rules. Xu et al. [49] intro-
duced five types of reduction for knowledge discovering in FDISs.
The five reduction methods are induced based on the so-called
discernibility matrix introduced in [41]. One of them defined as fol-
lows is adopted in this paper for it can preserve both decision type
and its precision while other four reducts cannot [49].

Let FI = (U, AT [ D) be an FDIS, and A # AT. For "x e U, we define

EAðxÞ ¼ ðdi;aÞ : di ¼ arg max
dk2D;k6md

lAðdkÞðxÞ; a ¼ max
dk2D;k6md

lAðdkÞðxÞ
� �

ð3Þ

By the definition of the lower approximation given by Formula
(2), we have that for "y e [x]A, EA(x) = EA(y).

Let FI = (U, AT [ D) be an FDIS. An attribute subset A # AT is re-
ferred to as an x-E consistent set of FI, if EA(x) = EAT(x) for "x e U. If
A # AT is an x-E consistent set of FI, and no proper subset of A is
also an x-E consistent set, then A is referred to as an x-E reduct of FI.

By Formula (3), an important property of an x-E reduct of FI is
that it can preserve the largest one among the lower approxima-
tion membership values of all decision attributes for every object
x in U [49]. Therefore, the decision type of each object given by
the x-E reduct is retained, i.e., the decision which has the maximum
lower approximation membership value and the membership val-
ues of objects under the decision are also unchanged. For example,
in the FDIS shown in Table 1,

EATð1Þ ¼ EATð2Þ ¼ EATð3Þ ¼ ðD1;0:1Þ; EATð4Þ ¼ EATð5Þ
¼ ðD2;0:9Þ; EATð6Þ ¼ EATð7Þ ¼ ðD1;0:8Þ

EfA1gð1Þ ¼ EfA1gð2Þ ¼ EfA1gð3Þ ¼ ðD1;0:1Þ; EfA1gð4Þ ¼ EfA1gð5Þ
¼ ðD2;0:9Þ; EfA1gð6Þ ¼ EfA1gð7Þ ¼ ðD1;0:8Þ

It can be seen that EfA1gðxÞ ¼ EATðxÞ for every object x e U. There-
fore, {A1} is a reduct of the FDIS.

Let U/AT = {C1, C2, . . . , Cm} be the partition of U formed by AT.
The corresponding discernibility matrix can be defined as:

DðCi;CjÞ ¼
fak 2 AT : akðCiÞ–akðCjÞg; EATðCiÞ–EATðCjÞ
U; EATðCiÞ ¼ EATðCjÞ

�
ð4Þ

According to the discernibility matrix D(Ci, Cj), for example, the
discernibility matrix for Table 1 is

C1 C2 C3

C1 U fA1;A2g fA1;A2;A3g

C2 fA1;A2g U fA1g

C3 fA1;A2;A3g fA1g U

By Formula (4), each non-empty entry in the discernibility ma-
trix is a condition attribute set and any arbitrary attribute in the set
can distinguish all pairs of objects from Ci and Cj.
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Based on the discernibility matrix, the discernibility function
can be defined as

DðATÞ ¼ ^ð_DðCi;CjÞÞ

The set of all prime implicants of D(AT) determines the set of all
reducts of the FDIS [20].

2.2. Decision rules in FDISs

Once a reduct has been obtained, the fuzzy decision rules are
easily constructed through overlaying the reduct on the original
decision table and reading off the values. And further, these rules
can be used to identify unseen objects. To facilitate the under-
standing of the synthesis process of decision rules, some related
concepts are recalled here.

The decision rules obtained from an FDIS are of the form A) B,
where A is a crisp set on U with the form ^a2attðAÞðaðxÞ ¼ �Þ and B is a
fuzzy membership value with the form _d2attðBÞldðxÞ, where att(A)
consists of the conditional attributes appeared in A, ⁄ is a value
in the domain of a, and att(B) consists of the decision attributes
appeared in B. The support and confidence of a rule are defined
as supp(A) d) =

P
xeUlA\d(x) and conf(A) d) =

P
xeUlA\d(x)/|A|

respectively [37].
3. Modeling spatial data using rough fuzzy sets

The rule extraction model based on rough fuzzy sets can be di-
vided into the following four steps (see Fig. 1): (1) Construct an
FDIS from the spatial data; (2) find one minimal reduct of the FDIS;
(3) generate rules according to the obtained reduct; and (4) apply
the rules to unseen cases and perform error analysis. This process
is similar to generating decision rules based on the classical rough
set theory. However, the classical algorithms and techniques
should be improved to meet the requirements of FDISs because
the decision attributes in an FDIS are fuzzy concepts.

In the first step, the spatial data, which is commonly repre-
sented via a map, should be converted to an FDIS. Each layer of
the spatial data should be treated as an attribute of surface objects,
such as the land cover type, amount of rainfall. The values of fuzzy
Fig. 1. Illustration of the rough fuzzy
decisions of sample data in an FDIS should be assigned by domain
experts or be converted from data using some sort of fuzzification
methods. Meanwhile, the continuous condition attributes in the
FDIS should be discretized. No matter which discretization method
is used, the cuts of the discretization of each attribute need to be
preserved for later use.

When an FDIS is prepared, the next step is finding a minimal re-
duct of the FDIS, which will reduce the complexity of the problem
at hand through selecting most relevant conditional attributes. The
x-E reduct is used in this paper.

Next, all of the fuzzy rules that are hidden in the original system
can be extracted through reading off the condition and decision
attributes with their values from the reduced FDIS. These fuzzy
decision rules extracted can be applied to fuzzy classification of
unseen objects through the way of rule matching. The continuous
attributes of unseen objects should also be discretized using cuts
saved in the first step before rule matching. Standard voting [32]
is used to perform the rule matching process. In the voting process,
the votes(r) of a rule r [32] is calculated through the support of a
rule.

After rules are applied to unseen objects, accuracy assessment
of the identified decisions of unseen objects is indispensable. The
confusion matrix is commonly used to perform this task. However,
the traditional confusion matrix can only be used for hard classifi-
cation, i.e., each object is associated with only one class. Clearly,
such an approach cannot provide a useful evaluation method to a
fuzzy classification task [18]. In this paper, the entropy-based
methods [14] are used to perform accuracy assessment due to that
it cannot only examine the degree of uncertainty of the decision
values but also assess the agreement between the identified fuzzy
decisions and the real fuzzy decisions of reference data.

Foody [14] uses entropy and cross entropy to assess the accu-
racy of fuzzy classification. The entropy of a fuzzy set can be de-
fined as:

H ¼ �
Xn

s¼1

Xc

k¼1

lkðxsÞlog2ðlkðxsÞÞ ð5Þ

where lk(xs) is the fuzzy degree of xs corresponding to class
k; xs, s e {1, 2, . . . , n} represents the individual objects; n is the total
set based rule extraction process.
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number of objects; k e {1, 2, . . . , c} denotes the individual catego-
ries; c is the total number of categories. Entropy was used to exam-
ine the degree of fuzziness in fuzzy classified outputs [53] and to
represent the way in which the class memberships (i.e. fuzzy mem-
berships) were partitioned between the classes. A high value of en-
tropy indicates that an object belongs to many classes (and thus is
fuzzy) whereas a low value indicates that the object has a high
membership of only one class (and thus is crisp) [14]. Cross-entropy
can be used to assess the accuracy of fuzzy classification outputs
with respect to fuzzy reference data [14]:

HC ¼ �
Xn

s¼1

Xc

k¼1

lkðxsÞlog2 l0kðxsÞ
� �

þ
Xn

s¼1

Xc

k¼1

lkðxsÞlog2ðlkðxsÞÞ ð6Þ

where lk(xs) is the fuzzy degree of xs corresponding to class k in the
classification result, and l0kðxsÞ is the fuzzy degree of xs correspond-
ing to class k in the reference data. A small value of cross-entropy
indicates accurate classification.
4. Experimental section

In this section, the NTD data set of Heshun, Shanxi, China was
used as an example to illustrate how to use the rough fuzzy set
based model to extract fuzzy spatial decision rules. In Bai et al.
[3], the classical rough set theory was used to model the NTD data,
and the decision attribute contained only two decision values that
indicate whether there was NTD instances. It was only an overall
description of the occurrence of NTD instances. However, the de-
gree of the occurrence of such disease, for example, some villages
suffered more than others, was not represented in the classical
rough set-based model. This will lead to a fuzzy decision whether
a village is vulnerable to NTD while the conditional attributes,
which was used to describe the environmental and social factor
of each village, is still crisp. Therefore, the rough fuzzy set based
model is more appropriate than the classical rough set model.
Fig. 2. Position of the study area and villages in t
4.1. Data description

The NTD data has been collected over the years and has been
studied in many related works [3,23–26,43,44,48]. In Heshun, most
people are farmers whose living environment seldom changes, and
no wide-range migration has ever occurred in this district in the
past. People here share similar inherited and congenital causes of
birth defects. Yet, this explains only a few NTD cases. In the study
area, there were 322 villages and one town. The locations of the
322 villages were determined by the Geographical Information
System for spatial analysis. All the data was collected by our own
field survey. This is a research project approved by the Ministry
of Science and Technology of the Peoplés Republic of China. The
study used only local statistical data. There are no experimental
works or ethical issues.

As there were no boundaries defined for the villages, we drew
them for each village using a Voronoi polygon (Fig. 2). In this
experiment, the whole study area was divided into two parts ran-
domly. One part with 167 villages was used as sample data, while
the other part with 148 villages was used as reference data. The
new model extracted rules from sample data. The rules extracted
were validated by the reference data.

Both spatial and social attributes of all of the villages in the test
area were collected. The social attributes included GDP per capita,
number of children born, number of children with NTD, fertilizer
used in the area (Fertilizer), access to a doctor (Doctor), production
of fruit (Fruit), and production of vegetables (Vegetables). The spa-
tial attributes included elevation, soil type, rivers, roads, lithology
type, land cover type, and faulting attributes. All the maps of the
attributes can be found in Wang et al. [43] and Bai et al. [3].
According to the data requirements of a decision system, some of
the spatial attributes, such as soil type, lithology type and land
cover type, were used directly while other spatial attributes, such
as rivers, roads, and faulting attributes were transformed to ana-
lyze the information they carry. The decision table of the first five
he study region with their Voronoi polygons.



Table 2
The first five rows in the original decision table of NTD data.

GDB Doctor Fruit Fertilizer Vegetable . . . Landcover Elevation NEIGHBOR

2.8944 1 0 10 4 . . . 32 1300 1
3.6411 0 2 18 9 . . . 21 1300 3
5.0321 1 1 7 18 . . . 32 1200 2
3.6496 0 1 20 19 . . . 23 1349.19 4
2.8043 1 2 48 20 . . . 33 1274.59 5

Table 3
The relationship between the NEIGHBOR with LOW and HIGH.

NEIGHBOR LOW HIGH

0 0.723404 0.276596
1 0.736842 0.263158
2 0.693548 0.306452
3 0.615385 0.384615
4 0.291667 0.708333
5 0.307692 0.692308
6 0.333333 0.666667
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villages from the original data is shown in Table 2 to illustrate the
modeling and pre-processing of NTD data. Some of the attributes
are omitted for simplicity. The last column of Table 2 is the deci-
sion attribute.

4.2. Fuzzy decision attributes

The occurrence of NTD instances in Heshun was spatially clus-
tered. This can be verified through calculating Moran’s I index
using ArcGIS. Its value is 0.06 and the Z score is 6.68, which means
that there is less than 1% likelihood that the occurrence of NTD is
spatially randomly distributed [3]. Therefore, the villages adjacent
to the infected ones are more likely to have NTD instances. This
may result from the first law of geography [42]. Therefore, in the
study area, whether a village has a high or low likelihood of having
NTD instances can be determined through the occurrence of NTD
instances in nearby villages. These two concepts are fuzzy sets
and they can be used as the decision attributes: high likelihood
of having NTD instances (denoted HIGH) and low likelihood of hav-
ing NTD instances (denoted LOW). The memberships of the deci-
sion attributes are determined by a voting process. The details
are shown below:

i. All the villages are divided into two categories: Have NTD
and Have no NTD. In this step, the villages that have few
new babies (fewer than five) are removed since they have
no statistical significance. The remaining 271 villages partic-
ipate in the voting process.

ii. A new attribute NEIGHBOR is generated through counting
the number of nearby villages which have NTD instances
for each village.

iii. For each possible value of NEIGHBOR, the proportion of vil-
lages having NTD can be calculated. The proportion is used
to represent the corresponding fuzzy membership. For
Table 4
The first five rows in the FDIS transformed from the original decision table.

GDB Doctor Fruit Fertilizer Vegetable

2.8944 1 0 10 4
3.6411 0 2 18 9
5.0321 1 1 7 18
3.6496 0 1 20 19
2.8043 1 2 48 20
example, there are 26 villages for which NEIGHBOR is 3.
Among these 26 villages there are 16 villages that have
NTD. Therefore the membership corresponding to HIGH is
0.384615385 and the membership corresponding to LOW
is 0.615384615. The relation between the NEIGHBOR and
LOW and HIGH is show in Table 3.

The transformed FDIS of the first five villages is shown in
Table 4. As the relation between NEIGHBOR and the fuzzy
decisions has been calculated, the fuzzification of the decision
attribute is replacing NEIGHBOR in the original decision table with
corresponding fuzzy membership values.

4.3. Discretization of conditional attributes

In this paper, an FDIS is discretized using the MDLP (Minimum
Description Length Principles) [28] algorithm. As the FDIS is
transformed from the original decision table, the discretization is
performed on the original decision table to eliminate the uncer-
tainty introduced by the fuzzification of the decision attribute.
The cuts of the continuous attributes are shown in Table 5.

Unlike other continuous attributes, the GDP per capita attribute
of the study area, which was converted into 1970 U.S. dollars, was
divided into three groups: villages which have not entered the first
stage of industrialization (GDP < $280), villages which are in the
first stage of industrialization (280$ 6 GDP < 560$) and villages
which are in the second stage of industrialization (560$ 6 GDP
< 1120$) [16]. The three stages are denoted as I0, I1 and I2, respec-
tively. The discretization results of the first five villages are shown
in Table 6.

4.4. Finding a minimal reduct

After the preprocessing of an FDIS, a genetic based reduction
algorithm is performed to find a minimal reduct of the FDIS. The
algorithm builds a distinction table according to the discernibility
matrix. Let B be a binary matrix (N2 � N)/2 � (mc + 1), which is de-
noted by DTT. N is the number of objects in U. Each column of the
matrix corresponds to one attribute; each row corresponds to one
pair (k, l) which denotes a pair of two different surface objects in U.
The last column corresponds to the decision (treated as an attri-
bute); dtt(i, (k, n)) is an element of DTT, where i means the column
number.

dttðmc þ 1; ðk; lÞÞ ¼
1 EATðkÞ – EATðlÞ
0 EATðkÞ ¼ EATðlÞ

�
ð7Þ
. . . Landcover Elevation HIGH LOW

. . . 32 1300 0.2632 0.7368

. . . 21 1300 0.3846 0.6154

. . . 32 1200 0.3065 0.6935

. . . 23 1349.19 0.7083 0.2917

. . . 33 1274.59 0.6923 0.3077



Table 5
Summary of spatial attributes, social attributes and fuzzy decisions.

Attribute Name Cuts

Doctor 1
Fruit 1
Fertilizer 6, 8, 24, 32, 48
Vegetable 5, 11, 23, 76
Riverbuffer 3, 5, 7
Roadbuffer 3
Faultagebuff 3, 5
Elevation 1384.10

Table 7
The first five rows in the reducted FDIS using x_E reduct.

Vegetable Landcover HIGH LOW

[�, 5) 32 0.2632 0.7368
[5, 11) 21 0.3846 0.6154
[11, 23) 32 0.3065 0.6935
[11, 23) 23 0.7083 0.2917
[11, 23) 33 0.6923 0.3077
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And

dttði; ðk; lÞÞ ¼

ðaiðkÞ–aiðlÞ and dttðmc þ 1; ðk; lÞÞ ¼ 0Þ
1

or dttðmc þ 1; ðk; lÞÞ ¼ 1
0 aiðkÞ ¼ aiðlÞ and dttðmc þ 1; ðk; lÞÞ ¼ 0

8>>><
>>>:

ð8Þ

Taken the first and forth objects in Table 1 as example.
dtt(mc + 1, (1, 4)) = 1 because EAT(1) – EAT(4). Meanwhile,
dtt(1, (1, 4)) = 1, dtt(2, (1, 4)) = 1 and dtt(3, (1, 4)) = 1 because these
two objects are different at all the three attributes and
dtt(mc + 1, (1, 4)) = 1.

The algorithm proceeds as follows. Firstly, the fuzzy decision ta-
ble is converted to a distinction table according to Eqs. (7) and (8).
Secondly, appropriate parameters, including fitness function,
crossing-over and mutation, are set for the genetic algorithm. Next,
Genetic algorithm [29] is performed to select the best genomes
(probably there are several reducts which all have the highest fit-
ness score). Finally, these genomes are translated to attribute sets.
These attribute sets are the reducts of FDIS.

In finding minimal reducts, the fitness function is similar to that
used by Wróblewski [47], which not only considers the fewest
occurrences of ‘‘1’’ in the chromosome, but also distinguishes as
many pairs as it can. Chromosomes are candidates of minimal re-
ducts. Formally, a chromosome is a bit string of length mc. Each
bit of a chromosome represents an attribute. If an attribute a e AT
is in a candidate of minimal reducts represented using a chromo-
some, then the corresponding bit in the chromosome is set to ‘‘1’’
or else the corresponding bit is set to ‘‘0’’. This fitness function is
shown below:

Fr ¼ mc � Lr
mc

þ Cr
K

ð9Þ

in which Lr is the number of occurrences of ‘‘1’’ in the chromosome,
K is the number of rows in the DTT, and Cr represents the number of
object pairs that can be distinguished by the chromosome. If Cr = K,
then the current chromosome gets a 0.5 bonus.

In the experiment, the crossing-over was set to 0.7 and the
mutation was set to 0.05. The attribute set {Vegetable, Landcover}
was selected as the reduct of the FDIS. From the reduct result, it
can be seen that land cover and production of vegetables related
more to the severity of neural tube birth defect in Heshun, Shanxi,
China than other attributes. The reduced FDIS of the first five
Table 6
The first five rows in the discretized FDIS using MDLP methods.

GDB Doctor Fruit Fertilizer Vegetable

I0 [1, �) [�, 1) [8, 24) [�, 5)
I0 [�, 1) [1, �) [8, 24) [5, 11)
I0 [1, �) [1, �) [6, 8) [11, 23)
I0 [�, 1) [1, �) [8, 24) [11, 23)
I0 [1, �) [1, �) [48, �) [11, 23)
villages is shown in Table 7. Only the attributes in the reduct and
fuzzy decisions are pertained.
4.5. Rule extraction and identification of unseen objects

In this step, 44 rules with support and confidence measures
were generated according to the reduct, using methods by reading
off the lines in the reduced FDIS. The rules extracted using the first
five villages with their support in the FDIS are shown in Table 8.
Taken the rule generated from the first village in Table 7 as an
example. There are seven villages in the FDIS which have the same
conditional attributes with that of the first rule in Table 8. The se-
ven villages have different HIGH and LOW fuzzy membership val-
ues which are calculated using the rough membership functions
lHIGH(1) and lLOW(1) respectively. For example

lLOWð1Þ ¼ ð0:7368þ 0:6154þ 0:6935þ 0:7368þ 0:7234þ 0:7234

þ 0:7368Þ=7

¼ 0:7095:

To investigate the effectiveness of the fuzzy rough set based
model, the reference data were used to verify the accuracy of the
rules derived from the sample data set. All the continuous attri-
butes of the reference data were first discretized using same cuts
for the sample data prior to labeling reference data. For example,
the GDP in the reference data was discretized into three categories.
Next, the standard voting [32] was used to complete the rule
matching process through the support of the rule. Finally, each vil-
lage in the reference data was labeled a membership value for each
fuzzy concept in terms of the rules selected.
5. Discussion

5.1. Accuracy assessment

To assess the accuracy of the identification result, fuzzy entropy
and fuzzy cross-entropy were calculated using Eqs. (5) and (6)
respectively. There were 148 villages in the reference data and
six of them were predicted as UNDEFINED. The sum of all the fuzzy
entropies was 127.58, the average fuzzy entropy was 0.90 and the
standard deviation was 0.0501. The sum of all the fuzzy cross-
entropies was 10.33, the average fuzzy cross-entropy was 0.073
and the standard deviation was 0.1504. Only 27 villages had
cross-entropies larger than 0.1.
. . . Landcover Elevation HIGH LOW

. . . 32 [�, 1384.10) 0.2632 0.7368

. . . 21 [�, 1384.10) 0.3846 0.6154

. . . 32 [�, 1384.10) 0.3065 0.6935

. . . 23 [�, 1384.10) 0.7083 0.2917

. . . 33 [�, 1384.10) 0.6923 0.3077



Table 8
The first five rules generated of the FDIS.

Rules Support

If Vegetation is less than 5 and the land cover type is 32, then fuzzy membership to HIGH and LOW are 0.2632 and 0.7095 respectively 4.9661
If Vegetation is between 5 and 11 and the land cover type is 21, then fuzzy membership to HIGH and LOW are 0.3468 and 0.6514 respectively 1.9542
If Vegetation is between 11 and 23 and the land cover type is 32, then fuzzy membership to HIGH and LOW are 0.2740 and 0.7260 respectively 2.9039
If Vegetation is between 11 and 23 and the land cover type is 23, then fuzzy membership to HIGH and LOW are 0.3853 and 0.6147 respectively 2.4588
If Vegetation is between 11 and 23 and the land cover type is 33, then fuzzy membership to HIGH and LOW are 0.3774 and 0.6226 respectively 3.7355
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The fuzzy entropies and fuzzy cross-entropies of the villages in
the reference data are illustrated in Figs. 3 and 4. There were 19 vil-
lages, which correspond to the darkest polygons in Fig. 3, with fuz-
zy entropy greater than 0.973764. Meanwhile it can be seen that
the fuzzy entropy was always greater than 0.831537. Besides the
fuzzy entropies, the cross-entropy of each village is shown in
Fig. 4. There were only 21 villages with cross-entropy greater than
0.1, and only 14 villages with cross-entropy greater than 0.3. This
means that there were only a few villages whose identification re-
sults were significantly different from the reference data. At the
same time, there were 111 villages whose cross-entropies were
less than 0.05. These 111 villages account for 75% of the reference
data. From the fuzzy cross-entropies, it can be seen that the iden-
tification result coincided with the reference data.

To further illustrate the difference between the identified fuzzy
decisions and the real fuzzy decisions, the difference of fuzzy set
HIGH on the reference data between the identification result and
the reference data is shown in Fig. 5. There were 14 villages with
a difference larger than 0.3 and 101 villages with difference less
than 0.1. This illustrates that the difference between the reference
data and the identification result was slight.

To inspect the reason why the identification results of the 14
villages differed greatly from the real fuzzy decisions of the refer-
ence data, some of the villages are analyzed in detail. Gaoqiu was
one of the villages wrongly identified; it lies in the right-hand part
Fig. 3. Fuzzy entropy of the
of the map. It has a landcover value 122, and is the only village that
has such landcover type in the east part of the county. The training
data has several villages whose landcover attribute is 122 in the
middle of the county. The environmental conditions may differ be-
tween these two areas, so the rules obtained in the middle area
may not be generalizable to the east part. Therefore, Gaoqiu was
wrongly labeled. For the same reason, Yichen was also wrongly
identified. The accuracy of the identification may be further im-
proved by dedicated sample design or consideration of spatial het-
erogeneity in the model. From the accuracy assessment, it can be
seen that the identification result coincided with the reference
data, although the uncertainty of the fuzzy result was high. Mean-
while the comparison between the identification result and the ref-
erence data also supports the judgment.

To illustrate the effect of using fuzzy decisions, we also use
rough set and rough fuzzy set to handle the crisp decision. The com-
parison with classical rough set will be introduced in Section 5.2.
Here we first use if a village have NTD instances as the severity of
the disease, i.e., decision attribute. If a village has NTD instances,
then its membership to the decision of high likelihood of having
NTD instances is set to 1 and 0 otherwise. Using the rough fuzzy
set based model, 37 rules were extracted from the FDIS with the
same sample data. Then these rules were applied to the reference
data in the same way. The accuracy assessment shows that the
average cross entropy of the classification was 5.96 and only a
identification results.



Fig. 4. Fuzzy cross-entropy of the identification results.

Fig. 5. Difference between the identification results and the reference data.
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few villages’ cross entropy was less than 1. Meanwhile, the average
difference between the classification result and the real value was
0.4. These indices are much larger than the result using fuzzy deci-
sions constructed in Section 4.2. This supports that the use of fuzzy
decisions can help improve the identification accuracy.
5.2. Comparison with classical rough set theory

The physical meaning of rough fuzzy sets of spatial data is dif-
ferent from that of the classical rough sets. In the classical rough
sets, the upper approximation and the lower approximation of



H. Bai et al. / Knowledge-Based Systems 57 (2014) 28–40 37
concepts are two crisp sets of spatial objects. For example, a spatial
object can either belong to or not belong to the lower approxima-
tion of concepts. However, in rough fuzzy set based model, a spa-
tial object can belong to both the lower approximation and upper
approximation of concepts to some extent, i.e., the lower approxi-
mation and upper approximation of concepts are fuzzy.

Fig. 6(a and b) illustrates the lower approximation and upper
approximation of the fuzzy concept LOW respectively and
Fig. 6(c and d) represents the lower approximation and upper
approximation of fuzzy concept HIGH respectively for the sample
data. From Fig. 6, it can be seen that rough fuzzy sets uses two fuz-
zy sets to describe a fuzzy concept’s upper approximation and low-
er approximation. The membership values of elements in the upper
approximation are greater than those of elements in the lower
approximation.

Furthermore, although the FDIS can be degraded into a classical
decision table, the classical decision table may lose some of the
information of the fuzzy sets. For example, the fuzzy sets cannot
be degraded too coarsely to hamper appropriate division of the ob-
jects, which would finally affect the accuracy of classification re-
sult. Meanwhile, if the fuzzy sets are degraded into too many sub
crisp sets, the rules obtained from the decision table may be
over-fitted. In considering these, it can be seen that the rough fuzzy
set based model is more suitable for the FDIS.
Fig. 6. HIGH and LOW’s upper and lower approximations of sample data. (a) The lower a
The lower approximation of fuzzy set HIGH. (d) The upper approximation of fuzzy set H
The reduct generated using rough fuzzy sets may be different
from the reduct from classical rough set theory [3]. In classical
rough set theory, the attributes in the reducts included watershed,
gradient, neighbor and landcover type. However in rough fuzzy
sets, the attributes in the reduct were vegetable and landcover
type. From the physical meaning of the classical rough set theory,
the four attributes in the reduct are most relevant to the decision
whether or not a village has NTD instances in all attributes. The re-
duct shows that some environmental factors and neighboring vil-
lages’ influences are the key factors. Nevertheless, the physical
meaning of the reduct of rough fuzzy sets is selecting attributes
which are closely related to the strength of the membership of a
state. In our experiment, the vegetable and landcover types were
most relevant to the severity of the NTD occurrences in a village
in all attributes. This means that the social factor vegetable can af-
fect the NTD occurrence. The vegetables in the local farm would
absorb chemical elements from the soil. Therefore, more poisonous
elements will be absorbed and condensed in the people who eat
more of these vegetables. And in these villages, when the output
of vegetables is sufficient, people mainly eat vegetables produced
by themselves. From correlation analysis between vegetable and
HIGH, the Pearson value is 0.133 and it is significant at 0.01 level.
This indicates that the attribute vegetable positively correlates to
the fuzzy decision HIGH.
pproximation of fuzzy set LOW. (b) The upper approximation of fuzzy set LOW. (c)
IGH.



Table 9
Fuzzy entropies, fuzzy cross entropies and the number of villages which difference of
real and identified membership value of HIGH is larger than 0.1 (denoted as
Difference > 0.1).

Method Total fuzzy
entropy

Total fuzzy cross
entropy

Difference > 0.1

rpart 128.39 24.27 62
C45 128.12 19.26 55
Rough fuzzy

sets
127.58 10.33 47

WM 141.35 10.91 74
GFS 141.35 10.90 74
HyFIS 138.60 20.03 76
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Rough fuzzy set theory can produce fuzzy decision rules be-
cause rough fuzzy sets approximate the fuzzy concepts. Each un-
seen object can be assigned a fuzzy membership value for each
fuzzy decision. For example, a traditional spatial decision rule
may look like ‘‘if vegetable < 5 and landcover = 32, then the village
have no NTD instances’’, which only gives a crisp decision value.
However a fuzzy decision rule is ‘‘if vegetable < 5 and landcov-
er = 32, it has a membership value 0.7094 corresponding to fuzzy
set LOW, and a membership value 0.2906 corresponding to fuzzy
set HIGH’’ which gives a soft classification. This means that the fuz-
zy decision rules contain more information than the classical rules.
Therefore, the decision maker can obtain more information from
rough fuzzy set based decision making. With respect to the NTD
data used, besides whether or not a village has NTD instances,
the severity or risk of having it is also offered.

5.3. Comparison with classical decision rule extraction methods

To evaluate the effectiveness of the rough fuzzy set based fuzzy
decision rule extraction model in NTD data of Heshun, Shanxi, Chi-
na, two classical rule extraction models which use neither rough
sets theory nor fuzzy sets theory are applied to the same data sets
for comparison. The first method is the recursive partitioning and
regression trees [5], which is denoted as ‘‘rpart’’ for convenient.
The second method is C4.5 decision trees and rule-based model
[36], which is denoted as ‘‘C45’’ for short. Two ready for use pack-
ages, rpart and C50, in R are used to perform the rule extraction
and classification tasks.

These two methods use NEIGHBOR as the decision attribute to
represent the degree of having NTD instances. First the sample data
was used to generate decision rules. Then these rules were applied
to the reference data. The decision values of reference data were
the number of neighboring villages which have NTD instances.
Then the decision values were fuzzified using the method used in
Section 4.2. The fuzzified values were used as the HIGH and LOW
membership value of each village in the reference data.

The fuzzy entropies and fuzzy cross entropies of all villages are
calculated for the results from the two classical methods. The total
fuzzy entropies and total fuzzy cross entropies of the two results
are shown in Table 9. Both total fuzzy entropies of the two classical
methods were larger than that of the rough fuzzy sets based model.
This means that the degrees of fuzziness of the results from these
two classical methods are larger than that of the result from the
rough fuzzy sets model. The total fuzzy cross entropies of the
two classical methods were also larger than that of the model pro-
posed, i.e., the decisions made by the two classical methods were
less coincide with the real fuzzy decision of reference data com-
pared with the decisions made by the rough fuzzy set based model.

The differences of fuzzy decision HIGH between the identifica-
tion results from the two classical methods and the real values
were also calculated. There were 48 villages which differences
were larger than 0.3 and 62 villages which differences were larger
than 0.1 for decisions generated using rpart. There were 36 villages
which differences were larger than 0.3 and 55 villages which dif-
ferences were larger than 0.1 for the decisions made by C45. The
number of villages, which differences were larger than 0.3, was lar-
ger than double the corresponding number of the result from the
rough fuzzy sets based model. From these comparisons, it can be
seen that the rough fuzzy set based decision rule extraction model
is more suitable in dealing with FDIS than classical decision rule
extraction methods which ignore roughness and fuzziness in data.

The main difference between traditional methods and rough
fuzzy sets based methods is the different strategies in handling
inconsistency of decision tables. Traditional methods tend to select
the decision which is most common in the sample data. The incon-
sideration of fuzziness of target concepts will ignore some useful
information of the ill-defined borders among fuzzy concepts which
then leads to the decreasing of prediction accuracy. The rough fuz-
zy sets based model considers the fuzziness of target concepts.
Accordingly, the prediction accuracy of rough fuzzy sets based
model was higher than that of the traditional models in the
experiment.

5.4. Comparison with fuzzy set based decision rule extraction methods

Three commonly used fuzzy set based methods were compared
with rough fuzzy set based model to provide more comprehensive
comparison with existing methods. There were three fuzzy rule
extraction methods used in the comparison. The first method
was Wang and Mendel model (WM) [46]. WM is a five step proce-
dure based fuzzy rule extraction model. It is a simple one-pass
build-up procedure and no time-consuming iterative training is re-
quired. The second method was genetic fuzzy systems (GFS) [27].
The genetic algorithm was used to determine the structures of
the fuzzy IF-THEN rules and the membership function parameters.
The third method was the hybrid neural fuzzy inference system
(HyFIS) [19] which introduced the learning power of neural net-
works to fuzzy logic systems and provides linguistic meaning to
the connectionist architectures.

The three methods need different parameters. The numbers of
labels for WM, GFS and HyFIS were all set to seven. The type of
the membership function of WM was set to trapezoid. The type
of the defuzzification method that WM used was weighted average
method. The type of t-norm and s-norm of WM were set to mini-
mum and maximum respectively. GFS is a genetic algorithm. Its
population size was set to 10. The percentage of crossover was
0.9. The maximal number of iterations was 10. The percentage of
mutation was 0.01. The maximum number of iterations and the
size of gradient descent of HyFIS were set to 100 and 0.1 respec-
tively. These three methods proceed in the same way. First the
conditional attribute and decision attribute are fuzzified using
trapezoid based methods. Then the fuzzy decision rules are ex-
tracted from sample data. Next, the rules extracted are applied to
the reference data. Finally the accuracy assessment is performed.
Beside the accuracy assessment step, all other three steps are per-
formed automatically using package ‘‘frbs’’ in R. The meaning of
these parameters can be found in the manual of ‘‘frbs’’ package.
To facilitate the comparison, Table 9 shows the total fuzzy entro-
pies and total fuzzy cross entropies of the three methods.

From Table 9, it can be seen that the total fuzzy entropies of re-
sults from all three fuzzy set based rule extraction model were lar-
ger than that of the result from rough fuzzy set based model. This
indicates that the result from rough fuzzy set based model was less
uncertain than those from the three fuzzy set based methods. The
total fuzzy cross entropies of results from WM, GFS and HyFIS were
also larger than that of result from rough fuzzy set based model.
This indicates that the difference between the real decisions and
the decisions made using rule extracted from these three methods
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are larger, compared with decisions made using rough fuzzy set
based model. Meanwhile, the differences of fuzzy decision HIGH
between the fuzzy decisions identified and real fuzzy decisions
are also calculated for the three fuzzy set based rules extraction
methods. The numbers of villages, which differences are larger
than 0.1, were 74, 74 and 79 for results from WM, GFS and HyFIS
respectively, while the corresponding number of rough fuzzy set
based model was 47. From the comparison, it can be seen that
the rough fuzzy set based model are more suitable for modeling
spatial data with both roughness and fuzziness than the decision
rule extraction methods which only take fuzziness into
consideration.

When the FDIS is given, the rough fuzzy sets based model are
completely data driven and no subjective factors are involved in
the modeling process. When there are no expert’s knowledge is
available, the rough fuzzy sets based model is a better choice than
the fuzzy set based model which needs expert knowledge to com-
plete the fuzzification of conditional attributes. Meanwhile, the
rough fuzzy sets uses two fuzzy sets upper and lower approxima-
tion to approximate fuzzy concepts, i.e., the fuzzy decision mem-
bership of an equivalent class have a maximum value and a
minimum value. These two sets can approximate a fuzzy concept
when there is also roughness in the FDIS. However, the fuzzy sets
based models cannot model roughness in the FDIS and have only
one membership value for a decision and some methods only
pertains the rules which have the maximum degree [46]. This will
discard the information carried by the rules with less degrees and
lead to the lower prediction accuracy of fuzzy set based model
compared with rough fuzzy set based model when there are both
roughness and fuzziness in the FDIS.
6. Conclusions

In this paper, a rule extraction model based on rough fuzzy sets
is established for extracting spatial fuzzy decision rules in an FDIS.
An example of NTD in Heshun, Shanxi, China is presented to illus-
trate the details of the modeling process. The fuzzy spatial decision
rules found by the model can be used to identify degree of likeli-
hood of having NTD for unseen villages through a soft classifica-
tion. From the accuracy assessment of the identification result
through fuzzy entropy and fuzzy cross-entropy, it can be seen that
the spatial rules synthesized by the fuzzy rough set model have a
reasonably good generalization to the rules obtained by the tradi-
tional rough set model. According to the comparison result be-
tween the rough fuzzy set based model and other five different
methods which include two classical methods and three fuzzy
set based methods, the identification results from rough fuzzy sets
based model differed less from the reference data than results from
other methods. This means that the model as a framework of fuzzy
spatial rule extraction is an effective tool for handling spatial ob-
jects with crisp conditional attributes and fuzzy decisions.

As an extension of rough set theory, rough fuzzy set theory is
also data-driven, and one of its advantages is that it does not re-
quire prior assumptions about the data in data mining. Through
the computing of reducts, which is a critical step in the decision-
making process, it can be used to find a minimal conditional attri-
bute subset on which the decision attributes depend. By using the
reduct we can extract more compact decision rules, which can be
understood more easily than their forms obtained directly from
the original decision information system. Furthermore, the gener-
ated decision rule can be used to predict or classify unseen objects.
Beyond these advantages, the rough fuzzy set model can make a
proper soft classification of unseen objects when there are two
kinds of uncertainty in the data, roughness and fuzziness. This
paper only shows the situation when there is fuzziness in the
decision attributes. When a decision table has both fuzzy condi-
tions and decisions, a fuzzy rough set approach is an alternative.
In the future, we will apply the model to other applications and
make improvement of the model used. For example, at present,
the rough fuzzy sets do not give special attention to spatial associ-
ation information, a very important issue in spatial analysis. Our
future works will give special attention on how to take spatial
correlation information into account to improve classification
accuracy.
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