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The given attribute reduction approach decides the decision performance of a reduced
decision table, which can give a guidance for selecting one rule-extraction method in
practical applications. The objective of this study is to compare the decision performance
of positive-region reduction, Shannon entropy reduction and Liang entropy reduction. In
this paper, the relationships between positive-region reduction, Shannon entropy
reduction and Liang entropy reduction are first investigated. Then, by means of three
evaluation indices (certainty measure, consistency measure and support measure), we
systemically analyse these change mechanisms for decision performance of a decision
table induced by each of these three types of reduction approaches. Finally, by numerical
experiments, these change mechanisms of a decision table’s decision performance are
verified for the above-mentioned three attribute reductions.

Keywords: rough set theory; attribute reduction; decision performance evaluation;
information entropy

1. Introduction

Rough set theory was proposed by Pawlak in 1982. Recently, it has become a popular
mathematical framework for pattern recognition, image processing, feature selection,
neuro computing, conflict analysis, decision support, data mining and knowledge
discovery processing from large data-sets (Pawlak 1991, 1998, 2005, Pal et al. 2001,
Bazan et al. 2003, Pawlak and Skowron 2007).

In recent years, more attention has been paid to attribute reduction in information
systems and decision tables. Many types of attribute-reduction techniques have been
proposed in the last 20 years (Pawlak 1991, 1998, Ziarko 1993, Hu and Cercone 1995,
Slezak 1996, Diintsch and Gediaga 1998, Slezak 1998, Nguyen and Slezak 1999, Yao et al.
1999, Quafatou 2000, Beynon 2001, Liang and Xu 2002, Mi et al. 2003, Wang 2003,
Yao 2003, 2008, Zhu and Wang 2003, Li et al. 2004, Wang et al. 2005, Wu et al. 2005).
For our development, we briefly recall some of these techniques. Skowron and Rauszer
(1992) proposed an attribute-reduction algorithm using a discernibility matrix, which can
find all reducts. However, it only works in small data-sets because the algorithm is very
time consuming.
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It is well known that a special heuristic function is usually used to acquire one of all
reducts, which may be a tolerable strategy when only one reduct is needed. To date,
several heuristic reduction approaches have been presented. Hu and Cercone (1995) used
an attribute dependence to establish a heuristic algorithm for attribute reduction, which
can retain certain rules derived from the original table. Wang (2003) and Wang et al.
(2005) applied Shannon’s information entropy for estimating the significance of an
attribute. The reduction algorithm determined by this measure can also obtain one reduct,
in which the certainty measure of every decision rule derived from the decision table is not
changed. Liang et al. (2002, 2004, 2005, 2006), Liang and Xu (2002) and Liang and Qian
(2008) proposed a new uncertainty measure for information systems, and it can be
employed to compute an attribute reduct of a decision table. The B-reduct proposed by
Ziarko (1993) provides a kind of attribute-reduction method in the variable precision
rough set model. The a-reduct and a-relative reduct that allow the occurrence of
additional inconsistency were proposed by Nguyen and Slezak (1999) for information
systems and decision tables, respectively. An attribute-reduction method that preserves the
class membership distribution of all objects in information systems was proposed by
Slezak (1996, 1998). Five kinds of attribute reducts and their relationships in inconsistent
information systems were investigated by Kryszkiewicz (2001), Li ef al. (2004) and Mi
et al. (2003), respectively. By eliminating some rigorous conditions required by the
distribution reduct, a maximum distribution reduct was introduced by Mi et al. (2003).
Unlike the possible reduct by Mi et al. (2003), the maximum distribution reduct can derive
decision rules that are compatible with the original system. In these reduction approaches,
the reduction based on the positive region, the reduction method based on Shannon’s
entropy and that based on Liang’s entropy are three representative reduction approaches.
These are mainly focused on in this study.

A set of decision rules can be generated from a decision table by adopting any kind of
reduction method (Skowron and Rauszer 1992, Hu and Cercone 1995, Wang 2003, Huynh
and Nakamori 2005, Skowron 1995, Wang et al. 2005). Diintsch and Gediaga (1998),
based on information entropy, suggested some uncertainty measures of a decision rule and
proposed three criteria for model selection. Moreover, several other measures such as
certainty measure and support measure are often used to evaluate a decision rule (Greco
et al. 2004, Liang et al. 2006). However, all of these measures are only defined for a single
decision rule and are not suitable for measuring the decision performance of a rule set.
There are two more kinds of measures in the literature (Pawlak 1998), which are
approximation accuracy for decision classification and consistency degree for a decision
table. Although these two measures, in some sense, could be regarded as measures for
evaluating the decision performance of all decision rules generated from a decision table,
they have some limitations. For instance, the certainty measure and consistency of a
decision table can be well characterised by the approximation accuracy and consistency
degree for a degree for a decision table when their values reach zero. To overcome the
shortcomings of the existing measures, in the literature (Qian et al. 2008a, 2008b, 2008c),
three new measures are proposed for this objective, which are certainty measure («),
consistency measure () and support measure (7). These three measures can be used to
evaluate the entire decision performance of a given complete and incomplete decision table.

The decision table induced by an attribute reduction still retains the indispensable
attributes of the original one through eliminating the redundant attributes. However, the
decision performance of the decision table may be changed after each of attribute
reductions. In this paper, we have compared the changes of decision performance after
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attribute reductions based on positive region, on Shannon’s entropy and on Liang’s
entropy.

The rest of this paper is organised as follows. Some preliminary concepts are briefly
recalled in Section 2. In Section 3, the relationships among positive-region reduction,
Shannon’s entropy reduction and Liang’s entropy reduction are investigated. In Section 4,
through reviewing three existing measures for decision evaluation, the change mechanism of
each of these three criteria is discovered in a decision table. In Section 5, the change of
decision performance of a decision table induced by each of three existing types of reduction
approaches is systemically analysed. In Section 6, we have also employed a real data-set from
the UCI database for experimental analysis. Experimental results show the correctness of the
change mechanism obtained in this paper. Section 7 concludes this paper.

2. Preliminaries

In this section, we review some basic concepts such as indiscernibility relation, partition,
decision tables, decision rules, certainty degree and support degree of a rule and the
definition of reduction.

An information system (sometimes called a data table, an attribute-value system, a
knowledge representation system, etc.), as a basic concept in rough set theory, provides a
convenient framework for the representation of objects in terms of their attribute values.

Let S = (U,A) be an information system, where U is a non-empty and finite set of
objects, called a universe, and A is a non-empty and finite set of attributes. For eacha € A,
a mapping a : U — V, is determined by an information system, where V,, is the set of all
possible values of a.

Each non-empty subset B C A determines an indiscernibility relation in the following
way, Rg = {(x,y) € UX U | a(x) = a(y),Va € B}, where a(x) and a(y) respect the value
of object x and y on attribute a, respectively. The relation Rp partitions U into some
equivalence classes given by U/Rz = {[x]z | x € U}, where [x]p denotes the equivalence
class determined by x with respect to B, i.e. [x]z = {y € U|(x,y) € Rp}. The partition
U/Rg is further denoted as U/B. Furthermore, for any Y C U, one defines that
(B(Y), B(Y)) is the rough set of ¥ with respect to B, where the lower approximation B(Y)
and the upper approximation B(Y) of Y are described by

B(Y) = {x|][x]g C Y} and
B(Y) = {x|[x]z N Y # 0}.

We define a partial relation = on the family {U/B|B C A} as follows: U/P = U/Q
(or U/Q = U/P) if and only if, for every P; € U/P, there exists Q; € U/Q such that
P; C Qj, where U/P = {P,P,,...,P,} and U/Q = {Q;,0>, ...,0Q,} are partitions
induced by P, Q C A, respectively. In this case, we say that Q is coarser than P, or P is
finer than Q. If U/P = U/Q and U/P # U/Q, we say Q is strictly coarser than P (or P is
strictly finer than Q), denoted by U/P < U/Q (or U/QU/P).

Let S = (U, C U D) with C N D = () be an information system, where an element of C
is called a condition attribute, C is called a condition attribute set, an element of D is called
a decision attribute, and D is called a decision attribute set, then S is defined as a decision
table. For example, a decision table about diagnosing rheum is given in Table 1, in which
U= {61 ,€2,€3,€4,€5,€4,€7,€3, €9, 610} is the universe, C= {C] ,C2,C3, C4} = {Headache,
Muscle pain, Animal heat, Cough} is the condition attribute set and D = {d} = {Rheum}
is the decision attribute set.



13:10 9 Cctober 2010

Wei] At:

[vei,

Downl oaded By:

816 W. Wei et al.

Table 1. A decision table about diagnosing rheum.

Patients Headache Muscle pain Animal heat Cough Rheum
ey Yes Yes Normal No No
e Yes Yes High No No
e3 Yes Yes Normal No Yes
ey Yes Yes High No Yes
es Yes No High Yes Yes
€6 Yes No High Yes Yes
e7 Yes No High Yes No
eg Yes Yes Very high Yes Yes
€9 Yes Yes Very high Yes No
el No Yes Normal Yes Yes

If U/C = U/D, then S = (U, C U D) is said to be consistent, otherwise it is said to be
inconsistent. Certain decision rules can be extracted from a consistent decision table, and
both uncertain decision rules and certain decision rules can be extracted from an
inconsistent decision table. Furthermore, we call the set of these condition classes which
are the hypotheses of certain decision rules as the consistent part of a decision table, and
call the set of all other condition classes as the inconsistent part of the decision table. This
will be indicated by an example.

Example 2.1. From Table 1, we can find that it is an inconsistent table. Moreover,
it is obvious that the set {e;o} is the consistent part of Table 1 and the set
{e1,e2,e3,e4,€5,¢6,€7,€38, €9} is the inconsistent part of Table 1.

Let S = (U,C U D) be a decision table, X; € U/C and Y; € U/D. By des(X;) and
des(Y;), we denote the descriptions of the equivalence classes X; and Y; in the decision
table S. A decision rule is formally defined as (Pawlak 1991, Liang et al. 2006):

Zj; : des(X;) — des(Y)). (1)

The certainty degree w and support degree s of a decision rule Z; are defined as follows
(Pawlak 1991, Liang et al. 2006):

wZij) = 1X; N Y;|/IX;| and s(Zy) = 1X; N Y;|/|UI, (2)

where | - | is the cardinality of a set. It is clear that the value of each of w(Z;) and s(Z;) of a
decision rule Z; falls into the interval [(1 /1UD), 1]. In subsequent discussions, we denote
the cardinality of the set X; N Y; by |Z;|, which is called the support number of the rule Z;;.

Let S = (U, C U D) be a decision table, the relative positive region D with respect to C
is defined as (Pawlak 1991):

POSc(D) = U CY;, 3)
i=1

where Y; € U/D, CY; indicates the lower approximation of ¥; with respect to C. Using
this denotation, one can give the definition of a positive-region reduct as follows.

DEerFINITION 2.1 (HU AND CERCONE 1995). Let S = (U, C U D) be a decision table and
B C C. We call B a positive-region reduct of D with respect to C if B satisfies the
following conditions:
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(1) POSc(D) = POSg(D) and
(2) forVa € B, POSg(D) # POSp_(4(D).

In Wang (2003) and Wang et al. (2005), Shannon’s condition entropy of condition
attribute set C with respect to decision attribute set D in a decision table S = (U, C U D) is
defined as

1Xil & |XﬂY| IX; Nyl
H(D|C) = 4
PIo Z|U|Z FA R T @

where X; € U/C and Y; € U/D.

DEFINITION 2.2 (WANG 2003, WANG et al. 2005). Let S = (U, C U D) be a decision table,
B C C. We call B a Shannon entropy reduct of D with respect to C if B satisfies the
following conditions:

(1) H(D|C) = H(D|B) and
(2) forVa € B, H(D|B) # H(D|B — {a}).

In Liang et al. (2002, 2004, 2006) and Liang and Qian (2008), Liang’s entropy of
condition attribute set C with respect to decision attribute set D in a decision table
S = (U,C U D) is depicted as

H

X; Nyl 1Y; = X;
sol0 =33 R ®

=1 j=

where Y7 and X; are the complements of Y; and X;, respectively.
In terms of this description, one can give the definition of a Liang entropy reduct as
follows.

DEerFINITION 2.3. Let S = (U,C U D) be a decision table, B C C. We call B a Liang
entropy reduct of D with respect to C if B satisfies the following conditions:

(1) E(D|C) = E(D|B) and
(2) forVa € B, E(D|B) # E(D|B — {a}).

Positive region, Shannon’s entropy and Liang’s entropy are usually applied for the
attribute reduction of a decision table.

3. Relationships among three kinds of reductions

In this section, we will analyse the relationships among positive-region reduction,
Shannon’s entropy reduction and Liang’s entropy reduction.

The rough monotonicity of Shannon’s information entropy has been proved
(Wang 2003, Wang et al. 2005), which is shown as follows.

THEOREM 3.1 (WANG 2003, WANG et al. 2005). Let S = (U,C U D)and S’ = (U,B U D)
be two decision tables, U/C = {X,Xz, ..., Xn}, U/B={X1,X2, ..., Xu=1, Xut1, - - -»
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Xv—]7XV+17 "'7Xm’ Xu UXV} and U/D: {Y17Y27 "'7Yn}9 then
H(D|B) = H(D|C),

X,NY; X,NY; . . .
Pl = B forj = n, ie. (Zyy) = w(Zy) for j = n,

especially, if and only if
H(D|B) = H(D|C).

From Theorem 3.1, we can see that Shannon’s entropy of a decision table will be not
more than the one in the table with the coarser partition.

For convenience, suppose that RED.(C) is the set of all positive-region reduct,
B(P) € REDZ (C) a positive-region reduct, REDf)(C) the set of all Shannon entropy
reduct, B(S) € REDf)(C) a Shannon entropy reduct, REDf)(C) the set of all Liang entropy
reduct and B(L) € REDf)(C) a Liang entropy reduct. In the following, we establish the
relationship among positive-region reduction, Shannon’s entropy reduction and Liang’s
entropy reduction with four theorems and four corollaries.

THEOREM 3.2 (WANG 2003, WANG et al. 2005). Let S = (U, C U D) be a decision table. If
an attribute set B(S) is a Shannon entropy reduct, then there exists a positive-region reduct
B(P) such that B(P) C B(S).

Proof. Let B(S) be a Shannon entropy reduct, thus H(D|C) = H(D|B(S)). From Theorem
3.1, it follows that
X, Nyl IX,NYjl
x. Xl

J=n,

then POS¢(D) = POSp(s)(D). Furthermore, it is certain a set B(P) C B(S) exists, which
satisfies Va € B(P),POSgp) (D) # POSppy—(4)(D). Therefore, there exists B(P) a
positive-region reduct. (|

By Theorem 3.2, it follows that for a decision table, there exists a subset of its Shannon
entropy reducts which is a positive-region reduct.

COROLLARY 3.3 (WANG 2003, WANG et al. 2005). Let S = (U,C U D) be a decision
table, RED,S)(C) a set of all Shannon entropy reducts and REDZ(C) a set of all positive-
region reducts, then min{|B(P)| : B(P) € RED5(C)} = min{|B(S)| : B(S) € RED}(C)}.

Corollary 3.3 shows that for a decision table, the cardinality of the minimum Shannon
entropy reduct is not less than the cardinality of the minimum positive-region entropy
reduct.

THEOREM 3.4. Let S=(U,CUD) and S = (U,BUD) be two decision tables,
U/C={X1,Xa, ..., Xn}, U/B={X1,X2, ..., Xu—1, Xus1, - - Xom 1, Xog1, .o, X,
X, UX,}and U/D = {Y,,Y, ...,Y,}, then

E(D|B) = E(DI|C),

especially, if and only if w(Z,,) = w(Z,,) =1 for w = n and wZ,) = w(Z,) = 0 for
j =nandj# w, then

E(D|B) = E(D|C).
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Proof. For the existing condition, one has that

X, NYl+1X, NY X, — Y| +1X, - Y
Ex = E(D|B) — E(D|C) = Z / T J / T J

=1

3 5

U U = Ul U
2] U1 2] U1
— zn: |Xu”Xv|(/~"(Zu]) + M(Zvj) - 2/~L(Zuj)f-L(Zvj))
- uf? '

<~
I

Let fj = wZy) + m(Zy) — 2 Zj)m(Zy;). It is clear that 0 = w(Z,) =1 and
0 = w(Z,) = 1. The sign of f; will be investigated as follows.

If w(Z,;) =0and 0 < w(Z,j)) =1 (or 0 < w(Z,) = 1 and w(Z,;) = 0), then f; > 0.
If w(Z,;) = 0 and w(Z,;) = 0, then f; = 0.

If w(Z,)=1and 0 = w(Z,;) <1 (or 0 = w(Z,) <1 and wZ,;) = 1), then f; > 0.
If wW(Z,;) =1 and w(Z,;) =1, then f; = 0.

Ifo<wZ,) <1land 0 < u(Z,;) <1, thenf; > 0.

From the above-mentioned several cases, we have that f; =0. Then
Ex = Y (1XlIX,1£)/(1UI*) = 0. Furthermore, one has that Ex =0 iff f;=0. In
other words, E(D|B) = E(D|C) holds, if and only if w(Z,,,) = w(Z,,,) = 1 for w < n and
wMZy) = wZ,)) =0forj=n and j # w. O

Theorem 3.4 indicates that Liang’s entropy of a decision table will not be more than
the one of the table with the coarser condition attribute set.

THEOREM 3.5. Let S = (U,C U D) be a decision table. If an attribute set B(L) is a
Liang entropy reduct, then there exists a Shannon entropy reduct B(S) such that
B(S) C B(L).

Proof. Since B(S) is a Shannon entropy reduct, we have that E(D|C) = E(D|B(L)). And
from Theorem 3.4, it follows that there exists w = n such that w(Z,,,) = w(Z,,) = 1 and
wWZy)=mZy;) =0, j=n, j#*w, ie. wZ,) =mZ,), j=n. Therefore,
H(D|C) = H(D|B(L)). Furthermore, there exists a set B(S) C B(L), which satisfies
Va € B(S), POSps)(D) # POSps)— (4 (D). From Definition 2.1, B(S) is a Shannon entropy
reduct. O

Theorem 3.5 shows that there exists a subset of its Liang entropy reducts which is its
Shannon entropy reduct.

COROLLARY 3.6. Let S = (U, C U D) be a decision table, REDf)(C) a set of all Liang
entropy reducts and RED;(C) a set of all Shannon entropy reducts, then
min{|B(S)| : B(S) € RED3(C)} = min{|B(L)| : B(L) € RED%(C)}.

From Corollary 3.6, we can see that, for a decision table, there exists a subset of its
Shannon reducts which is its positive-region reduct.



13:10 9 Cctober 2010

Wei] At:

Downl oaded By: [Wei,

820 W. Wei et al.

COROLLARY 3.7. Let S = (U, C U D) be a decision table. If B(L) is a Liang entropy reduct,
then there exists a positive-region reduct B(P) and a Shannon entropy reduct B(S) such that
B(P) C B(S) C B(L).

The relationship among positive-region reducts, Shannon entropy reducts and Liang
entropy reducts is indicated by Corollary 3.7.

COROLLARY 3.8. Let S = (U, C U D) be a decision table, REDf)(C) a set of all Liang
entropy reducts, REDIS)(C) a set of all Shannon entropy reducts and REDZ(C) a set of
all Shannon entropy reducts, then min{|B(P)| : B(P) € RED}, (C)} = min{|B(S)| : B(S) €
REDS(C)} = min{| B(L)| : B(L) € REDL(C)}.

These relationships among the above three kinds of attribute reductions in Corollary
3.8 are illustrated by the following Example 3.1.

Example 3.1. We employ Table 1 to illustrate the relationship among the three kinds of
attribute reductions. By computing, we have that

REDZ(C) = {{Headache}, { Animal heat, Cough}},
REDIS)(C) = {{Headache, Muscle pain}, { Animal heat, Cough}} and
REDIL)(C) = {{Headache, Animal heat, Muscle pain}, { Animal heat, Cough}}.

Obviously, one can obtain the following inclusion relationships:

{Headache} C {Headache, Muscle pain}

apositive—region reduct a Shannon entropy reduct

C {Headache, Animal heat, Muscle pain},

a Liang entropy reduct

{ Animal heat, Cough} C { Animal heat, Cough} C { Animal heat, Cough}.

a positive—region reduct a Shannon entropy reduct a Liang entropy reduct

Therefore,  min{|B(P)| : B(P) € RED}(C)} = |{Headache}|,  min{|B(S)| : B(S) €
REDS(C)} = |{Animal heat, Cough}| and min{|B(L)| : B(L) € RED5(C)} = |{ Animal
heat, Cough}|, then |{Headache}| = |{Animal heat, Cough}| = |{Animal heat, Cough}|.

From the example, we can see that the relationship among minimal positive-region
reduct, the minimal Shannon entropy reduct and the minimal Liang entropy reduct
corresponds to Corollary 3.8.

4. Change mechanism of decision performance of a decision table

In this section, we investigate the change mechanism of decision performance of a
decision table from the viewpoint of decision evaluation.

Approximation accuracy of a classification ac(F) was introduced in Pawlak (1991).
Let F = {Y,Y,,...,Y,} be aclassification of the universe U and C a condition attribute
set. Then, C-lower and C-upper approximations of F are given by CF =
{CY,,CY,,...,CY,} and CF = {CY,,CY,,...,CY,}, respectively, where CY;=
Ux€UlxlcCY,€EF}),1=i=n and CY,=U{x€EU|xlcNY;#0,Y; €
F},1 =i = n. The approximation accuracy of F by C is defined as

ZY;EFIgYil

ac(F) = —.
et ZY,EFICYil
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The approximation accuracy expresses the percentage of possible correct decisions when
classifying objects by employing the attribute set C. In a broad sense, ac(F) can be used to
measure the certainty of a decision table. However, it has some limitations. In Qian et al.
(2008b), a new certainty measure o was proposed for overcoming these limitations, which
is shown as follows.

DEerFINITION 4.1 (QIAN ef al. 2008b). Let S = (U,C U D) be a decision table and
RULE = {Z;|Z;; : des(X;) — des(Y;),X; € U/C,Y; € U/D}. The certainty measure « of
S is defined as

ols) = ZZs(Z,,)mz,p ZZ i e || . ®)

i=1 j=
Through using the definition, one can get the following Theorem 4.2.
THEOREM 4.2. Let S=(U,CUD) and § =(U,BUD) be two decision
tables. If U/C={X17X2,...,Xm}, U/B={X1,X2,..., X14—17Xu+1;--~7Xv—1,

Xoi1s oo X, X, UX,} and U/D = {Y,,Y>,...,Y,}, then a(S') = «(S), especially
o) = ) iff w(Z,) = wZ,)) for j = n.

Proof. From the definition of certainty measure «, it follows that

u Z”:lxmmz 2”:<(|xuuxv)rw,|)2

A= aS) — ) U1 11X, U X,D)

i=1,iFu,i#v j=1
B Z lem/l 2”:|Xurn/j|2_§":|me/j|2
s e WX & UK & (Ul
S GARR/E vil? LA vl yo o v’
Z UIAX + 1X0D) lU11X.| lUlix,|

Z X)X, N Yl = IX,01X, N Y2
[UNX XX+ 1X0])

J=1 J=1

_ _i XX (2(Zig) = Z,)) _
U IXD

Clearly, one has that ay = 0 when w(Z,)) = w(Z,;). That is &(S) = a(S"). O
The following Corollary 4.3 is directly derived from Theorem 4.2.

COROLLARY 4.3. Let S=(U,CUD) and § = (U,BU D) be two decision tables.
If U/B>U/C, then a(S') = (S).

Corollary 4.3 shows that certainty measure « of the decision table after the condition
attribute set becomes coarser will not be more than the one in the original table.

As follows, we analyse the change mechanism of the consistency measure of a decision
table. The consistency measure from Qian et al. (2008b) is another important measure for
assessing the decision performance of a decision table, which is shown in Definition 4.4.

DEFINITION 4.4 (QIAN et al. 2008b). Let S = (U,C U D) be a decision table and
RULE = {Z;;|Z;; : des(X;) — des(Y;),X; € U/C,Y; € U/D}. The consistency measure
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B of S is defined as

1Xi
B(S) = ZlUl |X|Z|X N Y@ = w(Zy) |, ™

where N; is the number of decision rules determined by the condition class X; and u(Z;) is
the certainty degree of the rule Z
Using the consistency measure, the following Theorem 4.5 can be derived.

THEOREM 4.5. Let S = (U,C U D) and §' = (U, B U D) be two decision tables, if U/C =
(X1,Xo, ... Xm}, U/B=1{X1,X2, ... Xu 1, Xuits - Xo 12 Xoits oo X, X U X, ),
U/D={Y,Yy,...,Y,} then the relationship between B(S') and B(S) is uncertain,
especially, B(S) = B(S) iff W(Z,)) = wW(Z,;) for j = n.

Proof. From the definition of consistency measure, it is easy to know that
|X;]

B(S) =
Z |U|

i=1 j=

IXI

le N YilZy)(1 — u(zij»]

) X. Nyl 1x,nyl’
= B(S) — B(S) = —
Ba = B = B = §_j< X o

Z X, Nyl Ix,ny/l’
=1 |XV| |Xv|2

7
B iZ ((IXM NYl+Ix, Nyl dx.nyl+lx,n Yj|)3>
Ul X+ 1%, (Xl + 1x,?

Let x = |X,|, y = |X,], § = (IX, N Y;|/IX.]) and o7 = (X, N Y¥;|/1X,]). It follows that

By = z”: (50)° (5 X)3 Z (<f,y) (o) i: (8x + o) (B + o)’

o x oo xdy (x+y)?

Z (0 o) =28 = o+ 38
+ Z %(((Bj — g’ = & — 207 +3807)y)

0;
_ny((x+ )2 1—28]_0'/)X+(1_20-]_8/)y)
j=1

Obviously, when 6; = oy, Vj =n, ie. w(Z,) = w(Z,), we have that By = 0. Thus,
B(S) = B(S). Otherwise, the value of B, is uncertain. O

Theorem 4.5 easily deduces the following corollary.
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COROLLARY 4.6. Let S=(U,CUD) and S = (U,BU D) be two decision tables.
If U/C < U/B, then the relationship between B(S) and B(S) is uncertain.

Corollary 4.6 indicates that, for a decision table, the change of the consistency measure
B is uncertain after the condition attribute set becomes coarser.

THEOREM 4.7. Let S=(U,CUD) and S = (U,BU D) be two decision tables, if
U/C:{XhXZv'-'va}, U/B:{XhXZ?-'~7XL¢717XM+1a-"aXV71, Xv+17-~-7va
X, UX,},U/D={Y1,Y2}, then B(S') = B(S), especially, B(S) = B(S) iff wZy) =
J(Z,) for j = 2.

Proof. Let x = |X,|, y = |X,], 8 = (IX, N ¥;|/1X.]) and o} = (IX, N Y,|/|X,]). From the
proof of Theorem 4.5, we have that

) n (8 _ ‘)2
Ba = B — BE) = le %((1 =28 = opx + (1 = 207 = §)y).

Furthermore, by the existing condition U/D = {Y;,Y,}, we have that 6, + & = 1 and
o] + 0o = 1. Thus, it follows that

S — 2
2
Ly o)
(x+y)

Obviously, when §; = oy, i.e. W(Z,;) = w(Z,) for j = 2, we have that B(§') = B(S). O
The following Corollary 4.8 generalises the results of Theorem 4.7.

COROLLARY 4.8. Let S= (U,CUD) and §' = (U,B U D) be two decision tables, if
U/C <U/Band U/D = {Y;,Y,}, then B(S') = B(S).

Corollary 4.8 shows that, for a decision table with two decision values, consistency
measure 3 of the decision table is not more than the one after the condition attribute set
becomes coarser.

In Qian et al. (2008b), the support measure of a decision table is proposed for
computing the entire support measure of all decision rules. In the following, we will
consider the mechanism of the measure.

DEFINITION 4.9 (QIAN et al. 2008b). Let S = (U,C U D) be a decision table and
RULE = {Z;|Z;; : des(X;) — des(Y;),X; € U/C,Y; € U/D}. The support measure y of
S is defined as

=33 sz =30y KO UL ®)
i=1 j=1 i=1 j=1 |U|

The following Theorem 4.10 gives the monotonicity of the support measure in the
context of decision tables.
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THEOREM 4.10. Let S=(U,CUD) and § = (U,BUD) be two decision tables.
If U/C:{Xl,XQ,...,Xm}, U/B:{X],Xz,...,xu_], U/D:{Y1,Y2,...,Yn}7
Xutts s Xom 1, Xoa 1, -, Xy Xy U X, }, then p(S) = y(S).

Proof. By the existing condition, it follows that

, X, Nyl SN XNyl
Ya=AS) — HS) = ZZ e ZZ e

1 j=1 i=1 j=1

n 2 n 2 n 2
_ Z (X, N Y +1X, N Y;)) Z X, N Yl Z X, N Yl

U = 7] R~ S [/

ZZlX NY;lIx, Nyl
— lUl?

=0.

O

COROLLARY 4.11. Let S=(U,CUD) and § = (U,B U D) be two decision tables.
If U/C < U/B, then Y(S') = ¥(S).

From Corollary 4.11, we know that, for a given decision, the finer condition attribute
set usually decreases the support measure 7.

5. Change in decision performance induced by reduction approaches

In this section, we investigate the three kinds of attribute-reduction methods, namely
positive region reduction, Shannon’s entropy reduction and Liang’s entropy reduction.
We analyse the difference between the decision performance of a reduced decision table
and that of the original one.

5.1 Change in decision performance induced by positive-region reduction

The analysis on change of decision performance of a decision table after performing a
positive-region reduction is shown in this subsection.

THEOREM 5.1. Let S = (U,C U D) and S’ = (U, B U D) be two decision tables, and B be a
positive-region reduct of C. If X, € U/C and X, € U/C are in the consistent part of the
decision table S, and X, U X, = X,,, X,, € U/B, then w(Z,)) = w(Z,)) for Y; € U/D,
where /J*(th) = |X, N Y]|/|Xl|

Proof. From the condition, we have that the two classes X,, and X,, in the consistent part of
S combines a new condition class X,, in §'. Therefore, the condition classes X,, will fall in
the inconsistent part of ' if 3j < n such that w(Z,;) # w(Z,;). Clearly, the positive region
of S is unequal to the one of §', which is in contradiction with the assumption that B is a
positive-region reduct of C. Thus, w(Z,;) = w(Z,;) for Y; € U/D. O

Theorem 5.1 indicates that if some condition classes in the consistent part of a decision
table combine to a new condition class after performing the positive-region reduction, then
the rules induced by these condition classes have the same certainty measures.

Moreover, we first investigate the change mechanism of the entire certainty measure «
with respect to the positive-region reduction.
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THEOREM 5.2. Let S = (U,C U D) and §' = (U,B U D) be two decision tables. If § is
consistent and B is a positive-region reduct of C, then

a(S) = aS), BS) = B(S), 1) = AS).

Proof. By the existing condition that B is a positive-region reduct of C, we have
U/Bz U/C. 1t is obvious that a(S) = a(S), B(S") = B(S), WS) = wS) if U/B=U/C,
and the case U/BU/C will be analysed in detail.

For simplicity, without any loss of generality, let U/C = {X,Xs, ..., Xn},
U/B = {X17X2, . ,Xu717Xu+1, e >val, Xv+17 ,Xm, Xu U XV} and U/D = {Y]7
Yo, ..., Y, ).

Since the decision table S is consistent, then the decision table S’ after performing the
positive-region reduction is also consistent. Furthermore, according to Theorem 5.1, we
have that w(Z,;) = w(Z,;) for j = n. Thus, by Theorems 4.2, 4.5 and 4.10, we have that
a(S) = a(S), B = B(S), ¥(S') = ¥S), respectively. a

Theorem 5.2 shows that, for a consistent table, if it is reduced by performing the
positive-region reduction, then the certainty measure of the table will be unchanged.

THEOREM 5.3. Let S = (U,C U D) and S = (U, B U D) be two decision tables. If B is a
positive-region reduct of C, then a(S') = «(S), the relationship between B(S') and B(S) is
uncertain, and y(S") = YS).

Proof. From the condition that B is a positive-region reduct of C, we have U/B = U/C.
It is obvious that a(S") = «(S), B(S") = B(S), N(S') = ¥S) if U/B = U/C, and the case
U/B > U/C will be analysed in detail.

For simplicity, without any loss of generality, we suppose that U/C = {X1, Xy, ...,
Xnt, U/B={X1,X0, .., Xu=1, X015 -, Xo—15 Xog1y -, X, X, UX,} and U/D =
{Y1,Ya, ..., Y, }.

Through using the positive-region reduction, the change of condition classes has two
cases. One is the combination of the condition classes in the consistent part of a decision
table and the other is combination of the condition classes in the inconsistent part of a
decision table. These two cases are listed as follows:

(1) The condition classes combined in the consistent part. Let the two classes X,, and
X, in the consistent part of decision table S become a new condition class X, U X,
after performing the positive-region reduction and the other condition classes are
unchanged. From Theorem 5.1, it follows that w(Z,) = u(Z,), j=n.
Furthermore, by Theorems 4.2, 4.5 and 4.10, one has that «(S") = «(S), B(S) =
B(S) and y(§') = ¥(S), respectively.

(2) The condition classes combined in the inconsistent part. Let the two classes X, and
X, in the inconsistent part of table S be combined to a class X, U X, after the
positive-region reduction and other condition classes remain unchanged. From
Theorems 4.2, 4.5 and 4.10, it follows that a(S') = «(S), the relationship between
B(S") and B(S) is uncertain, and YS') = Y(S).

In conclusion, a(S') = a(S), the relationship between B(S') and B(S) is uncertain, and
WS = U S), if B is a positive-region reduct of C. |

Theorem 5.3 states that, for a decision table, the certainty measure « of the decision
table after using the positive-region reduction will be no more than that of the original one,
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the consistency measure (B of the reduced table will be uncertain after performing a
positive-region reduction and the support measure <y after using the positive-region
reduction will be no less than that of the original one. Example 5.1 shows their change
mechanism.

Example 5.1. We employ Tables 2 and 3 to illustrate the change in the decision
performance of a decision table after performing the positive-region reduction.

It is easy to calculate using Definition 2.1 that the set of all positive-region reducts of
Table 2 is REDS(C) = {{Muscle pain, Cough}}. Let B(P) = {Muscle pain, Cough},
S = (U,B(P) U D), we have that

a(S) = 0.4861, a(S) = 0.4833,
B(S) = 0.2639, B(S) = 0.2667,
wS) = 0.1528, ¥(S') = 0.2778.

It is clear that
a(S) < a(S), BS) > B(S), nS) > AS).

Furthermore, we can obtain that the set of all positive-region reducts of
Table 3 is RED{;(C)= {{Muscle pain, Cough}}. Let B(P) = {Muscle pain, Cough},
S = (U,B(P) U D), one has

a(S) = 0.4861, a(S') = 0.4860,
B(S) = 0.2639,  B(S) = 0.2600,
wS) = 0.1528,  ¥(S") = 0.2500.

Obviously,
a(s) < afS), BE) < BS), AS) > HS).

THEOREM 5.4. Let S=(U,CUD) and S =(U,BUD) be two decision tables,
U/D = {Y,,Y,}. If B is a positive-region reduct of C, then a(S") = a(S), B(S") = B(S)
and y(S") = y(S).

Table 2. A decision table about diagnosing rheum.

Patients Headache Muscle pain Animal heat Cough Rheum
el Yes No High Yes No

e Yes Yes High No Yes

e3 Yes Yes Normal Yes No

ey Yes Yes Normal Yes No

es Yes Yes Normal Yes Yes

€6 Yes Yes Normal Yes Possible
e7 No Yes High Yes No

eg No Yes High Yes No

ey No Yes High Yes No

e No Yes High Yes Yes
e No Yes High Yes Yes

e No Yes High Yes Possible
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Table 3. A decision table about diagnosing rheum.

Patients Headache Muscle pain Animal heat Cough Rheum
el Yes No High Yes No

e Yes Yes High No Yes

e3 Yes Yes Normal Yes No

ey Yes Yes Normal Yes No

es Yes Yes Normal Yes Yes

es Yes Yes Normal Yes Possible
e7 No Yes High Yes No

eg No Yes High Yes Yes

€9 No Yes High Yes Yes

el No Yes High Yes Yes

e No Yes High Yes Possible
e No Yes High Yes Possible

Proof. According to the condition that B is a positive-region reduct of C, we have
U/Bz U/C. 1t is obvious that a(S) = a(S), B(S") = B(S), W) = wS) if U/B=U/C,
and the case U/B > U/C will be investigated in detail.

For simplicity, without any loss of generality, we suppose that U/C = {X1, Xz, ...,
Xm}» U/B = {X17X2, e >Xu—17Xu+la ce aXv—l, Xv+17 Ce ,Xm, Xu U XV} and U/D =
{Y1, Y2}

Through using the positive-region reduction, the change of condition classes has two
cases. One is the combination of the condition classes in the consistent part of a decision
table and the other is the combination of the condition classes in the inconsistent part of a
decision table. These two cases are listed as follows:

(1) The condition classes combined in the consistent part. Let the two classes X, and
X, in the consistent part of decision table S become a new condition class X, U X,
after performing the positive-region reduction and the other condition classes
remain unchanged. From Theorem 5.1, it follows that w(Z,;)) = wZ,)), j = n.
Furthermore, by Theorems 4.2, 4.7 and 4.10, one has that a(S') = a(S), B(S) =
B(S) and y(S") = Y(S), respectively.

(2) The condition classes combined in the inconsistent part. Let the two classes X, and
X, in the inconsistent part of table S be combined to a class X, U X, after the
positive-region reduction and the other condition classes remain unchanged. From
Theorems 4.2, 4.7 and 4.10, it follows that a(S") = a(S), B(S") = B(S) and

HS) = AS).
In conclusion, a(S') = «(S), B(S) = B(S) and YS') = ¥S), if B is a positive-region
reduct of C and there are only two decision values in a decision table. ]

Theorem 5.3 states that, for a decision table with two decision values, the certainty
measure « and the consistence measure (3 after using the positive-region reduction will be
no more than that in original table, and the support measure y will be no less than that of
original one. It is illustrated by the following example.

Example 5.2. We employ Table 1 to illustrate the change in the decision performance of a
decision table after performing the positive-region reduction.

It is easy to obtain by Definition 2.1 that the set of all positive-region
reducts RED‘;(C) = {{Headache}, { Animal heat, Cough}}. Let B;(P)= {Headache},
B>(P) = {Animal heat, Cough}, S| = (U,B(P) U D) and S, = (U, B,(P) U D), we have
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that

a(S) = 0.5667, a(S;) = 0.5556, a(S,) = 0.5667,
B(S) =0.1333, B(S) =0.1111, p(S,) = 0.1333,
¥(S) = 0.1200, ¥(S;) = 0.4200, ¢(S>) = 0.1200.

It is clear that

aS) < ),  aSy) = ),
B(S1) < BS),  B(S2) = B(S),
Y1) > AS),  AS2) = AS).

5.2 Change in decision performance induced by Shannon’s entropy reduction

In this subsection, we will analyse the change mechanism of decision performance of a
decision table through performing Shannon entropy reduction.

THEOREM 5.5. Let S = (U,C U D) and §' = (U, B U D) be two decision tables. If B is a
Shannon entropy reduct of C, then

alS) = alS), BE)=pBE) and AS) = ASI).

Proof. For simplicity, without any loss of generality, let U/C = {X|,Xs, ..., Xn},
U/B = {Xl,Xz, 7Xu—l7Xu+]7 ...7XV_1, Xv+la ...,Xm, Xu UXV} and U/D = {Y]7
Y,, ..., Y,}. From the existing condition that B is a Shannon entropy reduct of C and
Theorem 3.1, it follows that w(Z,;) = w(Z,;).

Therefore, by Theorem 4.2, a(S) = a(S'), from Theorem 4.5, B(S) = B(S') and
according to Theorem 4.7, y(S) = ¥(S). (]

Theorem 5.5 states that the certainty measure « of a decision table will be
unchangeable after Shannon’s entropy reduction, the consistent measure [3 of a
decision table will also be unchangeable after using Shannon’s entropy reduction, and
the support measure vy through using Shannon’s entropy reduction will be no less than
that of the original one. Example 5.4 illustrates the change mechanism of the support
measure.

Example 5.3. We employ Table 1 to illustrate the change in the decision performance of a
decision table after performing the Shannon’s entropy reduction.

It is easy to calculate from Definition 2.2 that the set of all Shannon entropy
reducts REDIS)(C) = {{Headache, Muscle pain}, { Animal heat, Cough}}. Let B;(S) =
{Headache, Muscle pain}, B>(S) = {Animal heat, Cough} and S| = (U, B(S) U D), S, =
(U, B2(S) U D), we have that

a(S) = 0.5667,  a(S;) = 0.5667, a(Sy) = 0.5667,
B(S) = 0.1333, B(S;) =0.1333, B(S,) = 0.1333,
¥(S) = 0.1200, ¥(S;) = 0.2400, ¥(S>) = 0.1200.
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Obviously,

a(S) = alS) = alS), B = B(S2) = B(S), S > AS), AS2) = AS).

5.3 Change in decision performance induced by Liang’s entropy reduction

In this subsection, one will express a variety of decision performance through Liang’s
entropy reduction.

THEOREM 5.6. Let S = (U,C U D) and S' = (U, B U D) be two decision tables. If B is a
Liang entropy reduct of C, then

a®) = as), BE)=pS) and AS) = HS).

Proof. For simplicity, without any loss of generality, let U/C = {X1,X2, ..., X},
U/B = {X[,Xz, . >Xu717Xu+17 e 7XV*19XV+17 . ,Xm,Xu U XV} and U/D = {Yl, Y27
..., Y,}. Through using Liang’s entropy reduction, we suppose that the two classes X, and
X,(u,v < m) combine to a new class X, U X,. From Theorem 3.4, it follows that
M(Zuj) = M(Zvj)-

Therefore, from Theorem 4.2, a(S) = a(S'), by Theorem 4.5, B(S) = B(S) and from
Theorem 4.7, y(S) = ¥(S5). O

Theorem 5.6 shows that the certainty measure a will be unchanged after performing
Liang’s entropy reduction, the consistency measure will also be unchanged after
performing a Liang’s entropy reduction and the support measure after using Liang’s
entropy reduction will be no less than that of the original one. This idea can be explained
by the following example.

Example 5.4. We employ Table 1 to illustrate the change in the decision performance of a
decision table after performing Liang’s entropy reduction.

Using Definition 2.3, it is easy to get the set of all Liang entropy
reducts REDf)(C) = {{Headache, Animal heat, Muscle pain}, { Animal heat, Cough}}.
Let Bj(L) = {Headache, Animal heat, Muscle pain}, B,(L) = { Animal heat, Cough} and
S =(U,Bi(L)U D), S, = (U,By(L) U D). We have that

a(S) = 0.5667, a(S) = 0.5667, a(S,) = 0.5667,
B(S) = 0.1333, B(S)) =0.1333, p(S,) = 0.1333,
¥(S) = 0.1200, ¥(S;) = 0.1200, $(S>) = 0.1200.

Obviously,
alS)) = a(Sy) = alS),  B(S1) = B(S2) = B(S),  ¥S1 = US2) = NS).

6. Experimental analysis

In this section, through experimental analysis, we have illustrated the change in the decision
performance after using the positive-region reduction, Shannon’s entropy reduction and
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Liang’s entropy reduction, for general decision tables. We have downloaded the data-set
Spect from UCI database (Spectis a decision table with two decision values). In order to verify
their performance, we randomly extracted 150 objects from the data-set 100 times. As the
limitation of the paper’s length, one of the 100 tables extracted from Spect is selected to verify
our results.

6.1 Performance change deriving from positive-region reduction

All the positive-region reducts and their corresponding three performance measures of the
original table are shown in Table 4 and Figures 1-3. The values of «, 8 and vy of the
original table and the corresponding reduced tables are shown in Table 4. Figures 1-3
show that the value of each of «, 8 and y with respect to every positive-region reduct,
respectively.

From Table 4 and Figures 1-3, it is easy to draw the following conclusion. Through
using a positive-region reduction, the certainty measure « and the consistency measure

Table 4. All positive-region reducts and decision performance measures of the corresponding
reduced tables.

No. Reducts 1o B b%

1 1,2,3,4,8,9,10,11,12,14,15,16,19,20,21 0.90379 0.80758 0.01396
2 1,2,3,4,7,8,9,10,11,13,14,15,16,19,20,21 0.90444 0.80889 0.01244
3 1,2,3,4,8,9,10,11,12,14,17,20,21,22 0.90339 0.80679 0.01102
4 1,2,3,4,8,9,10,11,12,14,19,21,22 0.90381 0.80762 0.01262
5 1,2,3,4,5,8,9,10,11,13,14,17,20,21,22 0.90381 0.80762 0.01058
6 1,2,3,4,7,8,9,10,11,13,14,17,20,21,22 0.90400 0.80800 0.01004
7 1,2,3,4,8,9,10,11,13,14,16,17,20,21,22 0.90381 0.80762 0.01031
8 1,2,3,4,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
9 1,2,3,4,6,8,9,10,12,14,15,16,19,20,21 0.90379 0.80758 0.01387
10 1,2,3,4,5,6,8,9,11,12,14,15,19,20,21 0.90379 0.80758 0.01396
11 1,2,3,4,6,8,9,10,11,12,14,15,19,20,21 0.90379 0.80758 0.01396
12 1,2,3,4,6,8,9,11,12,14,15,17,19,20,21 0.90379 0.80758 0.01378
13 1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21 0.90444 0.80889 0.01236
14 1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21 0.90444 0.80889 0.01262
15 1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21 0.90444 0.80889 0.01244
16 1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21 0.90444 0.80889 0.01236
17 1,3,4,6,8,9,10,12,14,16,17,20,21,22 0.90339 0.80679 0.01111
18 1,3,4,6,8,9,10,12,14,16,19,21,22 0.90381 0.80762 0.01253
19 1,3,4,5,6,8,9,11,12,14,17,21,22 0.90337 0.80673 0.01307
20 1,3,4,6,8,9,10,11,12,14,17,21,22 0.90337 0.80673 0.01289
21 1,3,4,6,8,9,11,12,14,17,19,21,22 0.90381 0.80762 0.01262
22 1,3,4,5,6,8,9,11,12,14,19,21,22 0.90381 0.80762 0.01271
23 1,3,4,6,8,9,10,11,12,14,19,21,22 0.90381 0.80762 0.01262
24 1,2,3,4,6,8,9,10,13,14,16,17,20,21,22 0.90381 0.80762 0.01022
25 1,3,4,6,7,8,9,10,13,14,16,17,20,21,22 0.90400 0.80800 0.00987
26 1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22 0.90444 0.80889 0.00967
27 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960
28 1,2,3,4,5,6,8,9,11,13,14,17,20,21,22 0.90381 0.80762 0.01076
29 1,2,3,4,6,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.01004
30 1,3,4,5,6,7,8,9,11,13,14,17,20,21,22 0.90400 0.80800 0.01013
31 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
32 1,2,3,4,5,6,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.01033
33 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969

* Original table 0.90444 0.80889 0.00933
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Figure 2. Variation of the consistency measure [ after positive-region reducts.

B are not larger than the original certainty measure and the original consistency measure
respectively, and the support measure 7 is not smaller than the original support measure.

6.2 Performance change deriving from Shannon’s entropy reduction

All the Shannon entropy reducts and their corresponding three performance measures
of the original table are shown in Table 5 and Figures 4—6. The values of «, B and y
of the original table and the corresponding reduced tables are shown in Table 5.
Figures 4—6 show the values of «, 8 and vy with respect to every Shannon entropy reduct
respectively.

From Table 5 and Figures 4-6, it is easy to draw the following conclusion: after
performing a Shannon entropy reduction, each of the certainty measure o« and the
consistency measure f3 is the same as each of those induced by an original decision table,
and the support measure 7 is not smaller than the original support measure.
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6.3 Performance change deriving from Liang’s entropy reduction

All the Liang entropy reducts and their corresponding three performance measures of the
original table are shown in Table 6 and Figures 7—9. The values of «, B and 7y of the
original table and the corresponding reduced tables are presented in Table 6. Figures 7—9
show the value of each of a, B and 7y with respect to every positive-region reduct,
respectively.

Table 5. All Shannon entropy reducts and decision performance measures of the corresponding
reduced tables.

No. Reducts a B b%

1 1,2,3,4,8,9,10,11,12,13,14,19,21,22 0.90444 0.80889 0.01120
2 1,2,3.4,7,8,9,10,11,13,14,15,16,19,20,21 0.90444 0.80889 0.01240
3 1,2,3,4,8,9,10,11,12,13,14,15,16,19,20,21 0.90444 0.80889 0.01227
4 1,2,3,4,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
5 1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21 0.90444 0.80889 0.01262
6 1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21 0.90444 0.80889 0.01244
7 1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21 0.90444 0.80889 0.01236
8 1,2,3,4,5,6,8,9,11,12,13,14,15,19,20,21 0.90444 0.80889 0.01236
9 1,2,3,4,6,8,9,10,11,12,13,14,15,19,20,21 0.90444 0.80889 0.01227
10 1,2,3,4,6,8,9,11,12,13,14,15,17,19,20,21 0.90444 0.80889 0.01209
11 1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21 0.90444 0.80889 0.01236
12 1,2,3,4,6,8,9,10,12,13,14,15,16,19,20,21 0.90444 0.80889 0.01218
13 1,3,4,5,6,8,9,11,12,13,14,19,21,22 0.90444 0.80889 0.01120
14 1,3,4,6,8,9,10,11,12,13,14,19,21,22 0.90444 0.80889 0.01111
15 1,3,4,6,8,9,11,12,13,14,17,19,21,22 0.90444 0.80889 0.01102
16 1,2,3,4,5,6,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
17 1,2,3,4,6,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.01004
18 1,3.4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
19 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
20 1,3,4,6,8,9,10,12,13,14,16,19,21,22 0.90444 0.80889 0.01111
21 1,2,3,4,6,8,9,10,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
22 1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22 0.90444 0.80889 0.00969
23 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960

* Original table 0.90444 0.80889 0.00933
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Table 6. All Liang entropy reducts and decision performance measures of the corresponding

reduced tables.

No. Reducts a B Y
1 1,2,3,4,7,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
2 1,2,3,4,8,9,10,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00978
3 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960
4 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
5 1,2,3,4,6,7,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.00969
6 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
7 1,3,4,6,8,9,10,12,13,14,16,19,20,21,22 0.90444 0.80889 0.00978
8 1,3,4,5,6,8,9,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00987
9 1,3,4,6,8,9,10,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00978
10 1,3,4,6,8,9,11,12,13,14,17,19,20,21,22 0.90444 0.80889 0.00969
* Original table 0.90444 0.80889 0.00933
0.9054 -
s 09052 q |—— o of the original table
© 0.9050 1 |—°— «of reducted tables
2 0.9048 -
g 0.9046 A
> 0.9044 -
§ 0.9042 -
§ 0.9040 -
%5 0.9038 -
@ 0.9036 -
3 0.9034
= 0.9032 -
0-9030 T T T T T T T 1
1 2 3 4 5 6 7 9 10
No. of reducted tables
Figure 7. Variation of the certainty measure « after Liang entropy reducts.
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Figure 8. Variation of the consistency measure [ after Liang entropy reducts.
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Figure 9. Variation of the support measure 7y after Liang entropy reducts.

From Table 6 and Figures 7-9, it is easy to draw the following conclusions: after
performing a Liang entropy reduction, the change is similar to Shannon’s entropy
reduction, each of the certainty measure « and the consistency measure 3 is the same as
each of those induced by a original decision table, and the support measure vy is not smaller
than the original support measure.

7. Conclusions

Certainty measure, consistency measure and support measure are three important
measures for evaluating the decision performance of a decision table. In this paper, we
have analysed the change mechanism of the decision performance after performing the
positive-region reduction, Shannon’s entropy reduction and Liang’s entropy reduction,
and have obtained some of their important properties. These three measures may be
changed through using a positive-region reduction. However, the certainty measure and
the consistency measure are unchanged after using a Shannon entropy reduction and Liang
entropy reduction, and the support measure is usually increased. These results may be
helpful for determining which of the positive-region reduction, Shannon entropy reduction
and Liang’s entropy reduction is preferred for a practical decision problem in the context
of complete decision tables. Further development will be focused on the change
mechanism of three evaluation measures in the context of incomplete decision tables.
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