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a b s t r a c t

Decision-theoretic rough set theory is quickly becoming a research direction in rough set theory, which

is a general and typical probabilistic rough set model with respect to its threshold semantics and de-

cision features. However, unlike the Pawlak rough set, the positive region, the boundary region and the

negative region of a decision-theoretic rough set are not monotonic as the number of attributes in-

creases, which may lead to overlapping and inefficiency of attribute reduction with it. This may be

caused by the introduction of a probabilistic threshold. To address this issue, based on the local rough set

and the dynamic granulation principle proposed by Qian et al., this study will develop a new decision-

theoretic rough set model satisfying the monotonicity of positive regions, in which the two parameters

α and β need to dynamically update for each granulation. In addition to the semantic interpretation of

its thresholds itself, the new model not only ensures the monotonicity of the positive region of a tar-

get concept (or decision), but also minimizes the local risk under each granulation. These advantages

constitute important improvements of the decision-theoretic rough set model for its better and wider

applications.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Rough set theory proposed by Pawlak in 1982 [23] has become

an important tool for dealing with uncertainty management and un-

certainty reasoning. Because of no prior knowledge, the rough set

theory has a wide variety of applications including pattern recog-

nition, data mining, machine learning, knowledge discovery, and

so on [3,6,7,10,12,13,11,16,29,34,52]. As we know, the lower approx-

imation of a set in rough set theory is defined by a strict inclu-

sion relation, which may lead to its sensitivity to noisy data for

attribute reduction and classification tasks. For this observation,

through incorporating probabilistic approaches to rough set theory,

several probabilistic generalizations of rough sets have been pro-

posed [37,42,46,60], in which threshold values are aforehand given.

In recent years, based on different threshold arrangements, different

versions of probabilistic rough set approaches were proposed one af-

ter another, such as the 0.5-probabilistic rough set [24], the decision-

theoretic rough set model [43,44,47], the variable precision rough set

(VPRS) model [59], membership functions [26], parameterized rough

set models [4], Bayesian rough set model [35], game-theoretic rough

set [5], and so on.
∗ Corresponding author. Tel./fax: +86 0351 7018176.
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Within the family of probabilistic rough sets, the semantic inter-

retation of the required threshold parameters is the most funda-

ental difficulty with the probabilistic approximations. In the liter-

ture [43,44], we saw the first report to solve this difficulty for proba-

ilistic rough set approximations in a decision-theoretic framework.

n the framework of the decision theory, Bayesian decision theory was

rstly introduced to minimize the decision costs, which provides a

cientific method for determining and interpreting threshold values

hrough taking costs and risks into account. From this viewpoint, we

an say that the decision-theoretic rough set has a threshold seman-

ic interpretation. It deserves to point out that the decision-theoretic

ough set model can be regarded as a generalization of probabilistic

ough set models [46] because it can derive various existing rough

et models through setting different thresholds. Based on this frame-

ork, Yao [47] then presented a new decision-making method, called

three-way decision method, in which positive region, boundary re-

ion and negative region are respectively seen as three actions. In

he literature [48], the author further emphasized the superiority

f three-way decisions in probabilistic rough set models. More re-

ently, Zhang et al. [53] introduced a new recommender system to

onsult the user for the choice by combining three-way decisions

nd random forests. Yu et al. [50] proposed a tree-based incremen-

al overlapping clustering method using three-way decision theory.

o date, the theoretical framework have been largely enriched
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ince the decision-theoretic rough sets were proposed [8,9,32,38,57].

he decision-theoretic rough set model, in recent years, has also

een used in many applications, such as decision-making [38],

lustering analysis [49,50], spam filtering [58], investment deci-

ions [21], multi-view decision models [57] and multiple-category

lassification [56].

It is well known that, in the Pawlak rough set model [25],

he lower approximation of a given target concept with respect to

n equivalence relation R is much smaller than the corresponding

ower approximation with respect to an equivalence relation R′ ≺ R.

his property is called monotonicity. Naturally, given a target deci-

ion, its positive region, boundary region and negative region are

ll monotonic in the framework of the Pawlak rough set as well.

owever, in probabilistic approximations, because of the introduc-

ion of probabilistic thresholds, the conditional probability of an

bject x classified into a target concept may increase or decrease

s the number of attributes becomes bigger. In other words, the

onotonicity of lower approximations of a target concept may not

old in probabilistic approximation models. Accordingly, the pos-

tive region, boundary region and negative region of a given tar-

et decision have the same observation in terms of probabilistic

pproximations.

In what follows, we analyze the importance of the monotonicity

f a lower approximation in the decision-theoretic rough set (DTRS).

s we know, attribute reduction is one key issue in rough set the-

ry, based on which one can extract decision rules for prediction

rom an information system with class labels. Attribute reduction of

target decision aims at finding a subset of attributes such that it

s at least as good as the original attribute set from the viewpoint

f decision ability. If the lower approximation of a target concept is

ot monotonic, a found attribute reduct may be overlapping because

f the strict definition of attribute reduction. Except for this short-

oming, the process of attribute reduction is also computationally

ime-consuming. To overcome these two issues, it is very desirable

o develop a new decision-theoretic rough set satisfying the mono-

onicity of a target concept, which is the main motivation of this

tudy.

In fact, several studies about the monotonicity of attribute reduc-

ion using DTRS have been reported [8,21,22,45,55]. Yao and Zhao

45] presented various criteria including the decision-monotonicity

riterion, the generality criterion and the cost criterion for at-

ribute reduction of probabilistic rough set models. From the view-

oint of information theory, Ma et al. [22] proposed three new

onotonic measure functions by considering variants of condi-

ional information entropy for obtaining a monotonic attribute re-

uction process. Li et al. [15] developed a so-called positive re-

ion expanding reduct. Blaszczyński [1] considered three types of

onotonicity properties and proposed several new measures with

onotonicity such that the corresponding lower approximation

atisfies monotonicity. Although these studies have provided sev-

ral alternative solutions, how to solve the non-monotonicity of

ower approximations keeping the conditional probability form un-

hanged is still an open problem in the decision-theoretic rough

et.

To address the above problem, from the viewpoint of gran-

lar computing [19,20,41,51], this paper develops a new proba-

ilistic rough set framework under dynamic granulation, called

he decision-theoretic rough set under dynamic granulation (DG-

TRS). There are two main improvements in the proposed model.

or the first improvement, given a target concept, we only judge

hether each of objects within it is included in its lower ap-

roximation or not, rather than the entire universe. For the sec-

nd improvement, we need to dynamically update the threshold

arameters α and β when granular structures for approximat-

ng a target concept/decision are changed. Therefore, besides the
emantic interpretation of its thresholds, the proposed model not

nly ensures the monotonicity of the positive region of a target con-

ept (or decision), but also minimizes the local risk under each gran-

lation. Hence, the DG-DTRS with these advantages can be seen as an

mportant improvement of the existing decision-theoretic rough set

odel.

The study is organized as follows. Some basic concepts in Pawlak

ough sets and decision-theoretic rough sets are briefly reviewed in

ection 2. In Section 3, a new probabilistic set-approximation ap-

roach is constructed in the context of dynamic granulation world,

nd some of its nice properties are explored. Furthermore, based on

ayesian decision procedure, we also give a method for updating

he required threshold parameters in the proposed model. Finally,

ection 4 concludes this paper by bringing some remarks and dis-

ussions.

. Preliminary knowledge on decision-theoretic rough sets

In this section, we briefly review some basic concepts of decision-

heoretic rough set model.

.1. Pawlak’s rough set

A decision table is a tuple S = (U, AT = C ∪ D,Va|a ∈ At, Ia|a ∈ At),

here U is a finite non-empty set of objects, called a universe, C is

non-empty finite set of conditional attributes, D is a finite set of

ecision attributes, Va (a ∈ AT ) is the domain of attribute a, and Ia :

→ Va is an information function that maps an object in U to exactly

ne value in Va. A decision table is simply denoted by S = (U, At =
∪ D) [25].

An attribute subset A ⊆ At determines an equivalence relation EA

or simply E). That is,

A = {(x, y) ∈ U × U|∀a ∈ A, Ia(x) = Ia(y)}.
wo objects in U are equivalent to each other if and only if they have

he same values on all attributes in A. An equivalence relation is re-

exive, symmetric and transitive.

The pair apr = 〈U, EA〉 is called an approximation space defined

y the attribute set A [25]. The equivalence relation EA induces a par-

ition of U, denoted by U/EA or U/A. An object x ∈ U is described by

ts equivalence class of U/EA : [x]EA
= [x]A = {y ∈ U|(x, y) ∈ EA}. Each

quivalence class [x]A may be viewed as an information granule con-

isting of indistinguishable elements. The granular structure induced

y an equivalence relation is a partition of the entire universe.

Given an approximation space 〈U, EA〉. For an arbitrary subset

⊆ U , one can construct its lower and upper approximations with

nformation granules of the universe induced by the partition U/A via

he following definition:

apr
A
(X) = ∪{[x]A ⊆ X|x ∈ U},

aprA(X) = ∪{[x]A ∩ X = ∅|x ∈ U}.
he pair 〈apr

A
(X), aprA(X)〉 is called a rough set of X with respect to

he equivalence relation EA. Equivalently, they can also be rewritten

s

apr
A
(X) = {x|P(X|[x]A) = 1|x ∈ U},

aprA(X) = {x|P(X|[x]A) > 0|x ∈ U},
here P(X|[x]A) denotes the conditional probability that the object x

elongs to a target concept X.

Through using the rough set approximations of X defined by A,

he universe U is divided into three disjoint regions: the positive
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region POSA(X), the boundary region BNDA(X) and the negative re-

gion NEGA(X) of X:

POSA(X) = apr
A
(X),

BNDA(X) = aprA(X) − apr
A
(X),

NEGA(X) = U − (POSA(X) ∪ BNDA(X)) = U − aprA(X).

These three regions are often used to predict the class label of an un-

seen object in rough set theory.

2.2. Decision-theoretic rough sets

A decision-theoretic rough set model is a typical probabilistic

rough set model, in which Bayesian decision procedure is introduced

to minimize the decision costs. The rough set model provides a sys-

tematic method to set the required threshold parameters from the

viewpoint of loss functions. In this subsection, we review some basic

concepts in the decision-theoretic rough set model [43].

In the Bayesian decision procedure, a finite set of states can be

written as � = {ω1, . . . , ωs}, and a finite set of m possible actions can

be denoted by A = {a1, . . . , am}. Let P(ω j|x) be the conditional proba-

bility of an object x being in state ω j given that the object is described

by x. Let λ(ai|ω j) denote the loss, or cost, for taking action ai when

the state is ω j . Suppose taking action ai when the state is ω j , then the

expected loss associated with taking action ai can be given by:

R(ai|x) =
s∑

j=1

λ(ai|ω j)P(ω j|x)

In the decision-theoretic rough set theory, given an approximation

space apr = 〈U, EA〉 and an arbitrary subset X ⊆ U , the approximation

operators partition the universe into three disjoint classes: the posi-

tive region POSA(X), the boundary region BNDA(X) and the negative

region NEGA(X) [47]. The classification of objects according to ap-

proximation operators can be easily fitted into the Bayesian decision-

theoretic framework. The set of states is given by � = {X, Xc} indi-

cating that an object is in a decision class X and not in X, respec-

tively. Based on the three regions, the set of actions is given by

A = {a1, a2, a3}, where a1, a2 and a3 represent the three actions in

classifying an object x, deciding POSA(X), deciding NEGA(X), and de-

ciding BNDA(X), respectively. Through using the conditional proba-

bility P(X|[x]A), the Bayesian decision procedure can decide how to

assign x into these three disjoint regions [50,52]. Let λ(ai|X) denote

the loss incurred for taking action ai when an object belongs to X, and

let λ(ai|Xc) denote the loss incurred for taking the same action when

the object does not belong to X.

The expected loss R(ai|[x]A) associated with taking the individual

actions can be expressed as:

R1 = R(a1|[x]A) = λ11P(X|[x]A) + λ12P(Xc|[x]A),

R2 = R(a2|[x]A) = λ21P(X|[x]A) + λ22P(Xc|[x]A),

R3 = R(a3|[x]A) = λ31P(X|[x]A) + λ32P(Xc|[x]A),

where λi1 = λ(ai|X), λi2 = λ(ai|Xc), i = 1, 2, 3. The Bayesian decision

procedure leads to the following minimum-risk decision rules:

(P) if R1 ≤ R2 and R1 ≤ R3, decide x ∈ POSA(X);

(N) if R2 ≤ R1 and R2 ≤ R3, decide x ∈ NEGA(X);

(B) if R3 ≤ R1 and R3 ≤ R2, decide x ∈ BNDA(X).

Consider a special kind of loss functions with λ11 ≤ λ31 < λ21 and

λ22 ≤ λ32 < λ12, that is, the cost of classifying an object x belonging

to X into the positive region POS(X) is less than or equal to the cost
f classifying x into the boundary region BND(X), and both of these

osts are strictly less than the cost of classifying x into the negative

egion NEG(X). The reverse order of cost is used for classifying an ob-

ect not in X. This assumption implies that α ∈ (0, 1], γ ∈ (0, 1), and

∈ [0, 1). In this case, the minimum-risk decision rules can be re-

xpressed as:

(P) if P(X|[x]A) ≥ α and P(X|[x]A) ≥ γ , decide x ∈ POSA(X),

(N) if P(X|[x]A) ≤ β and P(X|[x]A) ≤ γ , decide x ∈ NEGA(X),

(B) if β ≤ P(X|[x]A) ≤ α, decide x ∈ BNDA(X),

where

α = λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
,

γ = λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
,

β = λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
.

If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12,

t further satisfies the condition: (λ12 − λ32)(λ21 − λ31) ≥ (λ31 −
11)(λ32 − λ22), then 1 ≥ α > γ > β ≥ 0. In this case, after tie-

reaking, the following simplified decision rules are obtained:

(P1) if P(X|[x]A) ≥ α , decide x ∈ POSA(X);

(N1) if P(X|[x]A) ≤ β , decide x ∈ NEGA(X);

(B1) if β < P(X|[x]A) < α, decide x ∈ BNDA(X).

After computing the two parameters α and β from the loss func-

ions, using the above decision rules, we get the probabilistic approx-

mations as follows:

apr(α,β)
A

(X) = {x ∈ U|P(X|[x]A) ≥ α},
apr

(α,β)
A

(X) = {x ∈ U|P(X|[x]A) > β}.
he combination of these two approximations is called a decision-

heoretic rough set (DTRS). In DTRS, three kinds of probabilistic re-

ions (positive, boundary and negative regions) of concept X are de-

ned as follows:

POS
(α,β)
A

(X) = apr(α,β)
A

(X),

BND
(α,β)
A

(X) = apr
(α,β)
A

(X) − apr(α,β)
A

(X),

NEG
(α,β)
A

(X) = U − POS
(α,β)
A

(X) ∪ BND
(α,β)
A

(X).

In the framework of decision-theoretic rough sets, many existing

odels such as the Pawlak rough set model, variable precision rough

et model and Bayesian rough set model, can be explicitly derived by

onsidering various classes of loss functions. Therefore, we have re-

arded it as a general and fundamental probabilistic rough set model.

. Decision-theoretic rough set models under dynamic

ranulation

Multigranulation rough set theory was proposed by Qian [27]

n 2006, in which lower and upper approximations are approxi-

ated by granular structures induced by multiple binary relations

nstead of single binary relation. In a sense, the multigranulation

ough set is a kind of information fusion strategies through fus-

ng multiple granular structures. Qian et al. [30,31] have proposed

ptimistic and pessimistic multigranulation rough sets which are

ased on optimistic and pessimistic strategies, respectively. In recent

ears, many extended multigranulation rough set models have also

een proposed and studied [14,17,29,36,39,40,54]. Another multi-

ranulation rough set is characterized by dynamic granular structures
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28]. For example, the positive approximation can be seen as one

epresentative of them, in which a rough set is constructed by a dy-

amic granulation order with hierarchical structure [28]. The positive

pproximation is constructed by a sequence of granulation worlds

tretching from coarse to fine granulation, which can be used to ac-

elerate a heuristic process of attribute reduction.

In the view of granular computing [51], in existing decision-

heoretic rough set models, a target concept described by a set

s always characterized with upper and lower approximations un-

er a single granulation. Qian et al. [32] proposed multigranulation

ecision-theoretic rough sets (MG-DTRS) for extending its wider ap-

lications such as multi-source data analysis, knowledge discovery

rom data with high dimensions and distributive information sys-

ems. However, unlike the Pawlak rough set, the positive region,

he boundary region and the negative region of a decision-theoretic

ough set is not monotonic as the number of attributes increases,

hich may lead to overlapping and inefficiency of attribute reduction

ith it.

To address this issue, without loss of generality, in this section we

rst investigate the monotonicity of positive regions through com-

aring the Pawlak rough set model with the decision-theoretic rough

et model, develop a new decision-theoretic rough set under dy-

amic granulation from the viewpoint of granular computing (called

ecision-theoretic rough sets under dynamic granulation), and inves-

igate some of its important properties.

.1. Non-monotonicity of probabilistic positive regions in DTRS

Given a decision table S = (U, At = C ∪ D) with P, Q ⊆ C. A partial

elation � on 2C can be defined as follows [2,18,28]:

� Q ⇔ ∀x ∈ U, [x]P ⊆ [x]Q .

hat is, if P � Q , then Q is said to be coarser than P (or P is finer than

). If P � Q and U/P = U/Q, Q is said to be strictly coarser than P or

is strictly finer than Q, denoted by P ≺ Q .

Given a decision table S = (U, At = C ∪ D), for an arbitrary sub-

et X ⊆ U , from the definition of lower/upper approximation in the

awlak rough set, we can immediately obtain the monotonicity of the

ositive region of X as follows:

� Q ⇒ POSP(X) ⊇ POSQ(X).

hat is, a thinner partition induces a larger positive region.

In the following, we can extend the monotonic property of a single

et to a decision partition U/D = {D1, D2, . . . , Dm} of the universe as

ollows:

� Q ⇒ ∀Di ∈ U/D, POSP(Di) ⊇ POSQ(Di),

nd thus

� Q ⇒ POSP(D) ⊇ POSQ(D).

rom the above properties, we can see that the positive regions of a

ecision partition induced by the decision attributes also satisfy the

onotonicity in the context of the Pawlak rough set model. Natu-

ally, given a target decision, its negative region and boundary region

ave the same monotonicity in the framework of the Pawlak rough

et model [25].

However, in the decision-theoretic rough set, we cannot ob-

ain the monotonicity of probabilistic positive regions of a target

or decision). In the decision-theoretic rough set, if one object is

ncluded in the lower approximation of a target concept X, then

ll objects coming from its equivalence class are putted into this

ower approximation. This means that the lower approximation of

probabilistic rough set may overflow the range of a target con-

ept. In addition, in the process of a heuristic attribute reduc-

ion, the probabilistic positive region of a target decision may not
onotonically increase as the number of attributes becomes larger,

hich is caused by the fact that the conditional probability function

s not a monotonic function with respect to the equivalence class [x].

his is illustrated by the following example.

xample 1. Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} be a universe,

/P,U/Q two partitions on U, where

U/P = {{x1, x2, x3}, {x4}, {x5, x6, x7, x8}, {x9, x10}},
U/Q = {{x1, x2}, {x3}, {x4}, {x5, x6}, {x7, x8}, {x9, x10}}.

ere, we suppose two parameters (α,β) = (0.6, 0.2). Then, from the

efinition of the partial relation, it is obvious that Q � P holds.

Take a target concept X = {x1, x3, x5, x6, x7, x9}. Based on the def-

nition of probabilistic lower approximation in DTRS, through com-

uting the condition probability of x ∈ U , we have that

apr(0.6,0.2)
P

(X) = {x1, x2, x3, x5, x6, x7, x8},
apr(0.6,0.2)

Q
(X) = {x3, x5, x6}.

That is, for Q � P, we obtain POS
(α,β)
Q

(X) ⊆ POS
(α,β)
P

(X). This

eans that probabilistic positive region of a target concept with the

umber of attributes decreasing may enlarge, which indicates that

he monotonicity of positive regions does not hold in the DTRS model.

In addition, the probabilistic lower approximation defined in DTRS

ay overflow the range of a target concept, which would seriously

ffect the implementation of the monotonicity.

In order to facilitate this study, we will adopt the form of local

ough set approximations proposed by Qian et al. [33] to modify the

riginal decision-theoretic rough set. Based on this idea, we first give

ts definition as follows.

efinition 1. Let K = 〈U, EA〉 be an approximation space and an arbi-

rary subset X ⊆ U . Then the L − (α,β) lower and upper approxima-

ions are defined by

apr(α,β)
A

(X) = {x|P(X|[x]A) ≥ α, x ∈ X},
apr

(α,β)
A

(X) = ∪{[x]A|P(X|[x]A) > β, x ∈ X}.
he pair 〈aprA

(α,β)(X), aprA
(α,β)(X)〉 is called a local decision-

heoretic rough set (L-DTRS).

It can be seen from the above definition, compared with the clas-

ical probabilistic set-approximations, that we change the range of

he objects in the lower approximation of a concept. That is to say, in

− (α,β) approximations, we only judge whether the objects com-

ng from a target concept belong to its lower/upper approximations

r not, while in the existing decision-theoretic rough set, we need

o consider all objects in the entire universe. It deserves to point out

hat the computation of its lower/upper approximation is only based

n the information granules determined by objects within a target

oncept, rather than the given universe.

Obviously, the above L − (α,β) lower approximation satisfies the

ollowing property

pr(α,β)
A

(X) ⊆ X.

owever, for a classical decision-theoretic rough set, this property

ay not hold.

In the following studies, in order to overcome the non-

onotonicity of positive regions in the DTRS model, we will intro-

uce a new probabilistic rough set approximation approach through

ombining the local decision-theoretic rough set and the idea of

ynamic granulation, in which a target concept is approximated

y the dynamic granular structures.
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A partition induced by an equivalence relation provides a granula-

tion world for describing a target concept. Thus, a sequence of granu-

lation worlds can be determined by a sequence of attribute sets in the

power set of attributes, which is called a dynamic granulation order

[28]. For the sake of the monotonicity study, in this paper, we only

discuss that the dynamic granulation order is a sequence of granula-

tion worlds stretching from coarse to fine granulation which can be

determined by a sequence of attribute sets with granulations from

coarse to fine in the power set of attributes.

Generally, we introduce the description of dynamic granulation

worlds as follows [28]:

Given a decision table S = (U, At = C ∪ D) , P = {A1, A2, . . . , An}
a family of attribute sets with A1 � A2 � · · · � An, Al ∈ 2C, l ≤
n, we can define a dynamic granulation order denoted by Pl =
{A1, A2, . . . , Al}, l ≤ n. In practice, a granulation order on an attribute

set can be appointed by users or experts constructed according to

the significance of each attribute. Based on this viewpoint, we can

redefine the probabilistic approximation under dynamic granulation

worlds by using local decision-theoretic rough set approximations.

3.2. Thresholds computing under dynamic granulation worlds

The DTRS model is a typical probabilistic rough set model in

which Bayesian decision theory is introduced to minimize the deci-

sion costs, and it provides a scientific method to calculate threshold

values based on loss functions using more familiar notions of costs

(or risks) [46]. To modify the classical decision-theoretic rough set,

in this subsection, we firstly need to give a method for updating the

required threshold parameters α and β . The Bayesian decision proce-

dure is still employed for achieving this task.

In the following, we give an approach to calculate the required

threshold parameters in the new model, which needs to continually

perform a Bayesian decision procedure on the gradually reduced uni-

verse for obtaining a sequence of threshold parameters under a given

dynamic granulation order. The approach of updating threshold pa-

rameters is to select a series of actions for which the classification

risk is as small as possible.

Let G = {〈U1, EA1
〉, . . . , 〈Un, EAn

〉} be a group of approximation

spaces. Let Uk ⊆ U, (k = 1, 2, . . . , n) denote a gradually reduced

universe satisfied with U1 = U,Uk+1 = Uk − apr
(αk,βk)
Ak

(Xk), where

apr
(αk,βk)
Ak

(Xk) = {x|P(Xk|[x]Ak
) ≥ αk, x ∈ Xk} (see Definition 1 for de-

tails) and P = {A1, A2, . . . , An} is a family of attribute sets with A1 �
A2 � · · · � An, Ak ∈ 2C , k = 1, 2, . . . , n. Then, we present a brief de-

scription of the updating parameters process with the Bayesian deci-

sion theory for the kth approximation space.

Given the kth approximation space 〈Uk, EAk
〉 ∈ G (k ≤ n). On the

universe Uk, the equivalence relation EAk
induces a partition Uk/EAk

and the subset Xk ⊆ Uk is updated with Xk+1 = Xk − apr
(αk,βk)
Ak

(Xk).

P(Xk|[x]Ak
) and P(Xc

k
|[x]Ak

) are the conditional probabilities of an ob-

ject in the equivalence class [x]Ak
within Xk and Xc

k
, respectively. Given

the loss function matrix under the kth granular space, the expected

loss R(ai|[x]Ak
) associated with taking action ai (i = 1,2,3) under the

kth granular space can be expressed as:

R(a1|[x]Ak
) = λk

11P(Xk|[x]Ak
) + λk

12P(Xc
k |[x]Ak

),

R(a2|[x]Ak
) = λk

21P(Xk|[x]Ak
) + λk

22P(Xc
k |[x]Ak

),

R(a3|[x]Ak
) = λk

31P(Xk|[x]Ak
) + λk

32P(Xc
k |[x]Ak

),

where λk
i j

denotes the loss function for taking action ai when state is

ω j by the kth granular space, and λr
i j

= λs
i j

(r, s ∈ {1, 2, . . . , n}, r = s).
In practical applications, in our opinion, according to various re-

uirements under the change of granular space, the loss functions re-

arding the risk or cost of actions are also updated correspondingly.

hus, one assumes that the values of λk
i j
(k ≤ n) in each granular space

ould not be equivalent to each other. In other words, each granular

pace should have its independent loss (or cost) functions itself.

Like the decision-theoretic rough set, briefly, we also assume that

he loss function satisfies the conditions:

(i) λk
11

≤ λk
31

< λk
21

,

(ii) λk
22

≤ λk
32

< λk
12

,

(iii) (λk
12

− λk
32

)(λk
21

− λk
31

) ≥ (λk
31

− λk
11

)(λk
32

− λk
22

).

It follows that 1 ≥ αk ≥ γk ≥ βk ≥ 0 (k ≤ n). By decision rules

P1)-(B1), we can obtain the corresponding positive region, the

oundary region and the negative region under the kth granular

pace as follows:

POS
(α,β)
Ak

(Xk) = {x|P(Xk|[x]Ak
) ≥ αk, x ∈ Uk},

BND
(α,β)
Ak

(Xk) = {x|βk < P(Xk|[x]Ak
) < αk, x ∈ Uk},

NEG
(α,β)
Ak

(Xk) = {x|P(Xk|[x]Ak
) ≤ βk, x ∈ Uk},

here

αk = λk
12 − λk

32

(λk
31

− λk
32

) − (λk
11

− λk
12

)
,

βk = λk
32 − λk

22

(λk
21

− λk
22

) − (λk
31

− λk
32

)
.

Hence, according to the calculation procedure of threshold pa-

ameters in the approximation space 〈Uk, EAk
〉 above, given a dy-

amic granulation order Pl (l ≤ n), we can obtain a sequence of

he threshold parameters (α,β)l = {(α1, β1), (α2, β2), . . . , (αl , βl)},

hich means the procedure of dynamically updating the required

hreshold parameters with the various costs or risks by every gran-

lar space. The threshold parameters sequence will be used in the

efinition of the probabilistic approximations that will be proposed

n next subsection. It deserves to point out that when the loss func-

ion in different granular spaces satisfies with the condition: λk
12

=
k
21

= 1, λk
11

= λk
22

= λk
31

= λk
32

= 0, k ≤ l, from the above equation,

e have (αk, βk) = (1, 0), which can be regraded as a special case.

.3. Decision-theoretic rough sets under dynamic granulation

In this subsection, we introduce a new decision-theoretic rough

et under dynamic granulation orders and investigate some of its im-

ortant properties.

Firstly, we give the definition of the new decision-theoretic rough

et as follows.

efinition 2. Let S = (U, At = C ∪ D) be a decision table, X ⊆ U

nd P = {A1, A2, . . . , An} a family of attribute sets with A1 � A2 �
· · · � An, Al ∈ 2C, l = 1, 2, . . . , n. Given a dynamic granulation or-

er Pl = {A1, A2, . . . , Al} (l ≤ n), we define P
(α,β)
l

-lower approxima-

ion Pl
(α,β)(X) and P

(α,β)
l

-upper approximation Pl
(α,β)

(X) of X under

he dynamic granulation order as

l
(α,β)l (X) = {x|P(Xk|[x]Ak

) ≥ αk, x ∈ Xk, k = 1, 2 . . . , l}, (1)

l

(α,β)l (X) = ∪{[x]Ak
|P(Xk|[x]Ak

) > βk, x ∈ Xk, k = 1, 2 . . . , l}, (2)
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here X1 = X, Xk+1 = X − ⋃k
j=1apr

(α j ,β j)

A j
(Xj), (α,β)l = {(α1, β1),

α2, β2), . . . , (αl , βl)} indicates the dynamic threshold parameter

equence under the current granulation order Pl , and [x]Ak
represents

he equivalence class including x in the partition Uk/Ak in which

k = Uk−1 − apr
(αk−1,βk−1)

Ak−1
(Xk−1) is the gradually reduced universe.

It can be seen from the above definition that the target con-

ept can be gradually approximated by using dynamic granulations

tretching from coarse to fine on the gradually reduced universe.

In addition, we can find that the computation of its lower/upper

pproximation is only based on the information granules determined

y objects within a target concept X, rather than the universe U. Ob-

iously, we have the property

l
(α,β)(X) ⊆ X.

In order to further characterize the structure of probabilistic ap-

roximations in the DG-DTRS, we can use local probabilistic approx-

mations in a single granulation world to redefine P
(α,β)
l

-set approxi-

ations of a target concept X, which can be regarded as an equivalent

orm of the above definition. That is

l
(α,β)l (X) =

l⋃

k=1

apr(αk,βk)
Ak

(Xk), (3)

l

(α,β)l (X) =
l⋃

k=1

apr
(αk,βk)
Ak

(Xk), (4)

here X1 = X, Xk+1 = Xk − apr
(αk,βk)
Ak

(Xk). The above definition form

an reflect the structure feature of probabilistic approximations in

G-DTRS.

Fig. 1 visualizes the hierarchical construction of lower approxima-

ion of a target concept in the DG-DTRS model.

In Fig. 1, let P1 = {A1} and P2 = {A1, A2} with A1 � A2 be two

ranulation orders. apr
(α1,β1)
A1

(X1) is the L-lower approximation of

1 obtained by the equivalence relation EA1
on the universe U1,

here the parameter (α1, β1) = (0.8, 0.2); apr
(α2,β2)
A2

(X2) is the L-

ower approximation of X2 obtained by the equivalence relation EA2

n the universe U2, where the parameter (α2, β2) = (0.6, 0.2). Hence,

2
(α,β)2 = apr

(α1,β1)
A1

(X1) ∪ apr
(α2,β2)
A2

(X2). The mechanism illustrates

he hierarchical structure of probabilistic approximations in the DG-

TRS, which can be used to gradually compute the lower approxima-

ion of a target concept.

From the above definition and Fig. 1, we have the following

heorem.
== αα

−=

=

Fig. 1. Dynamic granular structures of the lower approximation in DG-DTRS.

T

P

h

P

w

v

n

t

r

r

r

heorem 1 (Lower approximation monotonicity). Let S = (U, At =
∪ D) be a decision table, X ⊆ U and P = {A1, A2, . . . , An} a family of

ttribute sets with A1 � A2 � · · · � An, Al ∈ 2C, l = 1, 2 . . . , n. Given

l = {A1, A2, . . . , Al}, then for any Pl , we have

1
(α,β)1(X) ⊆ P2

(α,β)2(X) ⊆ · · · ⊆ Pl
(α,β)l (X),

here (α,β)l indicates the sequence of probabilistic threshold parame-

ers under the granulation order Pl .

This theorem shows that the monotonicity property of P
(α,β)
l

-

ower approximation of a given target concept X under dynamic gran-

lation orders holds in the DG-DTRS model. It is illustrated by the

ollowing example.

xample 2. Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} be a universe,

/A1,U/A2 two partitions on U, where

U/A1 = {{x1, x2}, {x3, x4}, {x5, x6, x7, x8}, {x9, x10}},
U/A2 = {{x1}, {x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9}, {x10}}.

bviously, A1 � A2 holds. Thus, we can construct two dynamic gran-

lation orders P1 = {A1} and P2 = {A1, A2}.

Given a target concept X = {x2, x3, x5, x6, x8, x10}, assume

α,β)2 = {(0.7, 0.2), (0.8, 0.2)}. From Definition 2, by comput-

ng the lower and upper approximations of X under these two

ranulation orders, one easily obtains that

P1
(α,β)1(X) = {x5, x6, x8},

P1
(α,β)1(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

P2
(α,β)2(X) = {x2, x5, x6, x8, x10},

P2
(α,β)2(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.

hat is to say, the target concept X can be approximated by using the

wo granulation orders P1 and P2 in DG-DTRS. Moreover, P1
(α,β)1(X) ⊆

2
(α,β)2(X) holds.

Based on Eqs. (3) and (4), the corresponding probabilistic positive

egion, boundary region and negative region of a target concept X are

espectively defined by

POS
(α,β)l

Pl
(X) = Pl

(α,β)l (X),

BND
(α,β)l

Pl
(X) = Pl

(α,β)l (X) − Pl
(α,β)l (X),

NEG
(α,β)l

Pl
(X) = U − Pl

(α,β)l (X).

In order to describe the recursive relation between two dynamic

ranulation orders Pl and Pl+1, the following principle is given.

heorem 2. Let S = (U, At = C ∪ D) be a decision table, X ⊆ U, and

= {A1, A2, . . . , An} a family of attribute sets with A1 � A2 � · · · �
An, Al ∈ 2C, l = 1, 2, . . . , n. Then, for a given Pl = {A1, A2, . . . , Al}, we

ave

OS
U(α,β)l+1

Pl+1
(X) = POS

U(α,β)l

Pl
(X) ∪ POS

Ul+1(αl+1 ,βl+1)

Al+1
(Xl+1), (5)

here X1 = X,Ul+1 = U − POS
(α,β)
Pl

(X) and Xl+1 = X − POS
(α,β)
Pl

(X).

Here, POS
U(α,β)l
Pl

(X) indicates the positive region of X on the uni-

erse U under the dynamic granulation Pl , POS
Ul+1(αl+1,βl+1)

Al+1
(Xl+1) de-

otes the positive region of Xl+1 on the universe Ul+1 with respect to

he equivalence relation Al+1.

This theorem can be used to dynamically compute the positive

egion of a target concept (or decision) in the decision-theoretic

ough set, which can largely save computational time. The recursive

elation can be understood by the following example.
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Example 3. Continued by Example 2. We can obtain POS
U(α,β)1
P1

(X) =
{x5, x6, x8}. Let U1 = U and X1 = X . Then, the universe is

updated as

2 = U − POS
U(α,β)1

P1
(X) = {x1, x2, x3, x4, x7, x9, x10},

and the target concept X is updated as

X2 = X − POS
U(α,β)1

P1
(X) = {x2, x3, x10}.

Through computing, one has that

POS
U2(α2 ,β2)

A2
(X2) = {x2, x10},

and

POS
U(α,β)2

P2
(X) = {x2, x5, x6, x8, x10} = POS

U(α,β)1

P1
(X) ∪ POS

U2(α2 ,β2)

A2
(X2).

That is to say, the positive regions of the target concept X un-

der the dynamic granulation orders satisfy the above recursive

principle.

3.4. Computing approximation of a target concept under dynamic

granulation orders

In this part, we construct a computing lower approximation algo-

rithm under a dynamic granulation order in DG-DTRS. Furthermore,

we extend the proposed set-approximation approach to a decision

partition.

The detailed algorithm for computing a lower approximation of a

target concept in DG-DTRS is formally described as follows.

Algorithm 1. Computing the lower approximation of a target con-

cept under a dynamic granulation order (DGLAC).

nput: A decision table S = (U, AT = C ∪ D), a target concept set X ⊆ U , and a family

f attribute sets P = {A1, A2, . . . , An} with A1 � A2 � · · · � An(Al ∈ 2C , l ≤ n).

iven a dynamic granulation order Pl = {A1, A2, . . . , Al}, and the loss function
k
i j
(k = l, 2, . . . , l) with respect to Pl .

utput: The P
(α,β)l

l
-lower approximation L of X.

1: k ← 1, X1 ← X,U1 ← U , L ← φ and P1 = {A1}
2: while k ≤ l and Xk = φ do

3: Compute (αk, βk) with respect to λk
i j

{compute threshold parameters for each granulation}

4: for all x ∈ XAk
do

5: compute [x]Ak
of x

{compute equivalence class of x on universe Uk}

6: if P(Xk|[x]Ak
) ≥ αk then

7: L ← L ∪ x

8: i ← i + 1

9: end if

0: end for

1: Xk+1 = Xk − POS
(αk ,βk)
Ak

(Xk),Uk+1 = Uk − POS
(αk ,βk)
Ak

(Xk)

2: k = k + 1

3: Pk ← {A1, A2, . . . , Ak}
4: end while

5: return L

The algorithm shows the process of computing a lower ap-

proximation under a given dynamic granulation order. In fact, un-

der dynamic granulation worlds, a target concept or decision can

be gradually approximated by a dynamic granulation order from

coarse to fine. This means that a suitable dynamic granulation
rder can be chosen for a target concept approximation according to

he practical requirements, instead of strictly satisfying the stopping

riterion in algorithm. Here, we consider η(α,β)(P, X) = |POS
(α,β)
P

|
|X| as

he precision of the positive region of X ⊆ U with respect to the gran-

lation order P, which describes the ability of granulation orders for

ynamically approximating the target concept (or decision). There-

ore, in the above algorithm, we also can set a threshold parameter to

ontrol the stop of the algorithm.

The algorithm is easily illustrated by the following example.

xample 4. Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} be a

niverse, U/A1, U/A2 two partitions on U, where U/A1 =
{x1, x2}, {x3, x4}, {x5, x6, x7, x8}, {x9, x10}} and U/A2 =
{x1}, {x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9}, {x10}}.

Obviously, A1 � A2 holds. Thus, we can construct two granulation

rders P1 = {A1} and P2 = {A1, A2}.

Given a target concept X = {x1, x3, x5, x6, x7, x9}. For simplicity, we

uppose (α,β)2 = {(0.7, 0.2), (0.8, 0.2)} by a dynamic granulation

rder P2. The family of threshold parameters can be computed from

he various loss functions.

According to Algorithm 1, we compute the lower approximation

f X by the granulation orders.

1. Let U1 = U, X1 = X, P1 = {A1}. For each x ∈ X1, by comput-

ing P(X|[x]A1
) of x, (α1, β1) = (0.7, 0.2), we can easily obtain

P1
(0.7,0.2)(X) = {x5, x6, x7}.

2. Updating the universe U2 = U1 − A1
(0.7,0.2)(X) =

{x1, x2, x3, x4, x8, x9, x10}, X2 = X1 − P1
(0.7,0.2)(X) = {x1, x3, x9},

P2 = {A1, A2} and (α2, β2) = (0.8, 0.2). For each x ∈ X2, by com-

puting [x]A2
of x in universe U2, we have

[x1]A2
= {x1}, [x3]A2

= {x3, x4}, [x9]A2
= {x9}.

Then, by computing P(X2|[x]A2
) of x, we can easily obtain

P2
(α,β)2(X) = {x5, x6, x7} ∪ {x1, x9} = {x1, x5, x6, x7, x9}.

Similar to the decision-theoretic rough set model, we can extend

he concept of probabilistic approximations and regions of a single

ecision to a partition U/D. For simplicity, we assume that the same

oss functions are used for all decisions. The detailed definition is as

ollows.

efinition 3. Let S = (U, At = C ∪ D) be a decision table, P =
A1, A2, . . . , An} a family of attribute sets with A1 � A2 � · · · �
An, Al ∈ 2C, l = 1, 2, . . . , n, and U/D = {D1, D2, . . . , Dm} a decision

artition on U. Then, the (α,β)-Lower approximation and the (α,β)-

pper approximation of D related to Pl are defined as

Pl
(α,β)l (D) = {Pl

(α,β)l (D1), Pl
(α,β)l(D2), . . . , Pl

(α,β)l (Dm)},
Pl

(α,β)l (D) = {Pl

(α,β)l (D1), Pl

(α,β)l (D2), . . . , Pl

(α,β)l (Dm)}.
Correspondingly, the positive region, the boundary region and the

egative region of the target decision D in the DG-DTRS model can be

espectively represented as follows:

POS
(α,β)l

Pl
(D) =

m⋃

i=1

POS
(α,β)l

Pl
(Di) =

m⋃

i=1

Pl
(α,β)l (Di),

BND
(α,β)l

Pl
(D) =

m⋃

i=1

BND
(α,β)l

Pl
(Di),

NEG
(α,β)l

Pl
(D) = U − POS

(α,β)l

Pl
(D) ∪ BND

(α,β)l

Pl
(D).
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In what follows, we can extend the monotonicity of a single tar-

et concept to a decision partition U/D = {D1, D2, . . . , Dm} of the uni-

erse, which is shown in the following theorem.

heorem 3 (Decision monotonicity). Let S = (U, At = C ∪ D) be a de-

ision table, P = {A1, A2, . . . , An} a family of attribute sets with A1 �
A2 � · · · � An, Al ∈ 2C, and U/D = {D1, D2, . . . , Dm} a decision par-

ition on U. Given Pl = {A1, A2, . . . , Al}, then for any Pl , l = 1, 2, . . . , n,

e have

OS
(α,β)1

P1
(D) ⊆ POS

(α,β)2

P2
(D) ⊆ · · · ⊆ POS

(α,β)l

Pl
(D).

In the following, we want to illustrate that the positive region of

target decision can also be recursively computed on the gradually

educed universe by the below theorem.

heorem 4. Let S = (U, At = C ∪ D) be a decision table, P =
A1, A2, . . . , An} a family of attribute sets with A1 � A2 � · · · �
An, Al ∈ 2C, l = 1, 2, . . . , n, and U/D = {D1, D2, . . . , Dm} a decision

artition on U. Then, given Pl = {A1, A2, . . . , Al}, we have

OS
U(α,β)l+1

Pl+1
(D) = POS

U(α,β)l

Pl
(D) ∪ POS

Ul+1(αl+1 ,βl+1)

Al+1
(D),

here U1 = U and Ul+1 = U − POS
U(α,β)

Pl
(D).

The recursive computation principle is explained by the following

xample.

xample 5. Let S = (U,C ∪ D) be a decision table, where

= {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} be a universe,

= {a1, a2},U/D = {{x1, x3, x5, x6, x7, x9}, {x2, x4, x8, x10}},

/a1 = {{x1, x2}, {x3, x4}, {x5, x6, x7, x8}, {x9, x10}}, and U/C =
{x1}, {x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9}, {x10}}.

Obviously, {a1} � C holds. Thus, we can construct two granula-

ion orders P1 = {a1} and P2 = {{a1},C}.

Suppose (α,β)2 = {(0.7, 0.2), (0.8, 0.2)}. From Algorithm 1, one

as the lower approximation of D. Then it follows

OS
U(α,β)1

P1
(D) = P1

(α,β)1(D1) ∪ P1
(α,β)1(D2) = {x5, x6, x7}.

Let U1 = U , and update the universe

2 = U1 − POS
U(α,β)1

P1
(D) = {x1, x2, x3, x4, x8, x9, x10}.

hrough computing, we have

OS
U2(α2,β2)
C

(D) = {x1, x2, x8, x9, x10}and POS
U(α,β)2

P2
(D)

= {x1, x2, x5, x6, x7, x9, x10}.
ence, POS

U(α,β)2
P2

(D) = POS
U(α,β)1
P1

(D) ∪ POS
U2(α2,β2)
C

(D).

That is to say, the target decision D can be recursively approxi-

ated by using dynamic granulation orders P1 and P2 on the gradually

educed universe.

. Conclusions and future studies

As an important model within rough set theory, the decision-

heoretic rough sets have been largely enriched. However, the non-

onotonicity of its positive region may lead to an overlapping

roblem for attribute reduction. To solve this problem, in this pa-

er we have proposed a new decision-theoretic rough set model

ased on the local rough set and the dynamic granulation princi-

le, called a decision-theoretic rough set under dynamic granulation

DG-DTRS) which satisfies the monotonicity of the positive region

f a target concept (or decision). To achieve the risk minimization
nder each granulation, based on the Bayesian decision procedure,

e have also given an approach to update the required parameters

and β in the proposed model for each granulation. This dynamic

ecision-theoretic rough set model can ensure the monotonicity of

ositive region and the local risk minimization as information gran-

lation becomes finer besides providing sound semantic interpreta-

ion. Hence, the modified version with several better properties can

e regarded as an important improvement of the original decision-

heoretic rough set model.
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