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a b s t r a c t 

The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classifica- 

tion or regression. It is also a lazy algorithm that does not use the training data points to do any gener- 

alization, in other words, it keeps all the training data during the testing phase. Thus, the population size 

becomes a major concern for kNN, since large population size may result in slow execution speed and 

large memory requirements. To solve this problem, many effort s have been devoted, but mainly focused 

on kNN classification. And now we propose an algorithm to decrease the size of the training set for kNN 

regression(DISKR). In this algorithm, we firstly remove the outlier instances that impact the performance 

of regressor, and then sorts the left instances by the difference on output among instances and their 

nearest neighbors. Finally, the left instances with little contribution measured by the training error are 

successively deleted following the rule. The proposed algorithm is compared with five state-of-the-art al- 

gorithms on 19 datasets, and experiment results show it could get the similar prediction ability but have 

the lowest instance storage ratio. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

kNN is a kind of supervised learning method. Supervised learn-

ing infers a function(learner) from a training data T , which is a

collection of training examples called samples [1] . Each sample is

a pair including an input vector(instance) and the desired output

value. After learning from the training set, the learner seeks to cor-

rectly determine the output for unseen instances. 

In practice, the training set usually contains some noise or

redundant instances, which may affect the performance of the

learners on it. Thus, an increasing number of instance selection

algorithms are proposed, and they aim to remove these super-

fluous instances from the training data. In general, the available

instance selection algorithms could fall into two categories: wrap-

per algorithms and filter algorithms [2] . The former is a kind of

algorithms that select instances based on the accuracy obtained

by the learners, while the latter select the instances only relying

on the training data without considering the learners. Obviously, it

could be more appropriate to use wrapper algorithms for a specific

learning task. The executing time of learning algorithms will be
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E-mail addresses: sys_sd@126.com (Y. Song), ljy@sxu.edu.cn (J. Liang), 

sxsqxjlws@163.com (J. Lu), zhaoxw84@163.com (X. Zhao). 

t  

c  

m  

p  

http://dx.doi.org/10.1016/j.neucom.2017.04.018 

0925-2312/© 2017 Elsevier B.V. All rights reserved. 
educed after instance selection, but their generation ability could

aintain relatively invariable or even be better. And instance se-

ection algorithms for kNN are one kind of the wrapper algorithms.

Many developments have been achieved in the research on in-

tance selection in kNN study. However, it is noteworthy that pre-

ious tests were taken on learning algorithm with the aim of clas-

ification [3] , instance selection on regression remains largely un-

erstudied. Only border instances needed to be considered in clas-

ification, but not in the case of regression. Because regression is

ifferent from classification, kNN instance selection algorithm for

lassification cannot be used in the regression problem. 

In this paper, an instance selection algorithm named DISKR is

roposed to reduce training data for kNN regression. This algo-

ithm firstly removes the outlier instances in the set T at one time

nd gets the set S , and then sorts the instances in the set S by

efined measure. Following the sorted order, instances with less

ontribution to the regressor will be removed one by one; the con-

ribution of each instance x is measured by the difference between

he training error over S and the one over S − { x } . As the removed

nstance affects evaluating the contribution of the left instances,

hen it needs to reassess their contribution. However, DISKR only

onsiders the instances whose k nearest neighbors include the re-

oved instance according to the locality of kNN. In a word, DISKR

rovides a simple and effective algorithm to distinguish which of

http://dx.doi.org/10.1016/j.neucom.2017.04.018
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he instances have less and negative effect to the kNN regressor.

he proposed algorithm is compared with five state-of-the-art al-

orithms, and experimental results show that it could greatly re-

uce the size of training data with a similar perdition accuracy. 

In total, our method is innovative. Except for reducing noise

limination, our method mainly tries to remove redundant in-

tances to speed up executing prediction, where those instances

ave a little contribution to the regressor. However, previous al-

orithms only aim to eliminate noise information. Besides, the

hreshold in our method is adaptively determined; instead, it is

xed in advance for traditional threshold-based instance selection

ethods. 

The rest of the paper is organized as follows: Section 2 briefly

eviews existed instance selection algorithms. Section 3 proposes

he algorithm DISKR. Section 4 presents the experiment results on

he real data sets. At last, the conclusion is reached in Section 5 . 

. Related work 

Instance selection algorithms for regression are divided into

wo categories: evolutionary-based and nearest neighbor-based [4] .

Tolvi [5] used a genetic algorithm that is an evolutionary based

o detect the outlier in linear regression models. In this method,

he corrected BIC criterion is selected as the fitness function. Each

ndividual is fully described by a binary vector (z 1 , z 2 , . . . , z N ) ,

here z i = 0 indicates the instance x i is not selected as an out-

ier otherwise it is selected, and i = 1 , 2 , 3 , . . . , N. The results of

his experiment on small datasets have shown that it was not only

ble to detect the outlier, but also avoided the potential problem

hat one outlier prevents another one from being detected. An-

onelli et al. [6] also proposed an instance selection algorithm in

he framework of a multi-objective evolutionary learning of fuzzy

ule-based systems. Different from the work of Tolvi, this algorithm

an on large-scale datasets and got better performance. Though the

lgorithms based evolutionary have better data reduction percent-

ge and higher prediction accuracy, their computational costs are

bout 3 to 4 order of magnitude higher than the ones based on

he neighbor for medium size data sets. Furthermore, the differ-

nce in computational cost becomes larger as the scale of data sets

s growing [6] . So these methods are not easy to apply to the prob-

ems in the real life. 

There also are substantial nearest neighbor-based instance se-

ection algorithms to reduce the training data and speed up its ex-

cution [7] . One of the research objects is the kNN. kNN algorithms

re divided into two types: kNN classification and kNN regression. 

According to the type of selected instances, the existing in-

tance selection algorithms for kNN classification are classified

nto three categories: condensation algorithms, edition algorithms

nd hybrid algorithms [3] . Condensation algorithms seek to select

he instances which are closer to the classification boundaries, also

alled border instances. The intuition behind these algorithms is

hat the border instances have much more effect on classification

han other instances. Because there are fewer border instances in

ost data sets, so they could obtain a normally high reduced ratio.

here are some condensation algorithms, such as CNN [8] , MCS

9] , POP [10] , MSS [11] , and so on. Different from condensation al-

orithms, edition algorithms always try to remove noisy instances,

here those instances do not agree with their neighbors. Though

he reduction ratio is low, they could improve the classification

ccuracy in test instances. These kinds of algorithms includes ENN

12] , Multiedit [13] , RNGE [14] , MoCS [15] , ENRBF [16] , and so

n. Finally, hybrid algorithms were proposed, trying to move the

elated instances combining the two previous strategies above.

NN classifier is highly adaptable to these algorithms. These

lgorithms mainly include IB3 [17] , DROP3 [18] , ICF [19] , HMNEI

20] , FCNN [21] , NPPS [22] and other scalable algorithms for large-
cale data [23–25] . Due to the difference between classification

nd regression on decision aim and error measure, the instance

election algorithms for kNN classification cannot be applied on

NN regression. 

kNN regression is an important algorithm with less concern

ompared with kNN classification, but there are some studies

n this topic. Since there are some noisy instances in data, and

hey take the negative effect on the performance of the regressor.

herefore, these instances should be removed first before train-

ng. For example, Guillen et al. [26] proposed a novel instance se-

ection algorithm with mutual information in time series predic-

ion. Although this method gets a good performance on artificially

enerated data, it needs to be tested on the real data sets. Fde

t al. [27] present a class conditional instance selection for regres-

ion (CCISR), and it is an extension of instance selection for kNN

lassification. Meanwhile, CCISR has been tested on 12 real regres-

ion problems, showing a good reduction ratio while keeping the

ost meaningful examples. However, CCISR has higher computa-

ional time and memory demand, so that it usually exhausts the

esources in practical applications [4] . In fact, a single learning al-

orithm is difficult to achieve a good performance, while ensemble

ethods with multiple learning algorithms could obtain the bet-

er performance [28] . For this purpose, Stojanovi ́c [4] proposed the

usion of instance selection algorithms for regression tasks by en-

emble idea. Compared with the original instance selection algo-

ithms, the ensemble algorithms had the best performance on pre-

iction error and reduced subset size. Totally, the existing methods

ainly focus on noisy instances elimination, rather than the in-

tances with less effect on the regressor. Because there are fewer

oisy instances in most of the data, the reduction capability of

hese methods is normally low. Moreover, these methods do not

onsider the effect of the removed instances on the regressor, so

heir performance will be affected. 

. DISKR 

.1. Preliminary description 

kNN regressor is based on learning by comparing the given

est instances with the training set [29] . Let T = { (x 1 , y 1 ) , ( x 2 , y 2 ),

 . . , (x N , y N ) } be the training set with distance metrics d , where

 i = (x i 1 , x i 2 , . . . , x im 

) is the i th instance denoted by m attributes

ith its output y i , and N is the number of instances. When given a

est instance x , it needs to compute the distance d i between x and

ach instance x i in T , and sorts the distance d i by its value. If d i 
anks in the i th place, then the distance d i corresponding instance

s called the i th nearest neighbor NN i ( x ), and its output is noted as

 i ( x ). Finally the prediction output ̂ y of x is the mean of the out-

uts of its k nearest neighbors in regression, i.e. , ̂  y = 

1 
k 

∑ k 
i =1 y i (x ) . 

.2. Instance selection for kNN regression 

Our DISKR algorithm is mainly divided into two steps: detecting

utlier instances and removing the indistinctive instances. We will

ntroduce this algorithm in two steps in this section. 

.2.1. Detecting outliers 

In statistical analysis, outlier instances are instances that are

omehow different from the majority of the instances. kNN rule

s easily influenced by the impact of outlier instances, which need

o be removed before instance selection. 

To begin, we should first remove outlier instances before the

rocess above starts. Similarly, we remove them at one time. Based

n the characters of outlier instances and their effect to the kNN

egressor, the instances with the larger difference on the output

ith their nearest neighbors used to be outlier instances. And
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we define a rule to recognize the outlier instances. If P D (x i ) =
| y i − ̂ y i | > (1 − θ ) y i , then the instance x i is an outlier instance, oth-

erwise it is not, where θ ∈ [0, 1]. 

3.2.2. Deleting others 

Similar as instance selection for classification, the instances

with more contribution to the regressor will be chosen as the rep-

resentative instances. The contribution evaluation of each instance

plays an important part on instance selection. However, it is diffi-

cult to directly evaluate the effect. For this reason, we propose an

indirect method. If deleting an instance, the regressor would be in-

fluenced, it would be OK. Instance x i affects the regressor as it is in

T , but loses the effect as it is not in T . So the effect of x i could be

estimated by the change of performance of regressor over T and

T − { x i } . The training error is used to approximately estimate the

regressor performance, and it is expressed by the residual sum of

squares ( RSS ). 

Let R bf ( x i ) and R af ( x i ) are the RSS over T − { x i } before and after

the x i is removed respectively, and we have 

R b f (x i ) = 

∑ 

x j ∈ T −{ x i } 
(y j − ̂ y j ) 

2 

R a f (x i ) = 

∑ 

x j ∈ T −{ x i } 
(y j − ̂ y ′ 

j 
) 2 (3.1)

where ̂  y j and 

̂ y ′ 
j 

are the predicted output of the regressor built on

T and T − { x i } , and the effect of x i on the regressor is represented

by ∇(x i ) = R a f (x i ) − R b f (x i ) . 

Different from other methods, kNN is a local learning algorithm.

The output of the test instance is only related to its k nearest

neighbors. In order to describe better, we define a new concept

center . 

Definition 1. If an instance x i is one of the k nearest neighbors

of x j , then x j is called the Center of x i , noted as Cen ( x i ). And

�(x i ) = { x i ∈ N N (x j ) | x j ∈ T } , is the Influential-All-Center of x i ,

where NN ( x j ) is the set including all k nearest neighbors of x j . 

�c ( x i ), is the complementary set of �( x i ) where �c (x i ) = { x j ∈
T − { x i } : x j / ∈ �(x i ) } . So ∇( x i ) can be reformulated as follows: 

∇(x i ) = R a f (x i ) − R b f (x i ) 

= 

∑ 

x j ∈ T −{ x i } 
(y j − ̂ y ′ 

j 
) 2 −

∑ 

x j ∈ T −{ x i } 
(y j − ̂ y j ) 

2 

= 

{ ∑ 

x j ∈ �(x i ) 

(y j − ̂ y ′ 
j 
) 2 + 

∑ 

x j ∈ �c (x i ) 

(y j − ̂ y ′ 
j 
) 2 

} 

−
{ ∑ 

x j ∈ �(x i ) 

(y j − ̂ y j ) 
2 + 

∑ 

x j ∈ �c (x i ) 

(y j − ̂ y j ) 
2 

} 

= 

∑ 

x j ∈ �(x i ) 

{ (y j − ̂ y ′ 
j 
) 2 − (y j − ̂ y j ) 

2 } . (3.2)

where 
∑ 

x j ∈ �c (x i ) 
(y j − ̂ y j ) 

2 = 

∑ 

x j ∈ �c (x i ) 
(y j − ̂ y ′ 

j 
) 2 , because k near-

est neighbors of the instances in set �c ( x i ) remain the same re-

gardless of the x i is in or out of T . Then the computation of ∇( x i )

is simplified, and its value shows x i has positive or negative on the

regressor. If ∇( x i ) ≤ 0, then x i is likely to play the positive effect

on prediction; otherwise x i is likely to take the negative effect as

∇( x i ) > 0. 

If an instance x i had been deleted, each element x j in set �( x i )

has to find its k + 1 th nearest neighbor NN k +1 (x j ) to replace x i in

its nearest neighbor list, x i = NN 1 (x j ) , for keeping the generality.

Then the instance NN k +1 (x j ) and the remainder nearest neighbor

instances NN 2 ( x j ), NN 3 ( x j ), . . . , NN k ( x j ) reconstitute its new k near-

est neighbor list, that is, NN 2 ( x j ), NN 3 ( x j ), . . . , NN k ( x j ), NN k +1 (x j ) .
ccording to the kNN regression hypothesis, the farther distance

etween the instance x j and its k nearest neighbors, the larger dif-

erence on their outputs. After this process, the difference between

 j and 

̂ y ′ 
j 

could be larger than the difference between y j and 

̂ y j ,

nd this issue usually is true in real life. Thus ∇( x i ) may take pos-

tive value, and the performance of the regressor will have various

egrees of weakness in most cases. 

After an instance x i being removed, we adopt the following rule

o avoid the significant negative change on the performance of re-

ressor, that is 

(x i ) ≤ θR b f (x i ) (3.3)

here θ ∈ (0, 1) is the significant coefficient and it is the same

arameter θ in the Section 3.2.1 . Obviously, the larger the θ , the

ore the removed instances, and vice versa. 

The way that the instances are removed from T plays an im-

ortant role in instance selection. It is idealistic to remove all the

nstances meeting the removing rule from T at one time. However,

his way may cause the negative change on the performance of a

egressor dramatically, because a large number of instances may

e removed all at once. Besides, there are some mutual center

nstances and all of them meet the removing rule. If we remove

hose instances, others would be influenced. In order to avoid the

bove problem, we remove the instances according to the remov-

ng rule one by one. 

Moreover, the sequence of removing instances depends on an

rder, and different orders have different effects on the regressor.

herefore, we sort instances x i by the absolute difference P D (x i ) =
 y i − ̂ y i | in descending order, where ̂ y i is the predicted output of x i 
upported by its k nearest neighbors. The instance x i with greater

D ( x i ) has a large divergence with its majority nearest neighbors,

nd there is a greater possibility that such instance has a negative

mpact on prediction. So these instances should be firstly tested

hether they are removed or not. 

Based on above content, we propose an instance selection for

NN regression, and its detail is listed in Algorithm 1 . 

Algorithm 1: Decremental instance selection for kNN regres- 

sion(DISKR). 

Input : Dataset T = (x 1 , y 2 ) , (x 1 , y 2 ) , . . . , (x N , y N ) , the 

parameter θ , the number of nearest neighbor k . 

Output : The subset S ⊆ T . 

1 Remov e i = 0 , i = 1 , 2 , . . . , N, S = ∅ ; 
foreach x i ∈ T do 

2 Computer P D (x i ) ; 

if P D (x i ) > (1 − θ ) y i then 

3 Remov e i = 1 

end 

end 

4 S = { x i ∈ T : Remov e i = 0 } 
5 Sort the instance x i in S according to P D (x i ) in decreasing 

order and obtain the set S ′ ; 
foreach x i ∈ S ′ do 

6 Compute R b f (x i ) and R a f (x i ) ; 

if ∇(x i ) ≤ θR a f (x i ) then 

7 S = S − { x i } ; 
foreach x j ∈ �(x i ) do 

8 Find another instance x l to replace x j in N N (x j ) ; 

9 �(x l ) = �(x l ) ∪ { x j } ; 
end 

end 

end 

10 Return S 
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Table 2 

R 2 of 6 algorithms on 19 different datasets. 

Dataset DISKR TE-CNN TE-ENN DE-CNN DE-ENN PSMI 

ABA 0.692 0.739 0.712 0.635 0.739 0.721 

AIR 0.477 0.482 0.496 0.462 0.469 0.428 

ANA 0.992 0.992 0.992 0.940 0.993 0.991 

CAL 0.501 0.561 0.555 0.474 0.563 0.550 

CAS 0.913 0.921 0.920 0.919 0.921 0.912 

CCP 0.970 0.975 0.963 0.973 0.975 0.974 

COM 0.921 0.941 0.940 0.937 0.935 0.940 

CON 0.797 0.855 0.762 0.862 0.732 0.845 

ELE 0.997 0.996 0.996 0.997 0.996 0.997 

FRI 0.940 0.953 0.943 0.944 0.952 0.942 

HOU 0.307 0.314 0.364 0.315 0.301 0.300 

MOR 0.998 0.996 0.959 0.996 0.983 0.991 

PLA 0.859 0.874 0.845 0.861 0.879 0.855 

POL 0.937 0.921 0.856 0.880 0.912 0.911 

QUA 0.171 0.122 0.138 0.178 0.169 0.087 

TIC 0.196 0.195 0.190 0.115 0.115 0.179 

TRE 0.985 0.994 0.952 0.992 0.984 0.987 

WAN 0.993 0.990 0.988 0.991 0.989 0.990 

WIZ 0.996 0.994 0.996 0.996 0.996 0.996 

Average 0.771 0.780 0.767 0.761 0.769 0.768 

Median 0.921 0.921 0.920 0.919 0.921 0.912 

Wilcixon P 0.0766 0.6292 0.7172 0.9039 0.7782 

d  
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.2.3. The determination of θ
The determination of θ value is of importance for our algo-

ithm. Too large a value of θ results in too many instances being

elected. Consequently, we will achieve a little effect of instance

election. Too small a value of θ , on the other hand, leads to a

arge number of instances selected. The dilemma about θ will not

e symmetrical, because a serious loss of predictive accuracy of the

NN regressor is not likely to be well compensated for by a benefit

f the down-sized training set. 

Fixing the value of θ for every dataset is difficult, as it depends

n the specific features of each problem. Therefore, we use a cross-

alidation approach. We divide the training set into two parts, us-

ng one of them for performing DISKR algorithm, and the other one

or obtaining the validation error. Given the value of θ from small

o large, the optimal θ is obtained as the last θ before the vali-

ation error starts to grow. Then, we perform the algorithm using

he whole training set for the θ obtained in the cross-validation

rocess. 

. Experimental analysis 

.1. Experiment setup 

To make a fair comparison between our algorithm and others,

e randomly select 19 datasets with instances larger than 10 0 0

rom the KEEL Repository [30] , where this repository is a set of

enchmarks to analyze the performance of the machine learning

lgorithms. These datasets are described in Table 1 . 

In order to compare the performance between DISKR and other

nstance selection algorithms, five representative algorithms for

NN regression have been selected in this study: prototype se-

ection using mutual information(PSMI), ensemble of threshold-

ased CNN(TE-CNN), ensemble of threshold-based ENN (TE-ENN),

nsemble of discretization-based CNN (DE-CNN) and ensemble of

iscretization-based ENN (DE-ENN). The selection of instance se-

ection algorithms is based on their representativeness and popu-

arity. Besides, CCISR is one of the typical instance selection algo-

ithms for kNN regression, but it is out of our resources for very

igh computational time and memory demand for larger datasets. 

The evaluation of instance selection is a key task, and they can

e distinguished into two basic forms: direct and indirect eval-

ation. Direct evaluation aims to measure at which extent the

elected instances reflect the information present in the original
Table 1 

Summary of 19 small datasets. 

Dataset Abbreviation Features Size 

Abalone ABA 8 4177 

Airfoil Self-Noise AIR 6 1503 

ANACALT ANA 7 4052 

California CAL 8 20640 

CASP CAS 9 45730 

CCPP CCP 4 9568 

Compaic COM 21 8192 

Concrete CON 8 1030 

Ele2 ELE 4 1056 

Friedman FRI 5 1200 

House HOU 16 22784 

Mortgage MOR 15 1049 

plastic PLA 2 1650 

Pole POL 26 14998 

Quake QUA 3 2178 

Tic TIC 85 9822 

Treasury TRE 15 1049 

Wankara WAN 9 1609 

Wizmir WIZ 9 1461 

θ  

0  

k  

i

4

 

r  

p
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e  

d  

c  

b

 

g  

c  

t  

g

ata. The indirect evaluation measures the performance of the

earners trained on the reduced set. Generally speaking, the in-

irect evaluation is often used to evaluate instance selection al-

orithms for instance-based learning algorithms. The coefficient of

etermination ( R 2 ) and the instances compression ratio ( C ) are two

ost common metrics for the indirect evaluation. The former met-

ic evaluates the squared correlation between the predicted and

he actual value, the greater R 2 , the higher prediction accuracy;

he latter is the percentage of instances left, lower compression ra-

ion means a stronger reduction. 10-fold cross-validation method is

sed to estimate the value of these two. In this method, the data

et we use is divided into 10 subsets of approximately equal size.

hen the proposed method is performed 10 times, each one sub-

et as a test set, and the remaining 9 subsets as a training set. The

nal result is the average of results on all the test sets. 

The Wilcoxon signed rank test is used to assess the perfor-

ance between DISKR and other algorithms. In this test, the null

ypothesis is that there is no significant difference between DISKR

nd each of the other methods, against the alternative that there is

 significant difference. In all of the following experiments, k = 9 ,

from 0.05 to 1 in steps of 0.05 and the significance level α =
 . 05 . The reason for choosing k = 9 is that the optimal k in the

NN algorithm is about 9 on most datasets due to the conclusion

n [31] . 

.2. DISKR behaviors 

In this section, we will compare the performance of DISKR algo-

ithm with others by the coefficient of determination R 2 and com-

ression ratio C . 

.2.1. The coefficient of determination 

The coefficient of determination R 2 is an important index to

valuate the prediction performance of the regressor, and it is in-

ependent of the data standardization. When the value of R 2 is

loser to 1, the generalization ability of the regressor will be much

etter. 

Table 2 lists the coefficients of determination R 2 of these 6 al-

orithms on 19 different datasets. Besides, some statistics are cal-

ulated over all data sets for each algorithm are listed in the last

hree rows of Table 2 . Meanwhile, the trends of R 2 for these 6 al-

orithms on different data sets are also plotted on Fig. 1 . 
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Fig. 1. The R 2 of different algorithms on different datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The storage ration of 6 algorithms on 19 different datasets. 

Dataset DISKR TE-CNN TE-ENN DE-CNN DE-ENN PSMI 

ABA 0.170 0.887 0.694 0.449 0.961 0.679 

AIR 0.186 0.496 0.394 0.991 0.223 0.685 

ANA 0.123 0.922 0.258 0.077 0.945 0.355 

CAL 0.325 0.738 0.660 0.073 0.993 0.700 

CAS 0.223 0.781 0.795 0.791 0.875 0.742 

CCP 0.314 0.973 0.218 0.744 0.926 0.701 

COM 0.133 0.617 0.206 0.630 0.853 0.733 

CON 0.452 0.757 0.714 0.999 0.412 0.828 

ELE 0.549 0.705 0.889 0.216 0.992 0.834 

FRI 0.457 0.836 0.847 0.595 0.995 0.624 

HOU 0.137 0.425 0.470 0.365 0.385 0.623 

MOR 0.735 0.997 0.818 0.753 0.859 0.729 

PLA 0.204 0.281 0.158 0.532 0.807 0.812 

POL 0.275 0.881 0.536 0.451 0.844 0.674 

QUA 0.109 0.762 0.231 0.983 0.254 0.741 

TIC 0.181 0.581 0.597 0.361 0.346 0.741 

TRE 0.652 0.972 0.224 0.507 0.916 0.743 

WAN 0.505 0.635 0.925 0.724 0.826 0.614 

WIZ 0.462 0.999 0.900 0.719 0.908 0.683 

Average 0.326 0.750 0.555 0.577 0.754 0.697 

Median 0.275 0.762 0.597 0.595 0.859 0.701 

Wilcixon P 1.32E-04 0.0029 0.007 1.82E-04 1.55E-04 

a  

t  

F  

a  

o  

r  

0  

a  

w  

b  

0  
Fig. 1 indicates that the values of R 2 of DISKER and another five

algorithms show different change trends on these datasets. To be

specific, the value of R 2 obtained by DISKER has similar or larger

value than other five algorithms on the dataset ANA, CAS, CCP, ELE,

FRI, PLA, POL, QUA, TIC, TRE, WAN, WIZ, and DISKER does not has

the minimum value of R 2 on the remaining 7 datasets. Therefore,

DISKER is not worse than these five algorithms about the index

R 2 over these 19 datasets. Meanwhile, two simple statistics sample

mean and median over these datasets also indicate this issue. The

average value of R 2 on all the data sets of these 6 algorithms are

0.771, 0.780, 0.767, 0.761, 0.769 and 0.768, and their median values

are 0.921, 0.921, 0.920, 0.919, 0.921 and 0.912. From above, the dif-

ferences of R 2 among them are relatively small. In order to assess

the overall performance on R 2 basing on the statistical analysis, the

Wilcoxon signed rank test is used to perform a paired, two-sided

signed rank test between DISKER and each one of the these five

algorithms. The p-value of R 2 between our DISKER and the other

five algorithms are 0.0766, 0.6292, 0.7172, 0.9039 and 0.7782 re-

spectively, and all of them are smaller than the given significant

level 0.05. So it does not exist significant difference on R 2 between

DISKR and each representative algorithm under given significant

level 0.05. 

4.2.2. The compression ration 

The size of reduced subset is another key point that we mainly

concern. When it comes to the storage, a low compression ratio

means that it keeps less training instances, and consequently has

a higher running speed. The results of compression ratio of these

6 instance selection algorithms on different data sets are shown in

Table 3 , and related statistic analysis is also listed in the last three

rows of Table 3 . At the same time, the tendency on the compres-

sion ration of different algorithms on different data sets are plotted

on Fig. 2 . 

From Fig. 2 , we find that these instance selection algorithms

have different storage ratio, and each algorithm has different stor-
ge ratio on different datasets. DISKR has the lowest storage ratio

han other algorithms on these 11 datasets ABA, AIR, CAS, COM,

RI, HOU, POL, QUA, TIC, WAN, WIZ, and it is second-lowest stor-

ge ratio on the rest 8 datasets. According to the statistical results

f Table 3 , the average value of the storage ratio of these algo-

ithms on all the data sets are 0.326, 0.750, 0.555, 0.577, 0.574 and

.697, and their median value are 0.275, 0.762, 0.597, 0.595, 0.859

nd 0.701. So DISKR has the lowest storage ratio in the term of the

hole state. Furthermore, the p-value of Wilcoxon signed rank test

etween DISKR and each representative algorithm are 1.32E −04,

.0 029, 0.0 07, 1.82E −04 and 1.55E −04, they are all smaller than



Y. Song et al. / Neurocomputing 251 (2017) 26–34 31 

0 ABA AIR ANA CAL CAS CCP COM CON ELE FRI HOU MOR PLA POL QUA TIC TRE WAN WIZ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

DISKR
TE−CNN
TE−ENN
DE−CNN
DE−ENN
PSMI

Fig. 2. C obtained by different algorithms on different datasets. 

Fig. 3. R 2 and C on different datasets. 
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Fig. 4. R 2 obtained by three different ways. 
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Fig. 5. C obtained by three different ways. 
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the given significant level 0.05. That means that DISKR has the

highest reduction ratio comparing with five selected algorithms.

The reason for this phenomenon is that there are less number of

noisy instances in most real datasets, and these five methods seek

to eliminate noisy instances. While DISKR not only remove noisy

instances, but the instance with less contribution to the regressor

are also removed. 
.3. The effect of θ

θ controls the extent of the rule of removing instances. If θ
akes smaller value, there may be many instances satisfying the

ule of removing instances. Meanwhile, the less number of in-

tances will be finally saved, and the generation ability of obtained

nstance subset will decrease. To this end, we change θ from 0.05
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o 1 in the steps of 0.05 to perform DISKR and their results are

lotted on Fig. 3 . 

Fig. 3 presents R 2 and C obtained with DISKR over TIC dataset.

he vertical axis shows R 2 and C in Fig. 3 (a) and (b), and the hor-

zontal axis shows the value of θ varying from 0.05 to 1 in the

teps of 0.05. They could obviously show that the values of R 2 and

 decrease as enlarging θ in whole, though their values increase

s θ with small value. However, the optimal value of θ should be

arefully chosen to get the tradeoff between R 2 and C . 

.4. The effect of order 

Different orders of removing instances could obtain different in-

tance subsets, and the size and performance of these subsets are

lso different. We have stated that our defined order(DW) is fit

or instance selection for kNN regression. However, this statement

ust be corroborated. In order to test the performance of DW, we

hoose another two different orders: random way (RW) and the

ay that sorts instance x i by increasing PD ( x i )(IW). Their perfor-

ance is shown in Figs. 4 and 5 using R 2 and C . 

Compared with IW and RW, DW obtains the higher or simi-

ar value of R 2 on the most of the datasets except HOU dataset

n Fig. 4 . Meanwhile, the p-value of Wilcoxon signed rank test be-

ween DW and each one of two other ways are 0.0158 and 0.0269,

hey are both smaller than the given significant level 0.05. So DW

ould get the better predictive ability than IW and RW. For data

eduction, the value of C obtained by DW is not larger than two

ther ways on the most datasets except CAL, WAN, WIZ in Fig. 5 .

nd the p-value of Wilcoxon signed rank test between DW and

wo other ways are 0.2432 and 0.8092, they are both larger than

he given significant level 0.05. Then DW gets no significant differ-

nce on data reduction with IW and RW. According to the above

iscussion, we can get the conclusion that DW obtains the highest

redictive ability with the similar data reduction ratio. 

. Conclusion 

Most of the instance selection algorithms are mainly concerned

ith kNN classification, and less focused on kNN regression. In this

aper, we propose an efficient instance selection algorithm DISKR

or kNN regression. Firstly, the proposed algorithm removes the

utlier instances. Secondly, it sorts the left instances by the dif-

erence between their true and predicted output provided by their

eighbors. Finally, DISKER removes the instances with less effect

n the regressor one by one. Experiments show that DISKR has a

ore consistent performance in comparison with the five state-of-

he-art instance selection algorithms, but with a lower storage ra-

io. Thus, our method can reduce storage space, and it provides a

otential method when dealing with large-scale data. In the future

ork, we will add the divide-and-conquer strategy to accelerate

ISKER’s performance for the big data. 
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