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a b s t r a c t 

Dynamic data, in which the values of objects vary over time, are ubiquitous in real applications. Although 

researchers have developed a few incremental attribute reduction algorithms to process dynamic data, 

the reducts obtained by these algorithms are usually not optimal. To overcome this deficiency, in this pa- 

per, we propose a discernibility matrix based incremental attribute reduction algorithm, through which 

all reducts, including the optimal reduct, of dynamic data can be incrementally acquired. Moreover, to en- 

hance the efficiency of the discernibility matrix based incremental attribute reduction algorithm, another 

incremental attribute reduction algorithm is developed based on the discernibility matrix of a compact 

decision table. Theoretical analyses and experimental results indicate that the latter algorithm requires 

much less time to find reducts than the former, and that the same reducts can be output by both. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Attribute reduction, which is considered an important type

of rough set theory based feature selection method [5,6,31] ,

aims to select the attributes that retain the discriminatory

ability represented by the attribute set of a dataset prior

to decision-making [20–23,32] . Researchers have proposed

numerous algorithms for implementing attribute reductions

[1,5,26,33,34,37,38,40,41,46] based on a discernibility matrix,

which is a type of representative method [18,39,47] . Through a

discernibility matrix based attribute reduction, all the reducts can

be obtained, which is useful to obtain the minimal reduct and

generate a subspace for ensemble learning. It should be noted

that most of the algorithms mentioned above are only suitable for

static datasets. 

However, with the rapid development of information technol-

ogy, three types of datasets, whose object set, attribute set, or at-

tribute values of objects evolve over time, are ubiquitous in many

practical applications [3,9,19] . To process these types of datasets,
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esearchers have developed some incremental attribute reduction

lgorithms over the last two decades. These algorithms are mainly

evised based on elementary sets [4] , a positive region [28,30,42] ,

nformation entropy and knowledge granularity [7,14,36] , a dis-

ernibility matrix [44,45] , or a dominance matrix [8] . In addition,

u et al. [43] presented an incremental algorithm based on 0–1

nteger programming. The algorithms above were all developed for

se with a complete decision table. Zhang et al. [48] provided a

atrix representation of the lower and upper approximations in

 set-valued information system. Through an analysis of the vari-

tions of the relation matrix resulting from the system variance

ver time, an incremental approach was introduced to update the

ough set approximations, through which the updated reducts can

e easily obtained. Liu et al. [15–17] constructed three matrices,

ased on which some incremental attribute reduction algorithms

ave been put forward. Chen et al. [2] proposed an equivalent rep-

esentation of a β-upper (lower) distribution reduct and β-upper

lower) distribution discernibility matrix by means of two Boolean

ow vectors, and based on these representations, developed a non-

ncremental algorithm and an incremental algorithm for finding

ne β-upper (lower) distribution reduct. Nevertheless, most algo-

ithms have aimed at datasets with an object set or attribute set

arying over time, and rarely refer to data with attribute values
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volving over time. In this paper, we thus focus on attribute re-

uction for the third type of dataset, i.e., datasets with dynamically

arying attribute values, which can be called dynamic datasets

29,35] . 

To facilitate the following discussion, we review some possible

ituations associated with dynamic datasets [36] . One situation is

hat a dataset has some incorrect values, which need to be re-

laced to obtain the correct output. Another situation is that data

e captured gradually increase in amount over time, although the

ize of dataset we are interested in does not change. We can thus

btain an input dataset for the next moment by slightly modify-

ng an interested dataset at one moment. The other situation is

hat some useless data should be directly updated using the lat-

st or real-time data because any dated data in a database are

ften useless in applications such as stock analysis, tests for dis-

ase, and annual worker appraisals. In fact, all these types of situ-

tions can be considered a change in object attribute values in the

ataset. 

In [35] , Wang et al. introduced a type of incremental attribute

eduction algorithm based on entropies for dynamic datasets.

ith these algorithms, the incremental changing mechanism of

hree representative entropies [10,11,13,24,25,27] , which are usually

mployed using heuristic attribute reduction, was analyzed. The

orresponding incremental reduction algorithms were designed

y means of this mechanism. These algorithms actually lever-

ge a similar rationale as the incremental changing mechanism

f entropy in [12,14] , but the mechanism was modified for dy-

amic data. In fact, there also exist numerous incomplete dynamic

atasets in real-world applications. To efficiently acquire reducts

f this type of dataset, in [28–30] , Shu and Shen presented three

ncremental attribute reduction algorithms respectively for three

ype of datasets varying with time. Among them, the algorithm

n [29] aims at dynamic datasets, in which a dynamic changing

echanism of the positive region was proposed to compute a new

ositive region when the attribute values of an object set vary dy-

amically. Based on this mechanism, the authors developed two

ncremental attribute reduction algorithms for incomplete dynamic

atasets. Nevertheless, all the incremental algorithms mentioned

bove are heuristic, and thus, only one reduct of dynamic data,

hich could contain a few redundant attributes, can be obtained.

oreover, if all reducts of a dynamic dataset can be obtained, we

an achieve a number of diverse ensembles, which are beneficial

or ensemble learning or group decision-making in certain real-

orld applications. To acquire all reducts of a dynamic dataset, in

his paper, we first developed an incremental attribute reduction

lgorithm based on a discernibility matrix. Furthermore, inspired

y the idea of a compacted decision table, as described in [40] ,

 new compacted decision table and three kinds of discernibility

atrices are introduced to design a more efficient incremental al-

orithm for attribute reduction. The algorithm not only reduces the

ime consumption of a discernibility matrix based incremental at-

ribute reduction algorithm, it also obtains all reducts of a dynamic

ataset. 

The remainder of this paper is organized as follows.

ection 2 mainly reviews some preliminaries regarding a rough set

nd discernibility matrix. In Section 3 , a discernibility matrix based

ttribute reduction algorithm is described. In Section 4 , a new

ompacted decision table is defined, three discernibility matrices

ased on the compacted decision table are introduced, and an

ttribute reduction algorithm based on the discernibility matrix of

 compacted decision table is devised. In Section 5 , to demonstrate

he effectiveness of the incremental reduction method based on

he proposed compacted decision table, we further clarify the

elationship between reducts derived from an updated decision

able and from its compacted version. In Section 6 , extensive ex-

eriments carried out to illustrate the efficiency and effectiveness
f the proposed algorithms are described. Section 7 provides some

oncluding remarks. 

. Preliminaries 

.1. Rough set and discernibility matrix 

In rough set theory, a basic knowledge expression method, i.e.,

n information system, is a 4-tuple S = (U, A, V, f ) (for short S =
(U, A ) ), where U is a non-empty and finite set of objects, called a

niverse; A is a non-empty and finite set of attributes; V a is the do-

ain of the attribute a , V = 

⋃ 

a ∈ A V a ; and f S : U × A = V is a func-

ion, f S ( x, a ) ∈ V a ( a ∈ A ). 

For a given information system S = (U, A, V, f ) , each attribute

ubset B ⊆A determines a binary indiscernibility relation: R B =
 (x, y ) ∈ U × U | f S (x, a ) = f S (y, a ) , ∀ a ∈ B } , f S ( x, a ) and f S ( y, a ) de-

oting the values of x and y with respect to the attribute a , re-

pectively, and f S (x, C) = ∪ a ∈ C { f S (x, a ) } . The relation R B partitions U

nto some equivalence classes given by U / R B = {[ x ] B | x ∈ U }, where

 x ] B is the equivalence class determined by x with respect to B ,

.e., [ x ] B = { y ∈ U | (x, y ) ∈ R B } . Moreover, for any Y ⊆U , ( B (Y ) , B (Y ))

s the rough set of Y with respect to B , where B ( Y ) and B (Y )

re the lower and upper approximations of Y , respectively, and

 (Y ) = { x | [ x ] B ⊆ Y } and B (Y ) = { x | [ x ] B ∩ Y � = ∅} . 
To describe a classification problem, an information system

s modified into a decision table DT = (U, C ∪ { d} , V, f ) , in which

 is called a condition attribute set, and { d } is called a deci-

ion attribute. To facilitate the development of this study, V d =
 v d 1 , v d 2 , . . . , v d l } was employed to represent the domain of the at-

ribute d . Let B ⊆C , U/ { d} = { Y 1 , Y 2 , · · · , Y n } , the lower and upper

pproximations of the decision attribute { d } are defined as B { d} =
 B Y 1 , B Y 2 , · · · , B Y n } and B { d} = { B Y 1 , B Y 2 , · · · , B Y n } . Let P OS B ({ d} ) =
 n 
i =1 B Y i , which is called the positive region of { d } with respect to

 . Moreover, the objects in a positive region make up the consis-

ent part of a decision table, and the other objects comprise the

nconsistent part. If POS C ({ d }) of a decision table is equal to U , it is

alled a consistent decision table. 

In the following, we review three representative discernibility

atrices, with regard to a positive region, Shannon entropy, and

omplement entropy, respectively. 

efinition 2.1. [45] Let DT = (U, C ∪ { d} ) be a decision table, C
e the condition attribute set, and d be the decision attribute. In
erms of a positive region, the discernibility matrix is defined as

 

P 
DT = { m 

P 
i j 
} , where 

 

P 
i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{ c ∈ C : f (x i , c) � = f (x j , c) } , f (x i , d) � = f (x j , d) and x i , x j ∈ U 1 

{ c ∈ C : f (x i , c) � = f (x j , c) } , x i ∈ U 1 , x j ∈ U 2 

∅ , otherwise 
, 

U 1 is the consistent part of the decision table DT and U 2 is the

nconsistent part DT . 

Its corresponding discernibility function in the sense of a posi-

ive region is F( M 

P 
DT ) = 

∧ 

{ ∨ 

(m 

P 
i j 
) | ∀ x i , x j ∈ U, m 

P 
i j 

� = ∅ 
} 

. 

In Ref [45] ., Yang et al. proposed an incremental attribute reduc-

ion when an object was added into a decision table. However, it

an only be used to find the set of positive region reducts because

heir attribute reduction algorithm is based on the discernibility

atrix in terms of the positive region. In [39] , we developed two

ew discernibility matrices in terms of Shannon entropy and com-

lement entropy, through which it is easy to extend the algorithm

n [45] to compute reducts based on these two entropies. The two

atrices are defined as follows. 
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Table 1 

Sixteen changes of the equivalent classes including x v and x ′ v for a decision table. 

[ x q ] C = ∅ [ x ′ q ] C is 

consistent 

[ x q ] C is consistent [ x ′ q ] C 
is consistent 

[ x q ] C is consistent [ x ′ q ] C 
is inconsistent 

[ x q ] C is inconsistent 

[ x ′ q ] C is inconsistent 

[ x p ] C is consistent [ x ′ p ] C = ∅ T1 T2 T3 T4 

[ x p ] C is consistent [ x ′ p ] C is consistent T5 T6 T7 T8 

[ x p ] C is inconsistent [ x ′ p ] C is consistent T9 T10 T11 T12 

[ x p ] C is inconsistent [ x ′ p ] C is inconsistent T13 T14 T15 T16 
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Definition 2.2. [39] Let DT = (U, C ∪ { d} ) be a decision table, C
be the condition attribute set, and be d a decision attribute. The
discernibility matrix in terms of Shannon entropy is defined as

M 

S 
DT 

= { m 

S 
i j 
} , where 

m 

S 
i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{ c ∈ C : f (x i , c) � = f (x j , c) } , f (x i , d) � = f (x j , d) and x i , x j ∈ U 1 
{ c ∈ C : f (x i , c) � = f (x j , c) } , x i ∈ U 1 , x j ∈ U 2 
{ c ∈ C : f (x i , c) � = f (x j , c) } , μik � = μ jk , ∃ Y k ∈ U/ { d} , and x i , x j ∈ U 2 

∅ , otherwise 

, 

μik = 

| [ x i ] C ∩ Y k | | [ x i ] C | , μ jk = 

| [ x j ] C ∩ Y k | 
| [ x j ] C | , [ x i ] C ∈ U / C and [ x j ] C ∈ U / C . 

Its corresponding discernibility function is F(M 

S 
DT 

) =
∧ 

{ ∨ 

(m 

S 
i j 
) | ∀ x i , x j ∈ U, m 

S 
i j 

� = ∅ 
} 

. 

Definition 2.3. [39] Let DT = (U, C ∪ { d} ) be a decision table, C be
the condition attribute set, and d be a decision attribute. The dis-
cernibility matrix in the sense of complement entropy is defined

as M 

C 
DT 

= { m 

C 
i j 
} , where 

m 

C 
i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{ c ∈ C : f (x i , c) � = f (x j , c) } , f (x i , d) � = f (x j , d) and x i , x j ∈ U 1 

{ c ∈ C : f (x i , c) � = f (x j , c) } , x i ∈ U 1 , x j ∈ U 2 

{ c ∈ C : f (x i , c) � = f (x j , c) } , x i , x j ∈ U 2 

∅ , otherwise 

Its corresponding discernibility function is F( M 

C 
DT ) =∧ 

{ ∨ 

(m 

C 
i j 
) | ∀ x i , x j ∈ U, m 

C 
i j 

� = ∅ 
} 

. 

3. Discernibility matrix based incremental attribute reduction 

algorithm 

In this section, to implement a discernibility matrix based in-

cremental attribute reduction for a dynamic dataset, we analyze

how the discernibility matrix of a decision table is updated when

certain object’s values varies over time. The change in discernibility

matrix of a decision table may result from a variety of equivalent

classes in the decision table. Thus, the change to these equivalent

classes will be investigated as follows. 

For the development of the analyses, without a loss of gen-

erality, we suppose that DT ′ = { U 

′ , C ∪ { d}} is a decision ta-

ble evolved from DT = { U, C ∪ { d}} , where U = ∪ 

n 
i =1 

{ x i } , U 

′ =
∪ 

n 
i =1 

{ x ′ 
i 
} , f DT (x v , C) � = f DT ′ (x ′ v , C) , and f DT (x j , C) = f DT ′ (x ′ 

j 
, C) for

1 ≤ j ≤ n ( j � = v ). In addition, we suppose that in DT, x v ∈ [ x p ] C , and

in DT ′ , [ x ′ p ] C = [ x p ] C − { x v } , and if ∃ x ′ q such that x ′ v ∈ [ x ′ q ] C , then

[ x ′ q ] C = { x ′ v } ∪ [ x q ] C ; otherwise, [ x ′ q ] C = { x ′ v } . Thus, sixteen possible

changes of the equivalent classes including x v and x ′ v are illustrated

in Table 1 , and are detailed as follows: 

( T 1). [ x p ] C = { x v } is evidently consistent, and after x v changes

to x ′ v , [ x ′ p ] C = { x v } − { x v } = ∅ , [ x ′ q ] C = { x ′ v } , it is clear that [ x ′ q ] C is

consistent and [ x q ] C = ∅ . 
( T 2). [ x p ] C = { x v } is evidently consistent, and after x v changes

to x ′ v , [ x ′ p ] C = { x v } − { x v } = ∅ , [ x ′ q ] C = { x ′ v } ⋃ 

[ x q ] C , where both [ x q ] C
and [ x ′ q ] C are clearly consistent. 
( T 3). [ x p ] C = { x v } is evidently consistent, and after x v changes to

 

′ 
v , [ x ′ p ] C = { x v } − { x v } = ∅ , [ x ′ q ] C = { x ′ v } ⋃ 

[ x q ] C , where [ x q ] C is con-

istent, and thus [ x ′ q ] C is inconsistent. 

( T 4). [ x p ] C = { x v } is evidently consistent, and after x v changes

o x ′ v , [ x ′ p ] C = { x v } − { x v } = ∅ , [ x ′ q ] C = { x ′ v } ⋃ 

[ x q ] C , where [ x q ] C is in-

onsistent, and thus [ x ′ q ] C is also inconsistent. 

( T 5). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C − { x v } � =
 , where [ x p ] C is consistent, and thus [ x ′ p ] C is also consistent;

 x ′ q ] C = { x ′ v } , and thus [ x ′ q ] C is consistent and [ x q ] C = ∅ . 
( T 6). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C − { x v } � =

 , where both [ x p ] C and [ x ′ p ] C are consistent; [ x ′ q ] C = { x ′ v } ⋃ 

[ x q ] C ,

here both [ x q ] C and [ x ′ q ] C are consistent. 

( T 7). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C − { x v } � =
 , where [ x p ] C is consistent, and thus [ x ′ 

i 
] C is consistent; [ x ′ q ] C =

 x ′ v } ⋃ 

[ x q ] C , where [ x q ] C is consistent and [ x ′ q ] C is inconsistent. 

( T 8). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C − { x v } � =
 , where both [ x p ] C and [ x ′ 

i 
] C are consistent; [ x ′ q ] C = { x ′ v } ⋃ 

[ x q ] C ,

here [ x q ] C and [ x ′ q ] C are inconsistent. 

( T 9). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C − { x v } � =
 , where [ x p ] C is inconsistent and [ x ′ p ] C is consistent; [ x ′ q ] C = { x ′ v } ,
nd thus [ x ′ q ] C is consistent and [ x q ] C = ∅ . 

( T 10). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C −
 x v } � = ∅ , where [ x p ] C is inconsistent and [ x ′ p ] C is consistent; [ x ′ q ] C =
 x ′ v } ⋃ 

[ x q ] C , where both [ x q ] C and [ x ′ q ] C are consistent. 

( T 11). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C − { x v } � =
 , where [ x p ] C is inconsistent and [ x ′ p ] C is consistent; [ x ′ q ] C =
 x ′ v } ⋃ 

[ x q ] C , where [ x q ] C is consistent and [ x ′ q ] C is inconsistent. 

( T 12). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C −
 x v } � = ∅ , where [ x p ] C is inconsistent and [ x ′ p ] C is consistent; [ x ′ q ] C =
 x ′ v } ⋃ 

[ x q ] C , where both [ x q ] C and [ x ′ q ] C are inconsistent. 

( T 13). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C −
 x v } � = ∅ , where both [ x p ] C and [ x ′ p ] C are inconsistent; [ x ′ q ] C = { x ′ v } ,
nd thus [ x ′ q ] C is consistent and [ x q ] C = ∅ . 

( T 14). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C −
 x v } � = ∅ , where both [ x p ] C and [ x ′ 

i 
] C are inconsistent; [ x ′ q ] C =

 x ′ v } ⋃ 

[ x q ] C , where both [ x q ] C and [ x ′ q ] C are consistent. 

( T 15). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C −
 x v } � = ∅ , where both [ x p ] C and [ x ′ 

i 
] C are inconsistent. [ x ′ q ] C =

 x ′ v } ⋃ 

[ x q ] C , where [ x q ] C is consistent and [ x ′ q ] C is inconsistent. 

( T 16). x v ∈ [ x p ] C , and after x v changes to x ′ v , [ x ′ p ] C = [ x p ] C −
 x v } � = ∅ , where both [ x p ] C and [ x ′ p ] C are inconsistent. [ x ′ q ] C =
 x ′ v } ⋃ 

[ x q ] C , where [ x q ] C is inconsistent, and thus [ x ′ q ] C is also in-

onsistent. 

Based on the analyses on these sixteen situations mentioned

bove, a discernibility matrix based incremental attribute reduc-

ion algorithm is designed as follows. 

lgorithm 1. Discernibility matrix based incremental attribute re-

uction algorithm for a decision table (DMIAR-DT- �) 

Input : Decision table DT = (U, C ∪ { d} ) , the discernibility matrix

 

�
DT 

of DT and these objects X v whose values changed over time,

 

′ 
v ; 

Output : The set of all reducts RED of the decision table. 



W. Wei et al. / Knowledge-Based Systems 140 (2018) 142–157 145 

 

x

 

o

 

r  

b

 

r  

m

 

r  

o  

u

 

v  

�  

S  

D  

m

 

f  

i  

2

a  

T  

O

 

o  

u  

i  

k  

i  

D

 

a  

O  

i  

o

4

i

 

b  

i  

p  

v  

p

4

 

i  

s  

t  

Table 2 

A decision table. 

a 1 a 2 a 3 a 4 d 

x 1 1 1 1 1 0 

x 2 2 2 2 1 1 

x 3 1 1 1 1 0 

x 4 1 3 1 3 0 

x 5 2 2 2 1 1 

x 6 3 1 2 1 0 

x 7 2 2 3 2 2 

x 8 2 3 1 2 3 

x 9 3 1 2 1 1 

x 10 2 2 3 2 2 

x 11 3 1 2 1 1 

x 12 2 3 1 2 3 

x 13 4 3 4 2 1 

x 14 2 2 3 2 2 

x 15 4 3 4 2 2 

t  

t  

b  

o  

s  

c  

b  

v  

r

D  

{  

a  

w  

 

 

C  

C  ⋃
 

p

E  

(  

x  

{  

d  

t  

 

 

 

t  

 

{  

∅  
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Step 1 : For x v ∈ X v , judge which situation the change from x v to

 

′ 
v agrees with. 

If the change meets situations ( T 1), ( T 2), ( T 5), or ( T 6), the row

f m 

�
x v and column of m 

x v 
�

of M 

�
DT 

need to be updated. 

If the change meets case ( T 3), ( T 4), ( T 7), or ( T 8), modify the

ows of m 

�
k 

, and the columns of m 

k 
�

( x k ∈ [ x ′ 
j 
] C ) of M 

�
DT 

need to

e updated. 

If the change meets cases ( T 9), ( T 10), ( T 13), or ( T 14), then the

ows of m 

�
k 

and columns of m 

k 
�

( x k ∈ [ x ′ 
i 
] C ) of M 

�
DT 

, the row of

 

�
x v , and the column of m 

x v 
�

of M 

�
DT all need to be updated. 

If the change meets cases ( T 11), ( T 12), ( T 15), or ( T 16), then the

ows of m 

�
k 

and the columns of m 

k 
�

( x k ∈ [ x ′ 
i 
] C ) of M 

�
DT 

, the rows

f m 

�
l 

, and the columns of m 

l 
�

( x l ∈ [ x ′ 
j 
] C ) of M 

�
DT 

all need to be

pdated. 

Step 2 : Compute the new discernibility function F(M 

�
DT 

) ; 

Step 3 : Compute RED by means of F(M 

�
DT 

) ; 

Step 4 : Return RED and end. 

In this algorithm, m 

�
x v , m 

�
l 

and m 

�
k 

are three n-dimension row

ectors, m 

x v 
�

, m 

l 
�

and m 

k 
�

are three n-dimension column vectors,

= { P, S, C} . For convenience, we denote DMIAR-DT-P, DMIAR-DT-

, and DMIAR-DT-C as the different versions of algorithm DMIAR-

T- � based on the positive region, Shannon entropy, and comple-

ent entropy, respectively. 

Time complexity of algorithm DMIAR-DT- � is analyzed as

ollows: When object x v is changed to x ′ v , the number of possible

tems that vary with the change in a discernibility matrix is

 | U| (| [ x p ] C | + | [ x q ] C | ) − (| [ x p ] C | ) 2 − (| [ x q ] C | ) 2 − 2 | [ x p ] C | × | [ x q ] C | , 
nd we need a traverse attribute set C to update one item.

hus, the complexity of updating a discernibility matrix is

 

(| C| × (| U| × (| [ x p ] C | + | [ x q ] C | ) − (| [ x p ] C | ) 2 − (| [ x q ] C | ) 2 − 2 | [ x p ] C | 
×| [ x q ] C | 

))
= O 

(| C| × (| U| (| [ x p ] C | + | [ x q ] C | ) 
))

. When there are | X v |

bjects that have been changed, the discernibility matrix will be

pdated | X v | times, and it is easy to know that the time complex-

ty is O 

(| X v | × | C| × (
2 | U| × (| [ x p ] C | + | [ x q ] C | ) 

))
. As is commonly

nown, the complexity of obtaining all reducts from a discernibil-

ty matrix is O (2 | C | ). Therefore, the time complexity of algorithm

MIAR-DT- � is O 

(| X v | × | C| × (
2 | U| × (| [ x p ] C | + | [ x q ] C | ) 

)
+ 2 | C| ). 

The space complexity of algorithm DMIAR-DT- � is analyzed

s follows: The space complexity of storing a decision table is

 (| U | × | C |), the space complexity of storing its discernibility matrix

s O (| U | 2 × | C |), and the space complexity of computing all reducts

f the decision table is O (2 | C | × | C |). 

. Discernibility matrices of compacted decision table based 

ncremental attribute reduction 

To further enhance the efficiency of the discernibility matrix

ased incremental attribute reduction algorithm, inspired by the

dea of a compacted decision table [40] , we introduce a new com-

acted decision table and its discernibility matrices, and then de-

ise a new incremental attribute reduction method using the com-

acted decision table. 

.1. A compacted decision table and its discernibility matrices 

In [40] , we illustrated that there is a large amount of redundant

nformation in a decision table, and introduced a compacted deci-

ion table to tackle this problem. a compacted table is very helpful

o accelerate static attribute reduction algorithms, but is unsuitable
o accomplish attribute reduction for a dynamic dataset. To solve

his problem, in this section, we first define a new compacted ta-

le. It can preserve all the needed information to obtain reducts

f a dynamic dataset, meanwhile eliminating the redundancy re-

ulting from individually computing each object in one equivalent

lass. Next, in the following section, we introduce three discerni-

ility matrices based on the compacted decision table, which pro-

ides an important basis for incremental attribute reduction algo-

ithms. 

efinition 4.1. Given a decision table DT = (U, C ∪ { d} ) , U =
 x 1 , x 2 , · · · , x n } , U/C = { X 1 , X 2 , · · · , X m 

} , V d = { v d 1 , v d 2 , · · · , v d l } , and

 compacted decision table is then defined as C DT = (C U, C ∪ C D ) ,

here CU = { cx 1 , cx 2 , · · · , cx m 

} , f CDT (cx i , C) = f DT (X i , C) (i.e.

f CDT (cx i , c) = f DT (X i , c) , for ∀ c ∈ C ), CD = { cd 1 , cd 2 , · · · , cd l } ,
f CDT (cx i , cd j ) = { x | f DT (x, d) = v d j , x ∈ X i } . 

For a given compacted decision table C DT = (C U, C ∪ C D ) ,

U 1 = { cx i | σCD (cx i ) = 1 , cx i ∈ CU} indicates its consistent part, and

 U 2 = C U − C U 1 indicates its inconsistent part, where σCD (cx i ) =
 l 
k =1 { cd k | f CDT (cx i , cd k ) � = ∅} . To illustrate what a concrete com-

acted decision table is, we employ the following example. 

xample 4.1. DT = (U, C ∪ D ) is a decision table

shown in Table 1 ), U = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 11 , x 12 ,

 13 , x 14 , x 15 } , U/C = {{ x 1 , x 3 } , { x 2 , x 5 } , { x 4 } , { x 6 , x 9 , x 11 } , { x 7 , x 10 , x 14 } ,
 x 8 , x 12 } , { x 13 , x 15 }} , V d = { 0 , 1 , 2 , 3 } . Then, based on the

efinition of the compacted decision table, we ob-

ain CU = { cx 1 , cx 2 , cx 3 , cx 4 , cx 5 , cx 6 , cx 7 } , f CDT (cx 1 , C) =
f DT (x 1 , C) , f CDT (cx 2 , C) = f DT (x 2 , C) , f CDT (cx 3 , C) = f DT (x 4 , C) ,

f CDT (cx 4 , C) = f DT (x 6 , C) , f CDT (cx 5 , C) = f DT (x 7 , C) , f CDT (cx 6 , C) =
f DT (x 8 , C) , f CDT (cx 7 , C) = f DT (x 13 , C) . Moreover, it is easy

o see that f CDT (cx 1 , cd 0 ) = { x 1 , x 3 } , f CDT (cx 1 , cd 1 ) =
f CDT (cx 1 , cd 2 ) = f CDT (cx 1 , cd 3 ) = ∅ , f CDT (cx 2 , cd 1 ) =
 x 2 , x 5 } , f CDT (cx 2 , cd 0 ) = f CDT (cx 2 , cd 2 ) = f CDT (cx 2 , cd 3 ) =
 , f CDT (cx 3 , cd 0 ) = { x 4 } , f CDT (cx 3 , cd 1 ) = f CDT (cx 3 , cd 2 ) =

f CDT (cx 3 , cd 3 ) = ∅ , f CDT (cx 4 , cd 0 ) = { x 6 } , f CDT (cx 4 , cd 1 ) =
 x 9 , x 11 } , f CDT (cx 4 , cd 2 ) = f CDT (cx 4 , cd 3 ) = ∅ , f CDT (cx 5 , cd 2 ) =
 x 7 , x 10 , x 14 } , f CDT (cx 5 , cd 0 ) = f CDT (cx 5 , cd 1 ) = f CDT (cx 5 , cd 3 ) = ∅ ,

f CDT (cx 6 , cd 3 ) = { x 8 , x 12 } , f CDT (cx 6 , cd 0 ) = f CDT (cx 6 , cd 1 ) =
f CDT (cx 6 , cd 2 ) = ∅ , f CDT (cx 7 , cd 1 ) = { x 13 } , f CDT (cx 7 , cd 2 ) =
 x 15 } , f CDT (cx 7 , cd 0 ) = f CDT (cx 7 , cd 3 ) = ∅ . Table 2 presents the

ompacted version of Table 1 . 

Based on Definition 4.1 , three new discernibility matrices that

an capture all the discernibility information of a compacted deci-

ion table with regard to the positive region, Shannon entropy, and

omplement entropy are proposed as follows: 
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Definition 4.2. Given a decision table DT = (U, C ∪ { d} ) and its co

terms of the positive region is defined as M 

P 
CDT = { cm 

P 
pq } , where 

cm 

P 
pq = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , { cd k | f CDT (cx p , cd k ) � =
{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , cx p ∈ CU 1 , cx q ∈ CU 2 

∅ , otherwise 

Example 4.2. According to Definition 4.2 , the discernibility matrix 

M 

P 
CDT = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∅ { a 1 , a 2 , a 3 } ∅ {
{ a 1 , a 2 , a 3 } ∅ { a 1 , a 2 , a 3 , a 4 } {

∅ { a 1 , a 2 , a 3 , a 4 } ∅ { a 1 ,
{ a 1 , a 3 } { a 1 , a 2 } { a 1 , a 2 , a 3 , a 4 } 

{ a 1 , a 2 , a 3 , a 4 } { a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 ,
{ a 1 , a 2 , a 4 } { a 2 , a 3 , a 4 } { a 1 , a 4 } { a 1 ,

{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 3 , a 4 } 
Definition 4.3. Given a decision table DT = (U, C ∪ { d} ) and its com

the Shannon entropy is defined as M 

S 
CDT 

= { cm 

S 
pq } , where 

cm 

S 
pq = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , { cd k | f CDT (cx p , cd k ) � =
{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , cx p ∈ CU 1 , cx q ∈ CU 2 

{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , | f CDT (cx p , cd k ) | ⋃ l 
i =1 | f CDT (cx p , cd i ) |

∅ , otherwise 

Example 4.3. According to Definition 4.3 , the discernibility matrix 

M 

S 
CDT = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∅ { a 1 , a 2 , a 3 } ∅ {
{ a 1 , a 2 , a 3 } ∅ { a 1 , a 2 , a 3 , a 4 } {

∅ { a 1 , a 2 , a 3 , a 4 } ∅ { a 1 ,
{ a 1 , a 3 } { a 1 , a 2 } { a 1 , a 2 , a 3 , a 4 } 

{ a 1 , a 2 , a 3 , a 4 } { a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 ,
{ a 1 , a 2 , a 4 } { a 2 , a 3 , a 4 } { a 1 , a 4 } { a 1 ,

{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 3 , a 4 } { a 1 ,
Definition 4.4. Given a decision table DT = (U, C ∪ { d} ) and its com

the complement entropy is defined as M 

C 
CDT 

= { cm 

C 
pq } , where 

cm 

C 
pq = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , { cd k | f CDT (cx p , cd k ) � =
{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , cx p ∈ CU 1 , cx q ∈ CU 2 

{ c ∈ C : f CDT (cx p , c) � = f CDT (cx q , c) } , cx p , cx q ∈ CU 2 

∅ , otherwise 

Example 4.4. According to Definition 4.4 , the discernibility matrix 

M 

C 
CDT = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∅ { a 1 , a 2 , a 3 } ∅ {
{ a 1 , a 2 , a 3 } ∅ { a 1 , a 2 , a 3 , a 4 } {

∅ { a 1 , a 2 , a 3 , a 4 } ∅ { a 1 ,
{ a 1 , a 3 } { a 1 , a 2 } { a 1 , a 2 , a 3 , a 4 } 

{ a 1 , a 2 , a 3 , a 4 } { a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 ,
{ a 1 , a 2 , a 4 } { a 2 , a 3 , a 4 } { a 1 , a 4 } { a 1 ,

{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 3 , a 4 } { a 1 ,
m

 ∅}

in 

 a 1 
 a 1 
 a 2 

∅
 a 2 
 a 2 

∅
p

 ∅

 

� =

of 

 a 1 
 a 1 
 a 2 

∅
 a 2 
 a 2 
 a 2 

p

 ∅

of 

 a 1 
 a 1 
 a 2 

∅
 a 2 
 a 2 
d version C DT = (C U, C ∪ C D ) , a discernibility matrix of CDT in 

 cd k | f CDT (cx q , cd k ) � = ∅} and cx p , cx q ∈ CU 1 

. 

 3 , with regard to the positive region, is given as follows: 

{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 4 } { a 1 , a 2 , a 3 , a 4 } 
{ a 3 , a 4 } { a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } 

 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 4 } { a 1 , a 3 , a 4 } 
{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } ∅ 

 4 } ∅ { a 2 , a 3 } { a 1 , a 2 , a 3 } 
 4 } { a 2 , a 3 } ∅ { a 1 , a 3 } 

{ a 1 , a 2 , a 3 } { a 1 , a 3 } ∅ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

 version C DT = (C U, C ∪ C D ) , a discernibility matrix in terms of 

 cd k | f CDT (cx q , cd k ) � = ∅} and cx p , cx q ∈ CU 1 

f CDT (cx q , cd k ) | 
1 | f CDT (cx q , cd j ) | 

, ∃ cd k ∈ CD, and cx p , cx q ∈ CU 2 . 

 3 with regard to the Shannon entropy is given as follows: 

{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 4 } { a 1 , a 2 , a 3 , a 4 } 
{ a 3 , a 4 } { a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } 

 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 4 } { a 1 , a 3 , a 4 } 
{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } 

 4 } ∅ { a 2 , a 3 } { a 1 , a 2 , a 3 } 
 4 } { a 2 , a 3 } ∅ { a 1 , a 3 } 
 4 } { a 1 , a 2 , a 3 } { a 1 , a 3 } ∅ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

 version C DT = (C U, C ∪ C D ) , a discernibility matrix in terms of 

 cd k | f CDT (cx q , cd k ) � = ∅} and cx p , cx q ∈ CU 1 

. 

 3 with regard to the complement entropy is given as follows: 

{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 4 } { a 1 , a 2 , a 3 , a 4 } 
{ a 3 , a 4 } { a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } 

 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 4 } { a 1 , a 3 , a 4 } 
{ a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } { a 1 , a 2 , a 3 , a 4 } 

 4 } ∅ { a 2 , a 3 } { a 1 , a 2 , a 3 } 
 4 } { a 2 , a 3 } ∅ { a 1 , a 3 } 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 
Table 3 

A decision table compacted from Table

a 1 a 2 a 3 a 4 cd 0 

cx 1 1 1 1 1 { x 1 , x

cx 2 2 2 2 1 ∅ 
cx 3 1 3 1 3 { x 4 } 

cx 4 3 1 2 1 { x 6 } 

cx 5 2 2 3 2 ∅ 
cx 6 2 3 1 2 ∅ 
cx 7 4 3 4 2 ∅ 
cd 1 cd 2 cd 3 

∅ ∅ ∅ 
{ x 2 , x 5 } ∅ ∅ 
∅ ∅ ∅ 
{ x 9 , x 11 } ∅ ∅ 
∅ { x 7 , x 10 , x 14 } ∅ 
∅ ∅ { x 8 , x 12 } 

{ x 13 } { x 15 } ∅ 

cte

 {

ble

 3 } 
 2 } 
 3 , a

 3 , a
 3 , a

ted

 {

| 
 l 
j=

ble

 3 } 
 2 } 
 3 , a

 3 , a
 3 , a
 3 , a

ted

 {

ble

 3 } 
 2 } 
 3 , a

 3 , a
 3 , a
 , a } { a , a , a } { a , a } ∅ 
 1 . 

 3 } 

 a 2 
4 1 2 3 1 3 
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Table 4 

Sixteen possible changes of objects that are compacted from the equivalent classes including x v and x ′ v . 

ob j(cx q ) = 

0 , | σCDT ′ (cx ′ q ) | = 

1 

| σCDT (cx q ) | = 

1 , | σCDT ′ (cx ′ q ) | = 

1 

| σCDT (cx q ) | = 

1 , | σCDT ′ (cx ′ q ) | > 

1 

| σCDT (cx q ) | > 

1 , | σCDT ′ (cx ′ q ) | > 

1 

| σCDT (cx p ) | = 1 , ob j(cx ′ p ) = 0 CT1 CT2 CT3 CT4 

| σCDT (cx p ) | = 1 , | σCDT ′ (cx ′ p ) | = 1 CT5 CT6 CT7 CT8 

| σCDT (cx p ) | > 1 , | σCDT ′ (cx ′ p ) | = 1 CT9 CT10 CT11 CT12 

| σCDT (cx p ) | > 1 , | σCDT ′ (cx ′ p ) | > 1 CT13 CT14 CT15 CT16 

4.2. Incremental attribute reduction algorithm 

An incremental attribute reduction algorithm should be devel- 

oped based on the difference between before and after a com- 

pacted decision table variation. Thus, it is inevitable to answer the 

question regarding how a compacted decision table changes after 

a variation of the attribute values appears in its original version. 

To reach this end, we first analyze the possible changes of a com- 

pacted decision table caused by a change in attribute values in its 

original version. 

For the development described in this section, without a 

loss of any generality, we suppose that DT ′ = (U 

′ , C ∪ { d} ) is 

a decision table evolved from DT = (U, C ∪ { d} ) , where U = 

∪ 

n 
i =1 

{ x i } , U 

′ = ∪ 

n 
i =1 

{ x ′ 
i 
} , f DT (x v , C) � = f DT ′ (x ′ v , C) , and f DT (x j , C) = 

f DT ′ (x ′ 
j 
, C) for 1 ≤ j ≤ n ( j � = v ). We then suppose that CDT = 

(C U, C ∪ C D ) is a decision table compacted from DT = (U, C ∪ 

{ d} ) , and C DT ′ = (C U 

′ , C ∪ C D ) is updated from CDT owing 

to the change of x v ∈ U into x ′ v ∈ U 

′ . Furthermore, we sup- 

pose that in CDT , there exists cx p ∈ CU such that f DT (x v , C) = 

f CDT (cx p , C) , and in CDT ′ , f CDT ′ (x ′ v , C) � = f CDT ′ (cx ′ p , C) ( cx ′ p evolved 

from cx p ), and if ∃ cx ′ q such that f DT ′ (x ′ v , C) = f DT ′ (cx ′ q , C) , we 

suppose f CDT ′ (cx ′ q , C) = f CDT ′ (x ′ v , C) and | ob j(cx ′ q ) | > 1 ; otherwise, 

we suppose f CDT ′ (cx ′ q , C) = f CT ′ (x ′ v , C) and | ob j(cx ′ q ) | = 1 , where, 

ob j(cx ′ 
i 
) = { x | x ∈ U 

′ , f CDT ′ (cx ′ 
i 
, C) = f DT ′ (x, C) } . 

In a decision table, the change in attribute values of an object 

x v may result in changes to its compacted version. Based on the 

status of the equivalent classes related with x v before and after 

the change of a compacted decision table, sixteen possible changes 

(shown in Table 4 ) are described in detail as follows: 

( CT 1). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and ob j(cx p ) = 1 , we 

thus have | σCDT (cx p ) | = 1 ; in addition, after x v changes into 

x ′ v , ob j(cx ′ p ) = 0 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , and 

ob j(cx q ) = 0 . 

( CT 2). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and ob j(cx p ) = 1 , we 

thus have | σCDT (cx p ) | = 1 ; in addition, after x v changes into 

x ′ v , ob j(cx ′ p ) = 0 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , and 

| σCDT (cx q ) | = 1 . 

( CT 3). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and ob j(cx p ) = 1 , we 

thus have | σCDT (cx p ) | = 1 ; in addition, after x v changes into 

x ′ v , ob j(cx ′ p ) = 0 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | > 1 , and 

| σCDT (cx q ) | = 1 . 

( CT 4). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and ob j(cx p ) = 1 , we 

thus have | σCDT (cx p ) | = 1 ; in addition, after x v changes into 

x ′ v , ob j(cx ′ p ) = 0 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | > 1 , and 

| σ CDT ( cx q )| > 1. 

( CT 5). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σCDT (cx p ) | = 1 ; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , and 

ob j(cx q ) = 0 . 

( CT 6). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σCDT (cx p ) | = 1 , 

and after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σCDT (cx q ) | = 1 . 

( CT 7). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σCDT (cx p ) | = 1 ; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | > 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σCDT (cx q ) | = 1 . 

( CT 8). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σCDT (cx p ) | = 1 ; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | > 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σ CDT ( cx q )| > 1. 

( CT 9). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , and 

ob j(cx q ) = 0 . 

( CT 10). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σCDT (cx q ) | = 1 . 

( CT 11). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | > 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σCDT (cx q ) | = 1 . 

( CT 12). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | > 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σ CDT ( cx q )| > 1. 

( CT 13). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | > 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , and 

ob j(cx q ) = 0 . 

( CT 14). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | > 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σCDT (cx q ) | = 1 . 

( CT 15). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | = 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | = 1 , 

f DT (x v , C) = f CDT (cx q , C) , and | σ CDT ( cx q )| > 1. 

( CT 16). For x v ∈ U , f DT (x v , C) = f CDT (cx p , C) and | σ CDT ( cx p )| > 1; 

in addition, after x v changes into x ′ v , f DT (x ′ v , C) � = f CDT (cx ′ p , C) , 

| σCDT (cx ′ p ) | > 1 , f DT ′ (x ′ v , C) = f CDT ′ (cx ′ q , C) , | σCDT ′ (cx ′ q ) | > 1 , 

f DT (x v , C) = f CDT (cx q , C) and | σ CDT ( cx q )| > 1. 

Based on these changing situations of a compacted decision ta- 

ble, we devise another discernibility matrix based attribute reduc- 

tion algorithm as follows. 

Algorithm 2. Discernibility matrix based incremental attribute re- 

duction for a compacted decision table (DMIAR-CDT- �) 

Input : A compacted decision table C DT = (C U, C ∪ C D ) , its dis- 

cernibility matrix M 

�
CDT 

, and those objects X v whose values change 

over time, X ′ v . 
Output : All reducts RED of CDT ′ . 
Step 1 : For ∀ x v ∈ X v , search cx p whose obj ( cx p ) includes x v , and 

compute cx ′ a whose ob j(cx ′ a ) includes x ′ v by means of cx p and x ′ v , 
and search cx q , which evolves into cx ′ a . Then, judge which situation 

is consistent with the changes in cx p and cx q . 
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If the change agrees with situation ( CT 1), then the row cm 

�
cx p 

and column cm 

cx p 
�

of M 

�
CDT 

need to be deleted, and the row cm 

�
cx ′ a 

and column cm 

cx ′ a 
�

need to be added into M 

�
CDT . 

If the change agrees with the situation ( CT 2), then the row of 

cm 

�
cx p 

and the column cm 

cx p 
�

of M 

�
CDT 

need to be deleted. 

If the change agrees with situations ( CT 3) or ( CT 4), then the row 

cm 

�
cx p 

and column of cm 

cx p 
�

of M 

�
CDT 

need to be deleted, and the 

row cm 

�
cx q 

and column of cm 

cx q 
�

will be updated. 

If the change agrees with situation ( CT 5), then the row cm 

�
cx ′ a 

and column cm 

cx ′ a 
�

need to be added into M 

�
CDT . 

If the change agrees with situation ( CT 6), then the discernibility 

matrix M 

�
CDT 

remains unchanged. 

If the change agrees with situations ( CT 7) or ( CT 8), then the row 

cm 

�
cx q 

and column cm 

cx q 
�

of M 

�
CDT 

need to be updated. 

If the change agrees with situations ( CT 9) or ( CT 13), then the 

row of cm 

�
cx ′ a 

and column of cm 

cx ′ a 
�

need to be added into M 

�
CDT 

, 

and the row of cm 

�
cx p 

and the column of cm 

cx p 
�

need to be updated. 

If the change agrees with situations ( CT 10) or ( CT 14), then the 

row of cm 

�
cx p 

and column of cm 

cx p 
�

need be updated. 

If the change agrees with situations ( CT 11), ( CT 12), ( CT 15), or 

( CT 16), then the row of cm 

�
cx p 

, the column of cm 

cx p 
�

, the row of 

cm 

�
cx q 

, and the column of cm 

cx q 
�

of M 

�
CDT 

all need to be updated. 

Step 2 : Compute the new discernibility function F(M 

�
CDT 

) . 

Step 3 : Compute RED using updated discernibility matrix 

F(M 

�
CDT 

) . 

Step 4 : Return RED and end. 

where cm 

�
cx p 

, cm 

�
cx ′ a 

and cm 

�
cx q 

are row vectors, and cm 

cx p 
�

, 

cm 

cx ′ a 
�

and cm 

cx q 
�

are column vectors. In addition, in the algorithm, 

the parameter � equals { P, S, C }, i.e., DMIAR-CDT-P, DMIAR-CDT- 

S, and DMIAR-CDT-C indicate the specific versions of the positive 

region, Shannon entropy, and complement entropy, respectively. 

The time complexity of algorithm DMIAR-DT- � is analyzed as 

follows: Because the equivalent classes [ x p ] C and [ x q ] C related to 

a change from x v and x ′ v will be compacted into two objects x p 
and x q in CDT , respectively, the number of possible items affected 

by the change in discernibility matrix is 2 | CU| × 2 − 1 − 1 − 2 , and 

we need traverse attribute set C to update one item. Thus, the 

complexity of updating a discernibility matrix is O (| C | × | CU |). In 

addition, when | X v | objects are changed, the discernibility ma- 

trix will be updated | X v | times, and thus the time complexity is 

O (| X v | × | C | × | CU |). The complexity in obtaining all reducts by using 

a discernibility matrix is O (2 | C | ). Therefore, the time complexity of 

algorithm DMIAR-DT- � is O 

(| X v | × | C| × | CU| + 2 | C| ). 

The space complexity of algorithm DMIAR-DT- � is analyzed as 

follows: The space complexity of storing a compacted decision ta- 

ble is O (| CU | × | C |), the space complexity of storing its discernibility 

matrix is O (| CU | 2 × | C |), and the space complexity of computing all 

reducts of a compacted decision table is O (2 | C | × | C |). 

5. Relationship between reducts of a decision table with 

changing object values and its compacted version 

After we obtain reducts from a compacted decision with the 

value of changing objects over time, it is natural to wonder 

whether the same reducts can be acquired by the compacted ta- 

ble as compared to the original version. To answer this question, 

we investigate the relationship between the discernibility function 

of a decision table and its compacted version, and analyze how a 

compacted decision table changes with the variation of object val- 

ues. On basis of these analyses, we finally reveal the relationship 

between reducts of a decision table with object values varying over 

time and its compacted version. 

5.1. Relationship between the discernibility functions M ( DT ) and 

M ( CDT ) 

Because the discernibility matrix of a compacted decision table 

is defined based on the discernibility matrix of a decision table, 

we may thus speculate that there should be a certain relationship 

between these two discernibility matrices, and a relationship be- 

tween their corresponding discernibility functions. The following 

theorems are employed to indicate these relationships. 

Theorem 5.1. Given a decision table DT = (U, C ∪ { d} ) and its com- 

pacted version C DT = (C U, C ∪ C D ) . The relationship between dis- 

cernibility functions generated based on DT and CDT is F(M 

P 
DT 

) = 

F(M 

P 
CDT 

) . 

Proof. Suppose that U = { x 1 , x 2 , · · · , x n } and CU = 

{ cx 1 , cx 2 , · · · , cx m 

} . From the definition of a compacted deci- 

sion table, without a loss of generality, we further suppose that 

U/C = { X 1 , X 2 , · · · , X m 

} , and f DT (x p i , C) = f CDT (cx p , C) for ∀ x p i ∈ X p . 

(1) cx p , cx q ∈ CU , { cd k ∈ CD | f CDT ( cx p , cd k ) � = ∅ } � = { cd k ∈ CD | f CDT ( cx q , 

cd k ) � = ∅ } and cx p , cx q ∈ CU 1 

In this case, it is easy to obtain that cx p , cx q ∈ 

CU 1 ⇔ x p i , x q j ∈ U 1 , (x p i ∈ X p , x q j ∈ X q ) , and { cd k ∈ 

CD | f CDT (cx p , cd k ) � = ∅} � = { cd k ∈ CD | f CDT (cx q , cd k ) � = ∅} ⇔ 

f DT (x p i , d) � = f DT (x q j , d) . We thus have m 

P 
p i q j 

= cm 

P 
pq for 

∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(2) cx p ∈ CU 1 , cx q ∈ CU 2 

In this case, we have cx p ∈ CU 1 ⇔ x i ∈ U 1 for ∀ x i ∈ X p , and 

cx q ∈ CU 2 ⇔ x q ∈ U 2 for ∀ x j ∈ X q . We thus have m 

P 
p i q j 

= cm 

P 
pq for 

∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(3) Otherwise 

In this case, it is easy to see that m 

P 
p i q j 

= cm 

P 
pq = ∅ for ∀ x p i ∈ 

X p , ∀ x q j ∈ X q . 

Because 
∨ 

(m 

P 
p i q j 

) = cm 

P 
pq , we have 

F(M 

P 
DT ) = 

∧ 

{ ∨ 

(m 

P 
p i q j 

) | ∀ x p i , x q j ∈ U, m 

P 
p i q j 

� = ∅ 
} 

= 

∧ 

{ ∨ 

(cm 

P 
pq ) | ∀ cx p , cx q ∈ CU, cm 

P 
pq � = ∅ 

} 

= F(M 

P 
CDT ) . 

�

Theorem 5.1 states the discernibility function of a compacted 

decision table is the same as that of its original version, and thus, 

all reducts acquired from a decision table that are the same as 

those acquired from its compacted version can be obtained. Next, 

the relationship between the discernibility function of a decision 

table and its compacted version in terms of the Shannon entropy 

is investigated in the following theorem. 

Theorem 5.2. Given a decision table DT = (U, C ∪ { d} ) and its com- 

pacted version C DT = (C U, C ∪ C D ) , the relationship between discerni- 

bility functions generated from DT and CDT is F(M 

S 
DT 

) = F(M 

S 
CDT 

) . 

Proof. Suppose that U = { x 1 , x 2 , · · · , x n } and CU = 

{ cx 1 , cx 2 , · · · , cx m 

} . From the definition of a compacted deci- 

sion table, without a loss of generality, we further suppose that 

U/C = { X 1 , X 2 , · · · , X m 

} , and f DT (x p i , C) = f CDT (cx p , C) for ∀ x p i ∈ X p . 
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(1) cx p , cx q ∈ CU , { cd k ∈ CD | f CDT ( cx p , cd k ) � = ∅ } � = { cd k ∈ CD | f CDT ( cx q , 

cd k ) � = ∅ } and cx p , cx q ∈ CU 1 . 

In this case, it is easy to obtain cx p , cx q ∈ CU 1 ⇔ x p i , x q j ∈ 

U 1 , (x p i ∈ X p , x q j ∈ X q ) , and { cd k ∈ CD | f CDT (cx p , cd k ) � = ∅} � = 

{ cd k ∈ CD | f CDT (cx q , cd k ) � = ∅} ⇔ f DT (x p i , d) � = f DT (x q j , d) . We 

thus have m 

S 
p i q j 

= cm 

S 
pq for ∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(2) cx p ∈ CU 1 , cx q ∈ CU 2 

In this case, it is easy to obtain cx p ∈ CU 1 ⇔ x p ∈ U 1 for 

∀ x i ∈ X p , and cx q ∈ CU 2 ⇔ x q ∈ U 2 for ∀ x j ∈ X q . We thus have 

m 

S 
p i q j 

= cm 

S 
pq for ∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(3) ∃ cd k ∈ CD such that 
| f CDT (cx p ,cd k ) | ⋃ l 

i =1 | f CDT (cx p ,cd i ) | 
� = 

| f CDT (cx q ,cd k ) | ⋃ l 
j=1 | f CDT (cx q ,cd j ) | 

, and 

cx p , cx q ∈ CU 2 

In this case, it is easy to obtain cx p , cx q ∈ CU 2 ⇔ x p , x q ∈ U 2 . 

From the definition of a compacted decision table, we have 

f CDT (cx p , cd k ) = X p ∩ Y k and f CDT (cx q , cd k ) = X q ∩ Y k , and thus 

∃ cd k ∈ CD such that 
| f CDT (cx p ,cd k ) | ⋃ l 

i =1 | f CDT (cx p ,cd i ) | 
� = 

| f CDT (cx q ,cd k ) | ⋃ l 
j=1 | f CDT (cx q ,cd j ) | 

⇔ μpk = 

| X p ∩ Y k | | X p | � = 

| X q ∩ Y k | | X q | = μqk , ∃ Y k ∈ U/ { d} . We thus have 

m 

S 
p i q j 

= cm 

S 
pq for ∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(4) Otherwise 

In this case, it is easy to see that m 

S 
p i q j 

= cm 

S 
pq = ∅ for ∀ x p i ∈ 

X p , ∀ x q j ∈ X q . 

Furthermore, because of 
∨ 

(m 

S 
p i q j 

) = cm 

S 
pq , we have 

F(M 

S 
DT ) = 

∧ 

{ ∨ 

(m 

S 
p i q j 

) | ∀ p i , q j ∈ U, m 

S 
p i q j 

� = ∅ 
} 

= 

∧ 

{ ∨ 

(cm 

S 
pq ) | ∀ cx p , cx q ∈ CU, cm 

S 
pq � = ∅ 

} 

= F(M 

S 
CDT ) . 

�

From Theorem 5.2 , we can see that the discernibility function 

of a compacted decision table is the same as that of its original 

version. It is apparent that the reducts derived from a compacted 

decision table are identical to those from its original version. 

Finally, we analyze the relationship between the discernibility 

function of a decision table and its compacted version in terms of 

complement entropy. 

Theorem 5.3. Given a decision table DT = (U, C ∪ { d} ) and its com- 

pacted version C DT = (C U, C ∪ C D ) , the relationship between discerni- 

bility matrices generated from DT and CDT is F(M 

C 
DT 

) = F(M 

C 
CDT 

) . 

Proof. Suppose that U = { x 1 , x 2 , · · · , x n } and CU = 

{ cx 1 , cx 2 , · · · , cx m 

} . From the definition of a compacted deci- 

sion table, without a loss of generality, we further suppose that 

U/C = { X 1 , X 2 , · · · , X m 

} , and f DT (x p i , C) = f CDT (cx p , C) for ∀ x p i ∈ X p . 

(1) cx p , cx q ∈ CU , { cd k ∈ CD | f CDT ( cx p , cd k ) � = ∅ } � = { cd k ∈ CD | f CDT ( cx q , 

cd k ) � = ∅ } and cx p , cx q ∈ CU 1 . 

In this case, it is easy to obtain cx p , cx q ∈ CU 1 ⇔ x p i , x q j ∈ 

U 1 , (x p i ∈ X p , x q j ∈ X q ) , and { cd k ∈ CD | f CDT (cx p , cd k ) � = ∅} � = 

{ cd k ∈ CD | f CDT (cx q , cd k ) � = ∅} ⇔ f DT (x p i , d) � = f DT (x q j , d) . We 

thus have m 

C 
p i q j 

= cm 

C 
pq for ∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(2) cx p ∈ CU 1 , cx q ∈ CU 2 

In this case, it is easy to obtain cx p ∈ CU 1 ⇔ x i ∈ U 1 for ∀ x i ∈ X p , 

and cx q ∈ CU 2 ⇔ x q ∈ U 2 for ∀ x j ∈ X q . We thus have m 

C 
p i q j 

= 

cm 

C 
pq for ∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(3) cx p , cx q ∈ CU 2 

In this case, it is easy to obtain cx p , cx q ∈ CU 2 ⇔ x p , x q ∈ U 2 for 

∀ x i ∈ X p . We thus have m 

C 
p i q j 

= cm 

C 
pq for ∀ x p i ∈ X p , ∀ x q j ∈ X q . 

(4) Otherwise 

In this case, it is easy to see that m 

C 
p i q j 

= cm 

C 
pq = ∅ ,for ∀ x p i ∈ 

X p , ∀ x q j ∈ X q . 

Furthermore, because of 
∨ 

(m 

C 
p i q j 

) = cm 

C 
pq , we have 

F(M 

C 
DT ) = 

∧ 

{ ∨ 

(m 

C 
p i q j 

) | ∀ p i , q j ∈ U, m 

C 
p i q j 

� = ∅ 
} 

= 

∧ 

{ ∨ 

(cm 

C 
pq ) | ∀ cx p , cx q ∈ CU, cm 

C 
pq � = ∅ 

} 

= F(M 

C 
CDT ) . 

�

Theorem 5.3 indicates that the discernibility function of a deci- 

sion table is identical with its compacted version. Thus, the reducts 

derived from a compacted decision table are the same as those de- 

rived from its original version. 

According to the conclusions of Theorems 5.1 - 5.3 , it is easy to 

see that the same discernibility functions can be obtained using a 

decision table and its compacted version with regard to the pos- 

itive region, Shannon entropy, and complement entropy, respec- 

tively. Therefore, we can undoubtedly draw the conclusion that 

reducts obtained from a decision table are identical with those 

from its compacted version for the three senses mentioned above. 

5.2. Change of a compacted decision table resulting from a change in 

object value 

To aid in the following analyses, we suppose that 

C DT = (C U, C ∪ C D ) is a compacted decision table from 

DT = (U, C ∪ { d} ) , where CU = { cx 1 , cx 2 , . . . , cx u } ( u = | U/C| ) 
and CD = { cd 1 , cd 2 , . . . , cd s } ( s = | U/ { d}| ). In addition, suppose 

that C DT ′ = (C U 

′ , C ∪ C D 

′ ) is a compacted decision table evolved 

from CDT owing to an object x v of DT changing into x ′ v , where 

CU 

′ = { cx ′ 
1 
, cx ′ 

2 
, . . . , cx ′ u } , and CD 

′ = { cd ′ 
1 
, cd ′ 

2 
, . . . , cd ′ s } . For the ob- 

ject x ′ v , we use f CDT (x ′ v , C) to indicate the values of x ′ v on the 

condition attribute set C , and f (x ′ v , d) to represent the decision 

value of x ′ v . 
By means of Definition 4.1 and the relationships among a 

changed object and the objects in a compacted decision table, we 

investigate the change in compacted decision table in the following 

cases: 

(1) | [ x v ] C | = 1 and | [ x ′ v ] C | = 1 

In this case, because ∃ cx p ∈ CU such that f DT (x v , C) = 

f CDT (cx p , C) and ob j(cx p ) = 1 , and f DT ′ (x ′ v , C) � = 

f CDT (cx i , C) for ∀ cx i ∈ CU , it is easy to know that 

| CU 

′ | = | CU| = u . Without a loss of generality, we sup- 

pose that f CDT ′ (cx ′ p , C) = f DT ′ (x ′ v , C) , f CDT ′ (cx ′ p , CD 

′ ) = 

f CDT (cx p , CD ) , f CDT ′ (cx ′ 
j 
, C) = f CDT (cx j , C)(1 ≤ j ≤ u, j � = p) , 

f CDT ′ (cx ′ 
j 
, CD 

′ ) = f CDT (cx j , CD )(1 ≤ j ≤ u, j � = p) . 

(2) | [ x v ] C | = 1 and | [ x ′ v ] C | > 1 

In this case, because ∃ cx p ∈ CU such that f DT (x v , C) = 

f CDT (cx p , C) and ob j(cx p ) = 1 , and ∃ cx q ∈ CU such 

that f DT (x ′ v , C) = f CDT (cx q , C) , it is easy to see that 

| CU 

′ | = | CU| = u − 1 . Without a loss of generality, we 

suppose that f CDT ′ (cx ′ q , C) = f CDT (cx q , C) , f (x v , d) = v d r , 
f CDT ′ (cx ′ q , cd ′ 

k 
) = f CDT ( cx q , cd k )(1 ≤ k ≤ s, k � = r ), f CDT ′ (cx ′ q , cd ′ r ) 

= f CDT (cx q , cd r ) 
⋃ { x v } , and f CDT ′ (cx ′ 

j 
, C) = f CDT (cx j , C)(1 ≤

j ≤ u, j � = p, q ) , f CDT ′ (cx ′ 
j 
, CD 

′ ) = f CDT (cx j , CD )(1 ≤ j ≤ u, j � = 

p, q ) . 

(3) |[ x v ] C | > 1 and | [ x ′ v ] C | = 1 

In this case, because ∃ cx p ∈ CU such that f DT (x v , C) = 

f CDT (cx p , C) and obj ( cx p ) > 1, and f DT ′ (x ′ v , C) � = f CDT (cx i , C) 

for ∀ cx i ∈ CU , it is easy to see that | CU 

′ | = | CU| = 

u + 1 . Without a loss of generality, we sup- 

pose that f CDT ′ (cx ′ 
u +1 

, C) = f DT ′ (x ′ v , C) , f (x v , d) = v d r , 
f CDT ′ (cx ′ 

u +1 
, cd r ) = { x v } , f CDT ′ (cx ′ 

u +1 
, cd k ) = ∅ (1 ≤ k ≤

s, k � = r) , f CDT ′ (cx ′ p , C) = f CDT (cx p , C) , f CDT ′ (cx ′ p , cd ′ r ) = 

f CDT (cx p , cd r ) − { x v } , f CDT ′ (cx ′ p , cd k ) = f CDT (cx p , cd k )(1 ≤
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k ≤ s, k � = r) , f CDT ′ (cx ′ 
i 
, C) = f CDT (cx i , C)(1 ≤ i ≤ u, i � = p) , 

f CDT ′ (cx ′ 
i 
, CD 

′ ) = f CDT (cx i , CD )(1 ≤ i ≤ u, i � = p) . 

(4) |[ x v ] C | > 1 and | [ x ′ v ] C | > 1 

In this case, because ∃ cx p ∈ CU such that f DT (x v , C) = 

f CDT (cx p , C) and obj ( cx p ) > 1, and ∃ cx q ∈ CU such that 

f DT ′ (x ′ v , C) = f CDT (cx q , C) , it is easy to see that | CU 

′ | = 

| CU| = u . Without a loss of generality, we suppose that 

f CDT ′ (cx ′ p , C) = f CDT (cx p , C) , f (x v , d) = v d r , f CDT ′ (cx ′ p , cd r ) = 

f CDT (cx p , cd r ) − { x v } , f CDT ′ (cx ′ p , cd k ) = f CDT (cx p , cd k )(1 ≤
k ≤ s, k � = r) , f CDT ′ (cx ′ q , C) = f CDT (cx q , C) , f CDT ′ (cx ′ q , cd r ) = 

f CDT (cx q , cd r ) ∪ { x v } , f CDT ′ (cx ′ q , cd k ) = f CDT (cx q , cd k )(1 ≤
k ≤ s, k � = r) , f CDT ′ (cx ′ 

i 
, C) = f CDT (cx i , C)(1 ≤ i ≤ u, i � = p, q ) , 

f CDT ′ (cx ′ 
i 
, CD 

′ ) = f CDT (cx i , CD )(1 ≤ i ≤ u, i � = p, q ) . 

5.3. Relationship between reducts obtained by CDT’ and DT’ 

In this section, we emphasize the relationship of reducts ob- 

tained through an updated compacted decision table ( CDT ′ ) and an 

updated decision table ( DT ′ ), which can verify the effectiveness of 

these proposed discernibility matrices. In Section 5.1 , we demon- 

strate that the reducts acquired from a compacted decision table 

( CDT ) are identical with those acquired from its original version 

( DT ). We can leverage this conclusion if an updated compacted de- 

cision table ( CDT ′ ) and a compacted updated decision table ( DT ′ C ) 
can be proven to be the same. Thus, we first analyze the rela- 

tionship between an updated compacted decision table ( CDT ′ ) and 

a compacted updated decision table ( DT ′ C ) through the following 

theorem. 

Theorem 5.4. Given a decision table DT = { U, C ∪ { d}} and its com- 

pacted version C DT = { C U, C ∪ C D } , DT ′ C is identical to CDT ′ , where 

DT ′ C is a compacted table constructed by compacting DT ′ , and DT ′ 
and CDT ′ are a decision table and a compacted decision table gener- 

ated by changing the object x v into x ′ v , respectively. 

Proof. Suppose that U/C = ∪ 

u 
i =1 

X p , x ∈ X i , U/ { d} = ∪ 

s 
i =1 

Y q , x ∈ Y m 

. 

There are four cases to be considered as follows: 

(1) | [ x v ] C | = 1 and | [ x ′ v ] C | = 1 

∃ X p ∈ U / C such that x v ∈ X p and | X p | = 1 , and x ′ v / ∈ X i 
for ∀ X i ∈ U / C , and it is clear that | U/C| = | U 

′ /C| = u . By 

Definition 4.1 , in DT ′ C , without a loss of generality, we sup- 

pose that f DT ′ C (x ′ c p , C) = f DT ′ (x ′ v , C) and f DT ′ C (x ′ c p , D 

′ C) = 

f CDT (cx p , CD ) , and that f DT ′ C (x ′ c i , C) = f DT (X i , C)(1 ≤ i ≤
u, i � = p) and f DT ′ C (x ′ c i , d ′ c k ) = f CDT (cx i , CD )(1 ≤ i ≤ u, i � = p) . 

Combined with Case (1) in Section 5.2 , it is easy to see 

that f DT ′ C (x ′ c p , C) = f CDT ′ (cx ′ p , C) and f DT ′ C (x ′ c p , D 

′ C) = 

f CDT ′ (cx ′ p , CD 

′ ) , and f DT ′ C (x ′ c i , C) = f CDT ′ (cx ′ 
i 
, C) and 

f DT ′ C (x ′ c i , D 

′ C) = f CDT ′ (cx ′ 
i 
, CD 

′ )(1 ≤ i ≤ u, i � = p) . 

(2) | [ x v ] C | = 1 and | [ x ′ v ] C | > 1 

∃ X p ∈ U / C such that x v ∈ X p and | X p | = 1 , and ∃ X q ∈ U / C such 

that x ′ v ∈ X q (p � = q ) , and it is easy to see that | U 

′ /C| = u − 1 . 

By Definition 4.1 , in DT ′ C , without a loss of generality, we 

suppose that f DT ′ C (x ′ c q , C) = f DT (X q , C) , f DT (x v , d) = v d r , 
f DT ′ C (x ′ c q , d ′ c r ) = { x | f DT (x, d) = v d r , x ∈ X q } ∪ { x v } , and 

f DT ′ C (x ′ c q , d ′ c k ) = { x | f DT (x, d) = v d k , x ∈ X q } (1 ≤ k ≤
s, k � = r) ; in addition, f DT ′ C (x ′ c i , C) = f DT (X i , C) , and 

f DT ′ C (x ′ c i , d ′ c k ) = f CDT (cx i , CD )(1 ≤ i ≤ u, i � = p, q ) . 

Combined with Case (2) in Section 5.2 , it is easy to see 

that f DT ′ C (x ′ c q , C) = f CDT ′ (cx ′ q , C) and f DT ′ C (x ′ c q , D 

′ C) = 

f CDT ′ (cx ′ q , CD 

′ ) , and f DT ′ C (x ′ c i , C) = f CDT ′ (cx ′ 
i 
, C) and 

f DT ′ C (x ′ c i , D 

′ C) = f CDT ′ (cx ′ 
i 
, CD 

′ )(1 ≤ i ≤ u, i � = p, q ) . 

(3) |[ x v ] C | > 1 and | [ x ′ v ] C | = 1 

∃ X p ∈ U / C such that x v ∈ X p and | X p | > 1, and x ′ v / ∈ X i for 

∀ X i ∈ U / C , and it is easy to see that | U 

′ /C| = u + 1 . By 

Definition 4.1 , in DT ′ C , without a loss of generality, we 

suppose that f DT ′ C (x ′ c u +1 , C) = f DT ′ (x ′ v , C) , f DT (x v , d) = v d r , 

f DT ′ C (x ′ c u +1 , d 
′ c r ) = { x v } , f DT ′ C (x ′ c u +1 , d 

′ c k ) = ∅ (1 ≤ k ≤
s, k � = r) , f DT ′ C (x ′ c p , C) = f DT (X p , C) , f DT ′ C (x ′ c p , d ′ c r ) = 

{ x | f DT (x, d) = v d r , x ∈ (X p ) } − { x v } , f DT ′ C (x ′ c p , d ′ c k ) = { x | 
f DT (x, d) = v d k , x ∈ X p } (1 ≤ k ≤ s, k � = r) , f DT ′ C (x ′ c i , C) = 

f DT (X i , C)(1 ≤ i ≤ u, i � = p) , and f DT ′ C (x ′ c p , d ′ c k ) = { x | 
f DT (x, d) = v d k , x ∈ X i } (1 ≤ i ≤ u, i � = p, 1 ≤ k ≤ s ) . 

Combined with Case (3) in Section 5.2 , it is easy to see that 

f DT ′ C (x ′ c u +1 , C) = f CDT ′ (cx ′ u +1 , C) and f DT ′ C (x ′ c u +1 , D 

′ C) = 

f CDT ′ (cx ′ 
u +1 

, CD 

′ ) , f DT ′ C (x ′ c p , C) = f CDT ′ (cx ′ p , C) and 

f DT ′ C (x ′ c p , D 

′ C) = f CDT ′ (cx ′ p , CD 

′ ) , and f DT ′ C (x ′ c i , C) = 

f CDT ′ (cx ′ 
i 
, C) and f DT ′ C (x ′ c i , D 

′ C) = f CDT ′ (cx ′ 
i 
, CD 

′ )(1 ≤ i ≤
u, i � = p) . 

(4) |[ x v ] C | > 1 and | [ x ′ v ] C | > 1 

∃ X p ∈ U / C such that x v ∈ X p and | X p | > 1, and ∃ X q ∈ U / C 

such that x ′ v ∈ X q (p � = q ) , and it is easy to know that 

| U 

′ /C| = u . By Definition 4.1 , in DT ′ C , without a loss 

of generality, f DT ′ C (x ′ c p , C) = f DT (X p , C) , f DT (x v , d) = v d r , 
f DT ′ C (x ′ c p , d ′ c r ) = { x | f DT (x, d) = v d r , x ∈ (X p ) } − { x v } , 
f DT ′ C (x ′ c p , d ′ c k ) = { x | f DT (x, d) = v d k , x ∈ X p } (1 ≤ k ≤
s, k � = r) , f DT ′ C (x ′ c q , C) = f DT (X q , C) , f DT ′ C (x ′ c q , d ′ c r ) = 

{ x | f DT (x, d) = v d r , x ∈ X q } ∪ { x v } , f DT ′ C (x ′ c q , d ′ c k ) = { x | 
f DT (x, d) = v d k , x ∈ X q } (1 ≤ k ≤ s, k � = r) , f DT ′ C (x ′ c i , C) = 

f DT (X i , C)(1 ≤ i ≤ u, i � = p) , and f DT ′ C (x ′ c p , d ′ c k ) = { x | 
f DT (x, d) = v d k , x ∈ X i } (1 ≤ i ≤ u, i � = p, 1 ≤ k ≤ s ) . 

Combined with Case (4) in Section 5.2 , it is easy to 

see f DT ′ C (x ′ c p , C) = f CDT ′ (cx ′ p , C) and f DT ′ C (x ′ c p , D 

′ C) = 

f CDT ′ (cx ′ p , CD 

′ ) , and f DT ′ C (x ′ c q , C) = f CDT ′ (cx ′ q , C) and 

f DT ′ C (x ′ c q , D 

′ C) = f CDT ′ (cx ′ q , CD 

′ ) , and f DT ′ C (x ′ c i , C) = 

f CDT ′ (cx ′ 
i 
, C) and f DT ′ C (x ′ c i , D 

′ C) = f CDT ′ (cx ′ 
i 
, CD 

′ )(1 ≤ i ≤
u, i � = p, q ) . 

Based on the analyses above, we draw the conclusion that 

the compacted decision table DT ′ C is the same as the com- 

pacted decision table CDT ′ . 

�

Based on the conclusion of Theorems 5.1 - 5.4 , we can introduce 

the following significant corollary. 

Corollary 5.1. Given a decision table DT = { U, C ∪ { d}} and its com- 

pacted version C DT = { C U, C ∪ C D } , if DT ′ is a decision table generated 

by changing an object x into x ′ , and CDT ′ is a compacted decision ta- 

ble generated by varying the object x into x ′ , then 

F(M 

P 
DT ′ ) = F(M 

P 
CDT ′ ) , F(M 

S 
DT ′ ) = F(M 

S 
CDT ′ ) , F(M 

C 
DT ′ ) = F(M 

C 
CDT ′ ) . 

Proof. Based on Theorem 5.4 , it is easy to obtain F(M 

P 
DT ′ C ) = 

F (M 

P 
CDT ′ ) , F (M 

S 
DT ′ C ) = F(M 

S 
CDT ′ ) , and F(M 

C 
DT ′ C ) = F(M 

C 
CDT ′ ) . Fur- 

thermore, by Theorem 5.1 , we can conclude that F(M 

P 
DT ′ ) = 

F(M 

P 
CDT ′ ) , by Theorem 5.2 , we can conclude that F(M 

S 
DT ′ ) = 

F(M 

S 
CDT ′ ) , and by Theorem 5.3 , we can conclude that F(M 

C 
DT ′ ) = 

F(M 

C 
CDT ′ ) . �

Corollary 5.1 indicates that when the values of the objects 

change, the discernibility function of table DT ′ evolved from a de- 

cision table is identical with that of CDT ′ from the same decision 

table in terms of the positive region, Shannon entropy, and com- 

plement entropy. From Corollary 5.1 , we can draw the conclusion 

that the same reducts can be obtained from a decision table as 

from a compacted table when some values of the objects vary over 

time. 

6. Experimental analysis 

The following experiments were conducted to show the effec- 

tiveness of our proposed algorithm for datasets in which object 

values change over time. In these experiments, eight datasets were 
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Table 5 

Datasets used in experiments. 

ID Datasets Abbreviation Attributes Objects 

Consistent part Inconsistent part Total 

1 Mammographic Mass MM 6 681 149 830 

2 Monk’s Problem Monk 7 384 1327 1711 

3 Wine Wine 13 178 0 178 

4 Breast Cancer Wisconsin(Original) BCW 9 683 0 683 

5 Spect Spect 22 218 49 267 

6 Spambase Spam 57 625 3976 4601 

7 Wine quality WQ 32 163 4735 4898 

8 Gesture phase GP 18 1095 8806 9901 

Fig. 1. A comparison of the time taken for CDMAR-P and DMIAR-DT-P. 

downloaded from the UCI Machine Learning Database Repository. 

All experiments were carried out on a personal computer with an 

Intel(R) 3.4 GHz Core(TM) i7-2600 and 4 GB of memory. The soft- 

ware used is Microsoft Visual 2013, and the programming language 

is C# . 

To illustrate the efficiency of our proposed algorithms, we se- 

lect 10%, 20%, 30%, 40%, and 50% as the objects of these datasets 

in Table 5 , and replace these objects with new ones in which the 

value of each attribute is randomly selected from the attribute do- 

main or assigned a new value. For each dataset after each varia- 

tion (from 10% to 50%), a classical discernibility matrix based non- 

incremental attribute reduction algorithm (CDMAR), discernibility 

matrix based incremental attribute reduction algorithm for a deci- 

sion table (DMIAR-DT), and discernibility matrix based incremen- 

tal attribute reduction algorithm for a compacted decision table 

(DMIAR-CDT) were employed to compute their reducts. 

The elapsed time of these algorithms was used to evaluate their 

performance from the perspective of efficiency, and Figs. 1 , 2 , 3 

show the elapsed times of the CDMAR-P and DMIAR-DT-P algo- 

rithms, CDMAR-S and DMIAR-DT-S algorithms, and CDMAR-C and 

DMIAR-DT-C algorithms. In Fig. 1 , we can see that the running 

time of DMIAR-DT-P was much less than that of CDMAR-P for all 

UCI datasets in Table 5 . The experimental results illustrate that our 

proposed algorithm, DMIAR-CDT-P, is more efficient than CDMAR- 

P. Figs. 2 and 3 display similar results to those in Fig. 1 , which 

indicates that DMIAR-DT-S and DMIAR-DT-C were also faster than 

CDMAR-S and CDMAR-C, respectively. In addition, Figs. 4 , 5 , 6 show 

the elapsed times of DMIAR-DT-P and DMIAR-CDT-P, DMIAR-DT-S 

and DMIAR-CDT-S, and DMIAR-DT-C and DMIAR-CDT-C. As shown 

in Fig. 4 , we can see that the running time of DMIAR-CDT-P was 

much less than that of DMIAR-DT-P on all UCI datasets in Table 5 . 

The experimental results illustrate that our proposed algorithm 

DMIAR-CDT-P was more efficient than DMIAR-DT-P. Figs. 5 and 

6 show similar results to those in Fig. 4 , and indicates that DMIAR- 

CDT-S and DMIAR-CDT-C are also faster than DMIAR-DT-S and 

DMIAR-DT-C, respectively. It is worth noting that the performances 

of these proposed algorithms improved as the number of changed 

objects increased, that is, the more the dataset changed, the more 

efficient these algorithms, DMIAR-CDT-P, DMIAR-CDT-S, DMIAR- 

CDT-C, DMIAR-DT-P, DMIAR-DT-S, and DMIAR-DT-C, were. 

From the experimental analysis mentioned above, we deter- 

mined that these incremental algorithms based on a compacted 

decision table are much faster than those based on the original 

version. To further clarify the reason for this acceleration, we an- 

alyzed the non-empty entries in the discernibility matrices of a 

decision table and the compacted version. From Tables 6 , 7 and 

8 , it is easy to see that the numbers of non-empty entries in the 

discernibility matrices of each dataset significantly decrease after 

compaction, which illustrates the reason why incremental algo- 

rithms based a compacted table are more efficient. It should be 

pointed out that the performance of these proposed algorithms is 

closely related to the ratio of the numbers of non-empty entries 
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Fig. 2. A comparison of the time taken for CDMAR-S and DMIAR-DT-S. 

Fig. 3. A comparison of the time taken CDMAR-C and DMIAR-DT-C. 

in the discernibility matrices of a dataset to the numbers of non- 

empty entries in the discernibility matrices of its compacted ver- 

sion. Take Table 5 and Fig. 4 as examples. In Table 5 , for the dataset 

“Spect,” the ratios in all types of updating situations (10%, 20%, 

30%, 40% and 50%) are 88.60%, 81.83%, 83.98%, 83.76% and 81.22%, 

which are much higher than those of the ”Spam” dataset, i.e., 

9.76%, 16.69%, 13.12%, 10.75% and 8.62%, respectively. The results 

are consistent with those in Fig. 4 (e) and (f), i.e., the difference 

between the black and red lines in Fig. 4 (f) is also clearly bigger 

than that in Fig. 4 (e). Similar results can be found in Table 6 and 

Fig. 5 , and in Table 7 and Fig. 6 . Note that, essentially, the ratio 

of the numbers of non-empty entries in the discernibility matrices 

of a dataset to the those of non-empty entries in the discernibil- 

ity matrices of its compacted version depends largely on the com- 

parison ratio of a decision table, which is the ratio of objects in a 

decision table to those in its compacted version [40] . 

Furthermore, the difference in performance between these in- 

cremental attribute reduction algorithms caused by the different 

discernibility matrices (discernibility matrices in terms of the pos- 

itive region, Shannon entropy, and complement entropy) of a com- 

pacted decision table need to be analyzed. Among these discerni- 

bility matrices, only the one regarding Shannon entropy has to 

spend extra time in comparing the decision distribution deter- 

mined by each of two different objects in the inconsistent part of a 

compacted decision table (See Definition 4.3 ). Compared with the 

discernibility matrices in terms of Shannon entropy, the one re- 

garding a positive region does not consider the differences among 

the objects in the inconsistent part of a compacted decision table 
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Fig. 4. A comparison of the time taken DMIAR-DT-P and DMIAR-CDT-P. 

Fig. 5. A comparison of the time taken DMIAR-DT-S and DMIAR-CDT-S. 

(See Definition 4.2 ), and the one with regard to complement en- 

tropy only compute the difference among condition attributes of 

each of two objects in the inconsistent part (See Definition 4.4 ). 

Consequently, an incremental algorithm for computing the reducts 

in terms of Shannon entropy can take much more time than those 

with regard to the positive region and complement entropy be- 

cause the discernibility matrix of a compacted decision has to be 

iteratively updated based on the number of new objects. 

To further illustrate this issue, we employ Tables 9 and 10 . 

In Table 9 , the 16 cases in Table 4 , in which the decision dis- 

tributions of each of two objects of an updated compacted deci- 

sion table must be compared, are labelled with a star. The more 

cases a compacted decision covers during the updating process, 

the worse the incremental attribute reduction algorithm will per- 

form on the compacted decision table. Table 10 shows the number 

of times each case appeared in the process of updating the eight 

datasets based five different percentages (10%, 20%, 30%, 40% and 

50%). From Table 10 , we can see that for the ”WQ” dataset, the val- 

ues of all percentages in the column ”% of � ” are more than 95%, 

which indicates that more than 95% of the updated objects belong 

to one of CT 3, CT 4, CT 7, CT 8, CT 11, CT 12, CT 13, CT 14, CT 15, and CT 16. 

Thus, for the ”WQ” dataset, the performance of the incremental at- 

tribute reduction algorithm in terms of Shannon entropy should be 

significantly worse than those of the positive region and comple- 

ment entropy, which can be demonstrated through a comparison 

among Figs. 4 (g), 5 (g), and 6 (g). This phenomenon is similar to the 

”WQ” dataset, and also appears in the ”Monk,” ”Spam,” and ”GP”

datasets; in other words, for ”Monk,” ”Spam,” and ”GP”, the perfor- 



154 W. Wei et al. / Knowledge-Based Systems 140 (2018) 142–157 

Fig. 6. A comparison of the time taken DMIAR-DT-C and DMIAR-CDT-C. 

Table 6 

Comparison of non-empty entries in discernibility matrices with regard to positive region. 

Dataset Algorithm 10% 20% 30% 40% 50% 

Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio 

MM CDMAR-P 268189 10 0.0 0% 269723 10 0.0 0% 270766 10 0.0 0% 267982 10 0.0 0% 258822 10 0.0 0% 

DMIAR-DT-P 268189 10 0.0 0% 269723 10 0.0 0% 270766 10 0.0 0% 267982 10 0.0 0% 258822 10 0.0 0% 

DMIAR-CDT-P 142611 53.18% 149428 55.40% 154608 57.10% 157645 58.83% 157286 60.77% 

Monk CDMAR-P 299443 10 0.0 0% 378902 10 0.0 0% 481662 10 0.0 0% 524546 10 0.0 0% 534240 10 0.0 0% 

DMIAR-DT-P 299443 10 0.0 0% 378902 10 0.0 0% 481662 10 0.0 0% 524546 10 0.0 0% 534240 10 0.0 0% 

DMIAR-CDT-P 101959 34.05% 140432 37.06% 170132 35.32% 180602 34.43% 182362 34.13% 

Wine CDMAR-P 22488 10 0.0 0% 23240 10 0.0 0% 23378 10 0.0 0% 22594 10 0.0 0% 20814 10 0.0 0% 

DMIAR-DT-P 22488 10 0.0 0% 23240 10 0.0 0% 23378 10 0.0 0% 22594 10 0.0 0% 20814 10 0.0 0% 

DMIAR-CDT-P 11290 50.20% 12604 54.23% 13020 55.69% 12978 57.44% 12856 61.77% 

BCW CDMAR-P 244240 10 0.0 0% 268454 10 0.0 0% 287044 10 0.0 0% 297348 10 0.0 0% 300174 10 0.0 0% 

DMIAR-DT-P 244240 10 0.0 0% 268454 10 0.0 0% 287044 10 0.0 0% 297348 10 0.0 0% 300174 10 0.0 0% 

DMIAR-CDT-P 124300 50.89% 135192 50.36% 142632 49.69% 147432 49.58% 148910 49.61% 

Spect CDMAR-P 13740 10 0.0 0% 15321 10 0.0 0% 16782 10 0.0 0% 18142 10 0.0 0% 19592 10 0.0 0% 

DMIAR-DT-P 13740 10 0.0 0% 15321 10 0.0 0% 16782 10 0.0 0% 18142 10 0.0 0% 19592 10 0.0 0% 

DMIAR-CDT-P 12174 88.60% 12537 81.83% 14094 83.98% 15195 83.76% 15912 81.22% 

Spam CDMAR-P 212906 10 0.0 0% 304720 10 0.0 0% 435978 10 0.0 0% 571208 10 0.0 0% 76 84 87 10 0.0 0% 

DMIAR-DT-P 212906 10 0.0 0% 304720 10 0.0 0% 435978 10 0.0 0% 571208 10 0.0 0% 76 84 87 10 0.0 0% 

DMIAR-CDT-P 42063 19.76% 50868 16.69% 57212 13.12% 61400 10.75% 66274 8.62% 

WQ CDMAR-P 77040 10 0.0 0% 97498 10 0.0 0% 116282 10 0.0 0% 128578 10 0.0 0% 141939 10 0.0 0% 

DMIAR-DT-P 77040 10 0.0 0% 97498 10 0.0 0% 116282 10 0.0 0% 128578 10 0.0 0% 141939 10 0.0 0% 

DMIAR-CDT-P 53696 69.70% 67834 69.57% 81204 69.83% 88834 69.09% 96118 67.72% 

GP CDMAR-P 1516436 10 0.0 0% 1810754 10 0.0 0% 2033688 10 0.0 0% 2209351 10 0.0 0% 2451322 10 0.0 0% 

DMIAR-DT-P 1516436 10 0.0 0% 1810754 10 0.0 0% 2033688 10 0.0 0% 2209351 10 0.0 0% 2451322 10 0.0 0% 

DMIAR-CDT-P 360153 23.75% 427320 23.59% 465526 22.89% 493546 22.34% 503692 20.55% 

mance of the incremental attribute reduction algorithm in terms of 

Shannon entropy is also worse than that of the positive region and 

complement entropy. 

7. Conclusion 

Because dynamic data extensively exist in real applications, at- 

tribute reduction for particular types of data has become a chal- 

lenging issue in the field of rough sets. In this paper, we first in- 

troduced a discernibility matrix based incremental attribute reduc- 

tion algorithm to incrementally compute all reducts, including the 

optimal reduct, of dynamic data. To further enhance the efficiency 

of the discernibility matrix based incremental attribute reduction 

algorithm, we defined a new compacted decision table, and based 

on a discernibility matrix of the compacted decision table, we de- 

veloped an incremental attribute reduction algorithm. Some theo- 

rems and extensive experiments show that the incremental algo- 

rithm requires much less time to find the reducts than the former 

algorithm, and that the same reducts can be acquired by both. It 

should be pointed out that the incremental mechanisms of the dis- 

cernibility matrices proposed in this paper are applicable to a case 

in which the objects in dynamic data are varied one by one. How- 

ever, in real applications, the objects of dynamic data may vary 

in groups. To deal with dynamic data, we have to repetitively run 

these incremental algorithms based on their mechanism according 
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Table 7 

Comparison of non-empty entries in discernibility matrices with regard to Shannon entropy. 

Dataset Algorithm 10% 20% 30% 40% 50% 

Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio 

MM CDMAR-S 299328 10 0.0 0% 298086 10 0.0 0% 293410 10 0.0 0% 289062 10 0.0 0% 277424 10 0.0 0% 

DMIAR-DT-S 299328 10 0.0 0% 298086 10 0.0 0% 293410 10 0.0 0% 289062 10 0.0 0% 277424 10 0.0 0% 

DMIAR-CDT-S 165236 55.2% 170498 57.20% 171734 58.53% 173882 60.15% 171884 61.96% 

Monk CDMAR-S 560052 10 0.0 0% 664178 10 0.0 0% 781556 10 0.0 0% 829148 10 0.0 0% 829714 10 0.0 0% 

DMIAR-DT-S 560052 10 0.0 0% 664178 10 0.0 0% 781556 10 0.0 0% 829148 10 0.0 0% 829714 10 0.0 0% 

DMIAR-CDT-S 264932 47.30% 319346 48.08% 348604 44.60% 356504 43.00% 348178 41.96% 

Wine CDMAR-S 22488 10 0.0 0% 23240 10 0.0 0% 23378 10 0.0 0% 22594 10 0.0 0% 20814 10 0.0 0% 

DMIAR-DT-S 22488 10 0.0 0% 23240 10 0.0 0% 23378 10 0.0 0% 22594 10 0.0 0% 20814 10 0.0 0% 

DMIAR-CDT-S 11290 50.20% 12604 54.23% 13020 55.69% 12978 57.44% 12856 61.77% 

BCW CDMAR-S 244240 10 0.0 0% 268454 10 0.0 0% 287044 10 0.0 0% 297348 10 0.0 0% 300174 10 0.0 0% 

DMIAR-DT-S 244240 10 0.0 0% 268454 10 0.0 0% 287044 10 0.0 0% 297348 10 0.0 0% 300174 10 0.0 0% 

DMIAR-CDT-S 124300 50.89% 135192 50.36% 142632 49.69% 147432 49.58% 148910 49.61% 

Spect CDMAR-S 16018 10 0.0 0% 17422 10 0.0 0% 18222 10 0.0 0% 19360 10 0.0 0% 20584 10 0.0 0% 

DMIAR-DT-S 16018 10 0.0 0% 17422 10 0.0 0% 18222 10 0.0 0% 19360 10 0.0 0% 20584 10 0.0 0% 

DMIAR-CDT-S 14362 89.66% 14530 83.40% 15474 84.92% 16368 84.55% 16864 81.93% 

Spam CDMAR-S 241694 10 0.0 0% 344030 10 0.0 0% 483872 10 0.0 0% 628472 10 0.0 0% 825090 10 0.0 0% 

DMIAR-DT-S 241694 10 0.0 0% 344030 10 0.0 0% 483872 10 0.0 0% 628472 10 0.0 0% 825090 10 0.0 0% 

DMIAR-CDT-S 52404 21.68% 63322 18.41% 70510 14.57% 75284 11.98% 78702 9.54% 

WQ CDMAR-S 154598 10 0.0 0% 195830 10 0.0 0% 232734 10 0.0 0% 258278 10 0.0 0% 283764 10 0.0 0% 

DMIAR-DT-S 154598 10 0.0 0% 195830 10 0.0 0% 232734 10 0.0 0% 258278 10 0.0 0% 283764 10 0.0 0% 

DMIAR-CDT-S 121290 78.46% 153658 78.46% 182936 78.60% 201942 78.19% 218818 77.11% 

GP CDMAR-S 1970526 10 0.0 0% 2338854 10 0.0 0% 2633902 10 0.0 0% 2847730 10 0.0 0% 3120426 10 0.0 0% 

DMIAR-DT-S 1970526 10 0.0 0% 2338854 10 0.0 0% 2633902 10 0.0 0% 2847730 10 0.0 0% 3120426 10 0.0 0% 

DMIAR-CDT-S 594918 30.19% 701276 29.98% 774622 29.41% 820710 28.82% 834 4 4 4 26.74% 

Table 8 

Comparison of non-empty entries in discernibility matrices with regard to complement entropy. 

Dataset Algorithm 10% 20% 30% 40% 50% 

Number Ratio Number Ratio Number Ratio Number Ratio Number Ratio 

MM CDMAR-C 299708 10 0.0 0% 293620 10 0.0 0% 293582 10 0.0 0% 289210 10 0.0 0% 277542 10 0.0 0% 

DMIAR-DT-C 299708 10 0.0 0% 293620 10 0.0 0% 293582 10 0.0 0% 289210 10 0.0 0% 277542 10 0.0 0% 

DMIAR-CDT-C 165616 55.26% 171960 57.24% 171906 58.55% 174030 60.17% 172002 61.97% 

Monk CDMAR-C 575550 10 0.0 0% 713108 10 0.0 0% 801534 10 0.0 0% 851158 10 0.0 0% 848970 10 0.0 0% 

DMIAR-DT-C 575550 10 0.0 0% 713108 10 0.0 0% 801534 10 0.0 0% 851158 10 0.0 0% 848970 10 0.0 0% 

DMIAR-CDT-C 280430 48.72% 335340 49.42% 368582 45.98% 378514 44.47% 367434 43.28% 

Wine CDMAR-C 22488 10 0.0 0% 23242 10 0.0 0% 23378 10 0.0 0% 22594 10 0.0 0% 20814 10 0.0 0% 

DMIAR-DT-C 22488 10 0.0 0% 23242 10 0.0 0% 23378 10 0.0 0% 22594 10 0.0 0% 20814 10 0.0 0% 

DMIAR-CDT-C 11290 50.20% 13466 54.23% 13020 55.69% 12978 57.44% 12856 61.77% 

BCW CDMAR-C 244240 10 0.0 0% 2694 4 4 10 0.0 0% 287044 10 0.0 0% 297348 10 0.0 0% 300174 10 0.0 0% 

DMIAR-DT-C 244240 10 0.0 0% 2694 4 4 10 0.0 0% 287044 10 0.0 0% 297348 10 0.0 0% 300174 10 0.0 0% 

DMIAR-CDT-C 124300 50.89% 135154 50.36% 142632 49.69% 147432 49.58% 148910 49.61% 

Spect CDMAR-C 16050 10 0.0 0% 16008 10 0.0 0% 18228 10 0.0 0% 19362 10 0.0 0% 20584 10 0.0 0% 

DMIAR-DT-C 16050 10 0.0 0% 16008 10 0.0 0% 18228 10 0.0 0% 19362 10 0.0 0% 20584 10 0.0 0% 

DMIAR-CDT-C 14394 89.68% 14824 83.43% 15480 84.92% 16370 84.55% 16864 81.93% 

Spam CDMAR-C 241748 10 0.0 0% 344104 10 0.0 0% 483966 10 0.0 0% 628556 10 0.0 0% 825124 10 0.0 0% 

DMIAR-DT-C 241748 10 0.0 0% 344104 10 0.0 0% 483966 10 0.0 0% 628556 10 0.0 0% 825124 10 0.0 0% 

DMIAR-CDT-C 52458 21.70% 63396 18.42% 70604 14.59% 75368 11.99% 78736 9.54% 

WQ CDMAR-C 154872 10 0.0 0% 196290 10 0.0 0% 233122 10 0.0 0% 258874 10 0.0 0% 284484 10 0.0 0% 

DMIAR-DT-C 154872 10 0.0 0% 196290 10 0.0 0% 233122 10 0.0 0% 258874 10 0.0 0% 284484 10 0.0 0% 

DMIAR-CDT-C 121564 78.49% 154118 78.51% 183324 78.64% 202538 78.24% 219538 77.17% 

GP CDMAR-C 1970934 10 0.0 0% 2339410 10 0.0 0% 2634506 10 0.0 0% 2848196 10 0.0 0% 3120970 10 0.0 0% 

DMIAR-DT-C 1970934 10 0.0 0% 2339410 10 0.0 0% 2634506 10 0.0 0% 2848196 10 0.0 0% 3120970 10 0.0 0% 

DMIAR-CDT-C 595326 30.21% 701832 30.00% 775226 29.43% 821176 28.83% 834988 26.75% 

Table 9 

The 16 cases in Table 4 , in which the decision distributions of each of two objects must be compared. 

ob j(cx q ) = 

0 , | σCDT ′ (cx ′ q ) | = 

1 

| σCDT (cx q ) | = 

1 , | σCDT ′ (cx ′ q ) | = 

1 

| σCDT (cx q ) | = 

1 , | σCDT ′ (cx ′ q ) | > 

1 

| σCDT (cx q ) | > 

1 , | σCDT ′ (cx ′ q ) | > 

1 

| σCDT (cx p ) | = 1 , ob j(cx ′ p ) = 0 CT1 CT2 CT3 � CT4 � 

| σCDT (cx p ) | = 1 , | σCDT ′ (cx ′ p ) | = 1 CT5 CT6 CT7 � CT8 � 

| σCDT (cx p ) | > 1 , | σCDT ′ (cx ′ p ) | = 1 CT9 CT10 CT11 � CT12 � 

| σCDT (cx p ) | > 1 , | σCDT ′ (cx ′ p ) | > 1 CT13 � CT14 � CT15 � CT16 � 
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Table 10 

Number of times each case appeared during the process of updating the eight datasets based on five different percentages. 

Dataset CT1 CT2 CT3 � CT4 � CT5 CT6 CT7 � CT8 � CT9 CT10 CT11 � CT12 � CT13 � CT14 � CT15 � CT16 � Total % of � 

MM 10% 28 4 1 0 15 19 1 2 2 2 0 0 5 4 0 0 83 15.66% 

20% 54 10 2 0 29 34 1 5 5 3 3 1 8 8 0 3 166 18.67% 

30% 82 17 2 5 39 43 2 12 13 4 3 2 12 8 1 4 249 20.48% 

40% 107 28 3 9 57 46 2 19 15 5 6 2 15 10 1 7 332 22.29% 

50% 139 34 5 14 69 56 2 24 15 8 7 4 17 13 1 7 415 22.65% 

Monk 10% 0 0 0 0 27 8 1 1 19 3 2 1 86 16 4 3 171 66.67% 

20% 0 0 0 0 49 28 8 7 26 12 6 5 126 51 11 13 342 66.37% 

30% 1 1 1 2 59 53 13 9 38 27 14 10 151 87 20 27 513 65.11% 

40% 1 2 2 5 69 83 19 24 41 44 21 17 160 125 32 39 684 64.91% 

50% 1 9 4 10 75 108 28 43 44 66 30 27 161 160 39 50 855 64.56% 

Wine 10% 13 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 18 0.00% 

20% 22 0 0 0 9 5 0 0 0 0 0 0 0 0 0 0 36 0.00% 

30% 33 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 53 0.00% 

40% 41 2 0 0 13 15 0 0 0 0 0 0 0 0 0 0 71 0.00% 

50% 49 2 0 0 15 23 0 0 0 0 0 0 0 0 0 0 89 0.00% 

BCW 10% 39 1 0 0 17 11 0 0 0 0 0 0 0 0 0 0 68 0.00% 

20% 73 6 0 0 26 31 0 0 0 0 0 0 0 0 0 0 136 0.00% 

30% 112 10 0 0 32 51 0 0 0 0 0 0 0 0 0 0 205 0.00% 

40% 152 13 0 0 36 72 0 0 0 0 0 0 0 0 0 0 273 0.00% 

50% 193 15 0 0 39 94 0 0 0 0 0 0 0 0 0 0 341 0.00% 

Spect 10% 19 0 0 0 1 0 0 0 0 0 0 0 3 3 1 0 27 25.93% 

20% 37 1 0 0 2 0 0 0 1 0 0 0 5 6 1 0 53 22.64% 

30% 58 1 0 0 4 0 0 0 4 0 0 0 6 6 1 0 80 16.25% 

40% 77 2 0 0 7 0 0 0 5 0 0 0 7 7 1 0 106 14.15% 

50% 97 3 0 0 9 0 0 0 6 0 0 0 8 9 1 0 133 13.53% 

Spam 10% 21 1 0 0 41 17 0 0 2 0 0 0 25 190 1 162 460 82.17% 

20% 34 1 0 0 59 49 0 0 2 0 0 0 40 407 4 324 920 84.24% 

30% 44 2 0 0 75 75 0 0 3 0 0 0 48 637 5 491 1380 85.58% 

40% 56 4 0 0 86 109 0 0 4 0 0 1 54 856 7 663 1840 85.92% 

50% 71 7 0 0 95 143 0 1 8 1 0 2 58 1070 8 836 2300 85.87% 

WQ 10% 7 0 0 0 6 2 0 0 4 0 0 0 111 34 61 265 490 96.12% 

20% 14 0 0 0 12 2 0 0 7 0 0 1 148 50 89 656 979 96.42% 

30% 20 1 0 0 15 3 0 0 13 0 1 1 177 65 113 1060 469 96.46% 

40% 29 1 0 0 20 5 2 2 15 1 3 2 192 75 129 1483 959 96.38% 

50% 38 3 2 0 22 5 2 3 17 3 4 3 210 92 143 1902 449 96.41% 

GP 10% 18 2 0 0 69 24 0 1 6 1 0 0 187 149 80 453 990 87.88% 

20% 38 4 0 0 104 75 3 1 13 4 3 0 219 295 108 1113 1980 87.98% 

30% 57 10 1 0 128 127 4 11 18 5 5 1 244 393 135 1831 2970 88.38% 

40% 75 16 2 0 151 185 5 20 19 8 5 4 255 471 149 2595 3960 88.54% 

50% 90 28 5 2 162 261 5 25 23 10 8 8 265 561 157 3340 4950 88.40% 

to the number of changing objects, which can significantly affect 

the performance of updating the reducts. Hence, developing incre- 

mental attribute reduction algorithms that can process all changed 

objects concurrently is a significant and imperative are of future 

study. 
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