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This paper proposes a rough set model based on formal concept analysis. In this model, a
solution to an algebraic structure problem is first provided in an information system: a lat-
tice structure is inferred from the information system and corresponding nodes are called
rough concepts. How to deal with common problems in rough set theory based on rough
concepts is then explored, such as upper and lower approximation operators, reducts
and cores. Decision dependency has become a common form of knowledge representation
owing to its properties of expressiveness and ease of understanding, so it has been widely
used in practice. Finally, application of rough concepts to the extraction of decision depen-
dencies from a decision table is studied; a complete and non-redundant set of decision
dependencies can be obtained from a decision table. Examples demonstrate that applica-
tion of the method presented in this paper is valid and practicable. The results not only pro-
vide a better understanding of rough set theory from the perspective of formal concept
analysis, but also demonstrate a new way of combining rough set theory and formal con-
cept analysis.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory, proposed by Pawlak in 1982, is a theory used to study information systems characterized by inexact,
uncertain or vague information [26]. One obvious advantage is that rough set theory does not need any preliminary or addi-
tional information about data. Because it is an effective tool with vast potential for knowledge acquisition, rough set theory
has been widely investigated in the field of artificial intelligence [2,4,5,30,31,38,56].

On the basis of the philosophical understanding of a concept as a unit of thought constituted by its extent and intent,
Wille proposed formal concept analysis (FCA) in 1982 [44]. The concept lattice with a complete structure and solid theory
is an effective tool in FCA and is very suitable for mining potential concepts from data. FCA has been widely studied and ap-
plied to machine learning, software engineering and information retrieval [8,13,20,23,28].

Both FCA and rough set theory are complementary tools for data modeling and data analysis [1,22,26,39,44,50,52,57], and
relations between them have attracted much research attention. Some achievements have been made in combining and
comparing the two theories to improve our understanding of their similarities and differences. Existing studies are summa-
rized below [54].

By investigating similarities and differences between two theories, comparative studies can provide a more general data
analysis framework. Recently, more emphasis has been placed on integration of the two theories into a unified form. Kent
argued that the two theories have much in common in terms of both goals and methodologies, and a new theory of rough
concept analysis was introduced that can be viewed as a synthesis of rough set theory and FCA [14]. Wu et al. proposed an
. All rights reserved.
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accuracy computational approach to characterize the rough formal concept numerically and studied basic relationships be-
tween indiscernibility relations and accuracies of rough concepts [48]. Concept lattices and approximation spaces were com-
bined using a Heyting algebra structure [24]. Wolski investigated Galois connections and their relations to rough set theory
[45]. Wasilewski demonstrated formal contexts and information systems, and described general approximation spaces [42].
Ho developed a method for acquiring concepts with lower and upper approximations in the framework of rough concept
analysis [9]. Qi et al. discussed basic connections between FCA and rough set theory, and analyzed relationships between
a concept lattice and the power set of a partition [29]. Wei and Qi studied the reduct theory from the viewpoint of rough
set theory and concept lattice theory, and discussed their relations [43]. Lai and Zhang argued that each complete fuzzy lat-
tice can be represented as the concept lattice of a fuzzy context based on rough set theory if and only if the residual lattice
satisfies the law of double negation; they also proved that the expressive power of concept lattices based on rough set theory
is weaker than that of concept lattices based on FCA [15]. Wang and Zhang revealed some basic relationships between exten-
sions of concepts and equivalence classes in rough set theory, and studied relations between the reduct of formal context in
FCA and the attribute reduct in rough set theory [41]. Yao conducted a comparative study of rough set theory and FCA based
on the notion of definability [50]. Wolski defined operators of FCA and rough set theory using the specialization order for
elements of a topological space, and further proved that FCA and rough set theory together provide a semantics for tense
logic s4.t [46].

In many studies, application of the results from one theory to the other has been proposed, leading to different ways of
combining rough set theory and FCA. Some new concept lattices have been constructed using more modal-style operators,
and the properties of these lattices have been discussed extensively [7,45,50,51]. Hu et al. used the extended concept lattice
obtained by introducing an equivalence class into a Galois concept lattice to describe the implementation of rough set theory
[11]. Liu et al. applied the multi-step attribute reduct method for concept lattices based on rough set theory to the reduct of
the redundant premises of the multiple rules used to solve JSSP [18]. Shao et al. investigated rough set approximations with-
in FCA in a fuzzy environment, and two new pairs of rough fuzzy set approximations within fuzzy formal contexts were de-
fined based on both lattice-theoretic and fuzzy set-theoretic operators [36]. Wang and Liu proposed an axiomatic fuzzy set
formal concept that could be applied to represent the logic operations of queries in information retrieval [40]. On the basis of
grey-rough set theory, Wu and Liu proposed an extension of the notion of Galois connection in a real binary relation, as well
as notions of a formal concept and a Galois lattice [47]. Inspired by the reduct method in rough set theory, a Boolean ap-
proach proposed by Mi et al. to calculate all reducts of a context was formulated via the discernibility function [21]. Yang
et al. constructed discernibility matrices and functions to compute all attribute reducts of real decision formal contexts that
did not affect the results of the s rules or l rules acquired [49]. Li et al. described an associated reduct method in which the
discernibility matrix and Boolean functions were used to compute all the reducts of a decision formal context [16]. Other
proposals [3,10,17,19,25,27,33–35,37,55] have been described briefly by Yao and Chen [54].

From the studies described above, it is clear that three research directions exist for the integration of FCA and rough set
theory [54]: integration of rough set theory into FCA, integration of FCA into rough set theory, integration of both into a uni-
fied framework. Although some achievements have been made, more detailed studies are required to obtain a more general
data analysis framework. The present study introduces FCA into rough set theory and proposes a rough set model based on
FCA. The model provides an interesting formulation of rough sets. In particular, it expresses the indiscernibility matrix as a
formal context. Thus, it combines subsets of attributes and indiscernibility relations defined by subsets of attributes in terms
of formal concept operators. Thus, the model provides a re-interpretation of many results of rough set theory by FCA, which
can be viewed as a new attempt to combine FCA and rough set theory.

This paper is organized as follows: Section 2 briefly recalls some basic notions of rough set theory and FCA; Section 3
builds a rough concept lattice in the information system based on FCA; Section 4 presents some applications of rough con-
cepts in an information system. That is, on the basis of rough concepts some common problems can be solved in rough set
theory, such as attribute reducts, cores; Section 5 researches on decision dependencies in a decision table and finally gets a
ab-complete and ab-non-redundant set R of decision dependencies based on rough concepts; Section 6 discusses perspec-
tives for further works.
2. Basic notions of rough set theory and FCA

This section provides the most basic notions and facts of FCA and rough set theory. For more extensive presentations, see
books of [6,26].

Suppose S = (U,AT,V, f) (It is also denoted as (U,AT,V, I) in the following section.) is an information system, each subset
B # AT can determine a binary indiscernibility relation
IndðBÞ ¼ fðx; yÞ 2 U � Uj8m 2 B; f ðx;mÞ ¼ f ðy;mÞg
Let B, C # AT, if m 2 B and Ind(B) – Ind(B � {m}), we say m is indispensable; Further if every m 2 B is indispensable, we say B
is independent. The set of all independent sets of attributes is denoted by INDS. If C # B and C is independent and In-
d(B) = Ind(C), then C is called a reduct of B. The set of all reducts of B is denoted as RedS(B). The set of all indispensable attri-
butes in B is called the core of B denoted as CoreS(B). If Ind(B) # Ind(C), we say B ? C is a function dependency of S. If R is a
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binary indiscernibility relation on U and U/R is the partition induced by R, then the lower approximation of X # U relative to
R can be defined as
RðXÞ ¼
[

P # X and P2U=R

P

Correspondingly, the upper approximation can be defined as
RðXÞ ¼
[

P2U=R and P\X–;
P

A formal context is a triple K = (G,M, I), where G and M are sets, and I # G �M is a binary relation. In the case, members of
G are called objects and members of M are called attributes, and I is viewed as an incidence relation between objects and
attributes. Accordingly, we write gIm or (g,m) 2 I expressing ‘‘the object g has the attribute m’’.

For a set A # G of objects we define
A� ¼ fm 2 MjgIm for all g 2 Ag
Correspondingly, for a set B # M of attributes we define
B� ¼ fg 2 GjgIm; for all m 2 Bg
If A⁄ = B and B⁄ = A, then (A,B) is called a formal concept of the context. BðKÞ denotes the set of all concepts of K. Then we
have following simple facts [6].

Proposition 1. If K = (G,M, I) is a formal context, A, A1, A2 # G are sets of objects and B, B1, B2 # M are sets of attributes,
then
ð1Þ A1 # A2 ) A�2 # A�1 ð2Þ B1 # B2 ) B�2 # B�1
ð3Þ A # A��; B # B�� ð4Þ A� ¼ A���; B� ¼ B���
3. The rough concept lattice of an information system

Ganter and Wille essentially viewed an information system as a many-valued context and they provided a detailed
description of how to assign concepts to the information system based on notions of scales and the technique of scaling
[6]. In other words, the concept system of a many-valued context depends on scales and scaling. The corresponding process
for one-valued contexts derived from an information system is shown in Fig. 1.

In Fig. 1, notions of scales and the technique of scaling are interpreted as follows. Each attribute of an information system
can be interpreted by means of a one-valued context, and this context is the so-called scale. Choice of the scale for an attri-
bute is essentially a matter of interpretation and is not mathematically compelling. Scaling can be viewed as a process of
joining together of scales to make a one-valued context. The simplest scaling can be achieved by putting together individual
scales without connecting them.

In Fig. 1, even though the first three steps are the same, derived contexts may still be different. Although not only do steps
2 and 3 determine one derived context, derived contexts based on these same key steps are also closely connected to each
other. For example, in Fig. 2, in accordance with scaling (putting together individual scales without connecting them), two
derived one-valued contexts are obtained from the information system in Table 1 based on the scales in Fig. 3 (scales for
attributes a, b, c, d are denoted as Sa, Sb, Sc and Sd, respectively). The corresponding contexts are shown in Tables 2 and 3
(for all ui, uj 2 U (ui,uj) is simplified as uij. To save space, row heading for attributes are AT and column heading for elements
are given as U � U). Particular descriptions are given below.

Let (U,AT,V, I) be an information system, _ATm :¼ fmg � ATm and Sm = (Um,ATm, Im) with m 2 AT are scale contexts, then Ta-
ble 2 is the context (U,N, J1) with
N ¼
[

m2AT

_ATm;
Key steps

An information system Choosing appropriate 
scale for each attribute

Scaling( process of joining
together of scales )

Different one-valued
derived contexts

Step1 4petS3petS2petS

Fig. 1. The process of one-valued contexts derived from an information system.



Table 1
An information system.

a b c d

u1 Excellent Very low Excellent 0.5
u2 Very poor Low Poor 0.7
u3 Good Medium Very poor 0.3
u4 Good High Good 0.6

&&
++ + ~~

++
Sb =

&&
&
#
$

Sa =
++

+

~~

S

++ + ~ ~~
++

SSc = +
~
~~

Sd =

++:=excellent,  +:=good,  ~~:=very poor,  ~:=poor, 

&& & # $

>= 0.5 >= 0.7 >= 0.3 >= 0.6
0.5
0.7
0.3
0.6

 &&:=very low,  &:=low,  #:=medium,  $:=high

Fig. 3. Assigning scales Sa, Sb, Sc, Sd to attributes a, b, c, d in Table 1 respectively.

Table 2
The one-valued context 1 derived from Table 1.

a b c d

++ + – – & & & # $ ++ + – – – 0.5 0.7 0.3 0.6

u1 � � � � � � � �
u2 � � � � � � �
u3 � � � � �
u4 � � � � � �

Table 3
The one-valued context 2 derived from Table 1.

u11 u12 u13 u14 u21 u22 u23 u24 u31 u32 u33 u34 u41 u42 u43 u44

a � � � � � � � �
b � � � � �
c � � � � � �
d � � � � � � � � � �

Key steps

Putting together individual

An one-valued 
derived context 1

Step1

An information system Scales shown in Figure3 scales without connecting

3petS2petS An one-valued 
derived context 2

Step4

Fig. 2. The process of one-valued contexts derived from Table 1.
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and
uJ1ðm;nÞ () mðuÞ ¼ v and vImn:
And Table 3 is the context (U � U, AT, J2) with
ðu1;u2ÞJ2m() mðu1Þ ¼ v1;mðu2Þ ¼ v2 and v1Imv2:
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The model proposed in this paper is inspired by the above discussions. In other words, in accordance with the simplest
scaling, a derived one-valued context can be obtained from an information system based on the simplest scales in Table 4
(the scale for attribute mi is denoted as Smi

, where miðUÞ ¼ fv i1 ;v i2 ; . . . ;v ing). The model is described in detail below.
Suppose S = (U,AT,V, f) is an information system, then for "m 2 AT and "x, y 2 U, by the following rule
ðx; yÞISm() f ðx;mÞ ¼ f ðy;mÞ
S can be transformed to a one-valued context
KS ¼ ðG;AT; ISÞ
where G = {(x,y)jx,y 2 U}, we say KS is deduced from S.
As an example, an information system about cars is given in Table 5, where U = {u1,u2,u3,u4,u5} is the set of objects and

AT = {a1,a2,a3,a4,a5} is the set of attributes with a1 = price, a2 = size, a3 = engine, a4 = maximum speed, and a5 = performance/
price ratio. Table 6 shows the one-valued context deduced from Table 5.
Table 4
The scale Smi

of attribute mi 2 AT.

v i1 v i2 v i3 � � � v in

v i1 �
v i2 �
v i3 �
..
. . .

.

v in �

Table 5
An information system about cars.

a1 a2 a3 a4 a5

u1 Low Full Diesel Low Low
u2 Low Full Gasoline High High
u3 High Full Diesel Medium Low
u4 Low Compact Diesel Low Low
u5 Low Full Diesel High Low

Table 6
The one-valued context deduced from Table 5.

a1 a2 a3 a4 a5

(u1, u1) � � � � �
(u1, u2) � �
(u1, u3) � � �
(u1, u4) � � � �
(u1, u5) � � � �
(u2, u2) � � � � �
(u2, u3) �
(u2, u4) �
(u2, u5) � � �
(u3, u3) � � � � �
(u3, u4) � �
(u3, u5) � � �
(u4, u4) � � � � �
(u4, u5) �
(u5, u5) � � � � �
(u2, u1) � �
(u3, u1) � � �
(u4, u1) � � � �
(u5, u1) � � � �
(u3, u2) �
(u4, u2) �
(u5, u2) � � �
(u4, u3) � �
(u5, u3) � � �
(u5, u4) �
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Proposition 2. In KS = (G,AT, IS), let B # AT, then
B� ¼ IndðBÞ

From Proposition 2, we can see that B⁄ is an indiscernibility relation on U. KS is deduced from S on the basis of whether

two objects have the same value for one attribute or not. It is closely related to the notion of a discernibility matrix in rough
set theory in a slightly different form. In other words, KS is a different representation of a discernibility matrix. For example,
suppose that (cij)n�n is the discernibility matrix of the information system S, with cij = {a 2 ATja(xi) – a(xj)} and B # AT. Then,
for all 1 6 i, j 6 n (xi,xj) 2 B⁄ if and only if cij \ B = Ø.

In S = (U,AT,V, f), let eA1 and eA2 be partitions of U, if every block of eA1 is contained in some block of eA2, we say eA1 is a refine-
ment of eA2 and eA2 is a coarsening of eA1, which is denoted by eA1 ~# eA2. Operations ~[ and ~\ of sets eA1 and eA2 are defined as
follows [53].
eA1 ~[eA2 ¼ U=ðR1 [ R2ÞHeA1 ~\eA2 ¼ fP \ Q jP 2 eA1;Q 2 eA2; P \ Q – £g
where eA1 ¼ U=R1; eA2 ¼ U=R2 and (R1 [ R2)w is the transitive closure of R1 [ R2. eA1 ~\eA2 is the largest partition that is a refine-
ment of both eA1 and eA2, eA1 ~[eA2 is the smallest partition that is a coarsening of both eA1 and eA2. In the same way we can define
operations ~[ and ~\ of eA1; eA2; . . . ; eAn.

In KS = (G,AT, IS), let eA be a partition of U and B # AT. For eA we define
eA0 ¼ [
P2eAP � P

0@ 1A�
Correspondingly, for B # AT we define
B0 ¼ U=B�
From the above discussions, the following conclusions can be obtained immediately from Propositions 1 and 2.

Theorem 1. In KS = (G,AT, IS), let B, C # AT, then
ð1Þ B0 ~# C 0 () B� # C� ð2Þ B00 ¼ B��

ð3Þ B0 ¼ C0 () B� ¼ C� ð4Þ B) C () B0 ~# C 0
Theorem 2. In KS = (G,AT, IS), let eA; eA1; eA2 be partitions of U and B, B1, B2 # AT, then
ð1Þ eA1 ~# eA2 ) eA02 # eA 01 ð2Þ B1 # B2 ) B02 ~# B01

ð3Þ eA ~# eA 00; B # B00 ð4Þ eA0 ¼ eA000; B0 ¼ B000
In KS = (G,AT, IS), let eA be a partition of U and B # AT. If eA0 ¼ B and B0 ¼ eA, we say ðeA;BÞ is a rough concept of S, B is a rough
intent, and eA is a rough extent. The set of all rough concepts of S is denoted by BðSÞ. Let ðeA1; B1Þ and ðeA2;B2Þ be two rough
concepts of S, we define
ðeA1;B1Þ � ðeA2;B2Þ () eA1 ~# eA2 () B1 � B2
The relation ‘‘ � ’’ is the hierarchical order of rough concepts. Obviously, a lattice structure of S can be deduced, and it is a
complete lattice called rough concept lattice of S. It’s still denoted by BðSÞ, if there is no danger of confusion.

Theorem 3. In KS = (G,AT, IS), let B # AT, if eA is a partition of U, then
ðB0;B00Þ; ðeA00; eA0Þ 2 BðSÞ

Theorem 4. In KS = (G,AT, IS), let T be an index set. ðeAt ;BtÞ is a rough concept of the information system S for every t 2 T, and the
partially ordered set BðSÞ is a complete lattice, where its infimum and supremum can be defined as
^
t2T
ðeAt ;BtÞ ¼ f\

t2T

eAt ;
[
t2T

Bt

 !00 !

_
t2T
ðeAt ;BtÞ ¼ f[

t2T

eAt

 !00
;
\
t2T

Bt

 !

For an information system S, the rough concept lattice BðSÞ can be built as follows:



( {12345}, Ø )

( {1235, 4}, a2 ) ( {1245, 3}, a1 ) ( {1345, 2}, a3a5 )

( {145 2 3} a a a )
( {125, 3, 4}, a1a2 )

( {145, 2, 3}, a1a3a5 )

( {135, 2, 4}, a2a3a5 )

( {14, 25, 3}, a1 a4 )

( {15, 2, 3, 4}, a1a2a3a5 )

( {14, 2, 3, 5}, a1a3a4a5 )( {1, 25, 3, 4}, a1a2a4 )

( {1, 2, 3, 4, 5}, a1a2a3a4a5 )

Fig. 4. The rough concept lattice with respect to Table 1.
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1. Transform S to KS.
2. Build the concept lattice BðKSÞ of KS using existing algorithms.
3. 8ðA;BÞ 2 BðKSÞ; ðA;BÞ# ðU=A;BÞ; that is, BðKSÞ ! BðSÞ.
4. Output BðSÞ.

For example, the rough concept lattice shown in Fig. 4 (u1, . . . ,u5 is simplified as 1, . . . , 5) with respect to Table 1 can be
built using the above steps. For convenience, each set {P1,P2, . . . ,Pn} is simplified as P1 P2 � � � Pn in the following.

Since B! C () IndðBÞ# IndðCÞ () B� # C� () C��# B�� () C # B��ð () C # B00 or B0 ~# C0Þ, a function dependency of S
is a rule for KS in essence, as defined by Ganter and Wille [6]. Many researchers have studied rules extracted from concept
lattices. Compared to other methods, rules extracted from a concept lattice have equal or better effects. In a rough concept
lattice, by adopting existing methods with no or few changes, we can extract function dependencies in one-valued contexts,
the process is not discussed in detail.

4. Applications of rough concepts in an information system

In the Pawlak rough set model, a pair of lower and upper approximation operators deduced from the approximation space
play central roles. In the following we provide new definitions of the lower and upper approximation operators based on
rough concepts. For convenience, we denote the set of all rough intents of S as US in the simplified form.

Theorem 5. Let Bþ ¼
T
fC 2 USjB # Cg with B # AT, then

(1) B+ = B00.
(2) Ind(B+) = Ind(B).
(3) If ðOB;B

þÞ 2 BðSÞ, then U=IndðBÞ ¼ OB.
Proof 1.

(1) Suppose B+ � B00, then B # B+) B00 # (B+)00 contradicts with B+ � B00. Therefore B00 # B+ holds. In addition, because
ðB0;B00Þ 2 BðSÞ ) Bþ # B00, we have B+ = B00.

(2) Ind(B+) = Ind(B00) = (B00)⁄ = B⁄⁄⁄ = B⁄ = Ind(B).
(3) Since ðB0;B00Þ; ðOB; B

þÞ 2 BðSÞ and B00 = B+, there exists OB ¼ B0. And then together with U/Ind(B) = U/(B)⁄ = B0, we can
obtain U=IndðBÞ ¼ OB. h

From above discussions we know if the set BðSÞ of all rough concepts is given, then by Theorem 5 the lower approxima-
tion of X # U relative to R can be obtained as follows:
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RðXÞ ¼
[

P2OB and P # X

P

Correspondingly, the upper approximation of X relative to R is:
RðXÞ ¼
[

P2OB and P
T

X–£

P

where R = Ind(B) and ðOB;B
þÞ 2 BðSÞ.

In the following we discuss how to deal with some important problems in rough set theory, such as reducts, indepen-
dents, cores and function dependencies based on US. Some conclusions can then be obtained immediately.

	 IndS = {B # ATj"a 2 B, (B � {a})+ – B+}.
	 CoreS(B) = {a 2 Bj(B � {a})+ – B+}.
	 C 2 RedS(B) if and only if C+ = B+ and 9=C1 � C with Cþ1 ¼ Bþ.
	 If B, C # AT, then B ? C, C # B+.

Inspired by a previous study [12], we propose a new way of solving problems in rough set theory below.

Theorem 6. Let B, C # AT, then following statements are equivalent

(1) C00 # B00 (If B # C, then B00 = C00)
(2) For any L 2 US; B � L or C # L holds
(3) B ? C
Proof 2. ‘‘(1) M (2)’’: Fristly suppose (1) holds. For any L 2 US, if B 6 # L, then (2) is true; for any L 2 US, if B # L, then
B00 # L0 0 = L. Because C00 # B00, we can obtain C00 # L) C # L. Hence (2) is true. Then suppose (2) holds, this implies
\fL 2 USjC # Lg# \ fL 2 USjB # Lg ) Cþ # Bþ ) C00 # B00. In addition, if B # C, then there exists B00 # C00. Together with
C00 # B00 we obtain B00 = C00. Hence (1) is true.

‘‘(3) M (2)’’: Firstly suppose (3) holds, this implies C # B+) C # B00. For any L 2 US, if B 6 # L, then (2) holds; if B # L,
then there exists B00 # L00 = L such that B00 # L, and together with C # B00 we get C # L. Therefore (2) is true. Then suppose (2)
holds. Especially, B 6 # B00 or C # B00 for B00. Because B # B00 denies B 6 # B00, C # B00 holds. And further we can see from B00 = B+

that B ? C. Therefore (3) is true. h
Theorem 7. Let B # AT, then following statements hold

(1) INDS ¼ fB # ATj8a 2 B; ðB� fagÞ# L and B � L; 9L 2 USg
(2) CoreSðBÞ ¼ fa 2 BjðB� fagÞ# L and B � L; 9L 2 USg
Proof 3. For any a 2 B, if there exists L 2 US satisfying (B � {a}) # L and B 6 # L, then we can see that B00 – (B � {a})00 from
Theorem 6. Since B00 – (B � {a})00 ) B

000
– (B � {a})

000 ) B0 – (B � {a})0 ) B⁄– (B � {a})⁄, Ind(B) – Ind(B � {a}) holds for any
a 2 B. And further conclusions (1) and (2) can be obtain immediately. h
Theorem 8. Let B, C # AT, then C 2 RedS(B) if and only if C is the minimum-subset satisfying the following condition.
C \ B � L or B # L holds for any L 2 US:
Proof 4. Let C 2 RedS(B), if C is not the minimum-subset involved in AT, where C satisfies the above mentioned condition,
then there exists C1 � C such that C1 \ B 6 # L or B # L for any L 2 US. Because C1 � C # B, we can confirm C1

T
B = C1. This

implies that C1 6 # L or B # L holds for any L 2 US. Then by Theorem 6 we obtain C001 ¼ B00. And further C R Re dS(B) can be
deduced from C001 ¼ B00 () C001 ¼ B000 () C01 ¼ B0 () C�1 ¼ B� () IndðBÞ ¼ IndðC1Þ and C1 � C. Hence C R RedS(B) contradicts
with the statement that C is a reduct of B, that is, C is the minimum-subset involved in AT, where C satisfies the condition.

Conversely, suppose C is the minimum-subset involved in AT, where C satisfies the condition. If C 6 # B, then C1 = (B \ C) � C
and C1 \ B = (B \ C) \ B = C \ B 6 # L. It is clear that C1 \ B 6 # L or B # L is true for any L 2 US, which contradicts with the
statement of C being the minimum-subset, where C satisfies the condition. Hence we can confirm C # B. Suppose C R RedS(B),
then there exists C1 � C # B such that C1 2 RedS(B), and further IndðBÞ ¼ IndðC1Þ () C�1 ¼ B� () C01 ¼ B0 () C001 ¼ B00. It’s
obvious that there exists C1 = C1

T
B 6 # L or B # L for any L 2 US by Theorem 6. Thus it contradicts the statement that C is the

minimum-set involved in AT, where C satisfies the condition. Hence C 2 Re dS(B). h
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For Table 6, US is shown in Table 7. On the basis of Theorems 6–8, we can obtain the results shown in Tables 8 and 9
(B = a3a5, C = a2a4a5, D = a1a3a4a5), Table 10 (C = a1a2a4, D = a1a3a5) and Table 11. In addition, by rough set theory we can cal-
culate the same results. Examples demonstrate that the methods presented in Theorems 6–8 are valid and practicable.

5. Applications of rough concepts in decision tables

As one type of information system, a decision table plays an important role in decision applications. The majority of
decision problems can be represented by decision tables.

Let S = {U,AT,V, f} be an information system, where AT = M [ N and M \ N = £. If M is called the set of conditional
attributes and N is called the set of decision attributes, we say that S = {U,AT,V, f} is a decision table. For example, Table 7
is a decision table, where U = {u1,u2, . . . ,u8}, M = {a1,a2, . . . ,a8} and N = {d1,d2, . . . ,d5}. We denote U = {u1,u2, . . . ,u8} as
U = {1,2, . . . ,8} in the simplified form.

A decision table consists of two information subsystems, a condition information subsystem SM = (U,M,VM, fM) and a deci-
sion information subsystem SN = (U,N,VN, fN), where VM =

S
a2MVa, fM is a mapping of U �M to VM with VN =

S
d2NVd; fN is a

mapping of U � N to VN. Accordingly, we say that ðeA;BÞ 2 BðSMÞ is a condition rough concept and ðeC ;DÞ 2 BðSNÞ is a decision
rough concept, where B # M and D # N.

5.1. Applications of rough concepts in decision rules

Suppose ðeA;BÞ 2 BðSMÞ and ðeC ;DÞ 2 BðSNÞ, then we say ðeA;BÞ !roughðeC ;DÞ is a decision package composed of a set of decision
rules, where the decision rule is defined as follows. let X 2 eA and Y 2 eC , desB(X) denotes the description of equivalence class
X, and desD(Y) denotes the description of equivalence class Y. A decision rule r is defined as
Table 7
The intent set US ¼ fL1; . . . ; L12g of KS.

L1 ø L5 a1a2 L9 a1a2a4

L2 a1 L6 a1a4 L10 a1a3a4a5

L3 a2 L7 a1a3a5 L11 a1a2a3a5

L4 a3a5 L8 a2a3a5 L12 a1a2a3a4a5

Table 9
Some computing results on INDS on the basis of US .

T L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 INDS

B � {a3} # # # # # #

B � {a5} # # # # # #

T = B 6 # 6 # 6 # 6 # 6 # 6 # R
C � {a2} # #

C � {a4} # # #

C � {a5} # #

T = C 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 2
D � {a1} # #

D � {a3} # #

D � {a4} # # # #

D � {a5} # #

T = D 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # R

Table 8
Cores of some attribute-subsets on the basis of US .

T L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 CoreS(T)

T = B 6 # 6 # 6 # 6 # 6 # 6 #
B � {a3} # # # # # # a3R
B � {a5} # # # # # # a5R
T = C 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
C � {a2} # # a22
C � {a4} # # # a42
C � {a5} # # a52
T = D 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
D � {a1} # # a1 R
D � {a3} # # a3 R
D � {a4} # # # # a4 2
D � {a5} # # a5 R



Table 10
Reducts of some attribute-subsets on the basis of US .

T L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 RedS(T)

T = C # #

a1 \ T 6 # 6 # 6 # 6 #
a2 \ T 6 # 6 # 6 # 6 # 6 # 6 #
a4 \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a1a2 \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a1a4 \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a2a4 \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 2

C \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # R

T = D # # # #

a1 \ T 6 # 6 # 6 # 6 #
a3 \ T 6 # 6 # 6 # 6 # 6 # 6 #
a5 \ T 6 # 6 # 6 # 6 # 6 # 6 #
a1a3 \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 2

a1a5 \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 2
a3a5 \ T 6 # 6 # 6 # 6 # 6 # 6 #
D \ T 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # R

Table 11
Some functional dependencies on the basis of US .

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

a4 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a1 # # # # # # # # a4 ? a1

a2a5 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a3 # # # # # # a2a5 ? a3

a4a5 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a1a2 # # # # a4a5 9 a1a2

a3a4 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a1a5 # # # # a3a4 ? a1a5

a1a4 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
a2a3 # # # # a1a4 9 a2a3
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r : desBðXÞ ) desDðYÞ
The corresponding certainty factor is defined as
lðX;YÞ ¼ jY \ Xj=jXj; 0 < lðX; YÞ 6 1
	 when l(X,Y) = 1, r is a certainty decision rule,

	 when 0 < l(X,Y) < 1, r is a uncertainty decision rule.

For example, in Table 12 the decision package ðf1234; 56; 78g; a1a3a7Þ 2 BðSMÞ !
rough ðf12; 3456; 78g; d3d5Þ 2 BðSNÞ con-

tains following decision rules:
	 Certainty decision rules:
ða1;0Þ and ða3;0Þ and ða7;1Þ ) ðd3;0Þ and ðd5;0Þ
ða1;1Þ and ða3;0Þ and ða7;1Þ ) ðd3;1Þ and ðd5;1Þ
	 Uncertainty decision rules:
ða1;1Þ and ða3;1Þ and ða7;0Þ ) ðd3;0Þ and ðd5;1Þ;
the certainty factor of the decision rule is 0.5.
ða1;1Þ and ða3;1Þ and ða7;0Þ ) ðd3;0Þ and ðd5;0Þ;
the certainty factor of the decision rule is 0.5.

In a decision package, the significance of different condition attributes (or sets of attributes) relative to the set of decision
attributes may differ. To measure the significance of the condition attribute (or sets of attributes) B1 # B relative to D in the
decision package ðeA;BÞ !roughðeC ;DÞ, we define the importance factor qBD(B1) based on rough concepts as follows:



Table 1
The imp

B1

qBD(

Table 12
A decision table.

a1 a2 a3 a4 a5 a6 a7 a8 d1 d2 d3 d4 d5

u1 1 1 1 2 1 0 0 0 1 2 0 1 1
u2 1 1 1 1 0 2 0 0 1 2 0 1 1
u3 1 2 1 2 1 2 0 1 0 2 0 2 0
u4 1 2 1 2 1 2 0 1 0 2 0 2 0
u5 0 1 0 1 0 1 1 1 1 0 0 0 0
u6 0 1 0 0 1 1 1 1 1 0 0 0 0
u7 1 0 0 0 1 0 1 0 1 1 1 2 1
u8 1 0 0 1 0 0 1 0 1 1 1 2 1
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qBDðB1Þ ¼
1
jUj �

[
Y2eCR1Y

������
�������

[
Y2eCR2Y

������
������

0@ 1A
R1Y ¼

[
P # Y and P2eAP

R2ðYÞ ¼
[

P # Y and P2OB�B1

P

where ðOB�B1 ; ðB� B1ÞþÞ 2 BðSÞ;R1 ¼ IndðBÞ and R2 = Ind(B � B1). Greater qBD(B1) indicates that B1 is more important relative
to D. As an example, in Table 7 we can obtain a decision package
ðf1234;56;78g;BÞ 2 BðSMÞ !
roughðf12;3456;78g;DÞ 2 BðSNÞ
the importance factor qBD(B1) of B1 # B relative to D is shown in Table 13, where B = a1a3a7 and D = d3d5.
From Table 8 we can see that a1a3 and a1a7 are more important than a3a7, and a1 is more important than a3 and a7 relative

to D.

5.2. Applications of rough concepts in decision dependencies

Since decision dependency has become a common form of knowledge representation because of its properties of expres-
siveness and ease of understanding, it has been widely used in practice. Therefore, in this section we focus on decision
dependencies in a decision table.

In S = {U,M [ N,V, f}, if B # M and D # N, then a function dependency B ? D is called a decision dependency; If
ðB0;BÞ 2 BðSMÞ and ðD0;DÞ 2 BðSNÞ, we say that B ? D is a concept decision dependency.

For convenience, some formal symbols are defined as follows. eA0 in SM is denoted as ~AI1 and eA0 in SN is denoted as eAI2 .
Correspondingly, B0 in SM is denoted as BI1 and B0 in SN is denoted as BI2 . B+ is denoted as BþM with respect to B # M, and
B+ is denoted as BþN with respect to B # N.

Theorem 9. Let B1, B2 # M, D1, D2 # N. If B ? D is a concept decision dependency, then
(1) If B # B1 and D1 # D, then B1 ? D1.
(2) If ðB2ÞþM ¼ B and ðD2ÞþN ¼ D, then B2 ? D2.
Proof 5.

(1) Because B ? D is a concept decision dependency, there exists BI1 ~# DI2 . In addition, BI1
1

~# BI1 and DI2 ~# DI2
1 can be

deduced from B1 � B and D1 # D. Hence BI1
1

~# DI2
1 , that is, B1 ? D1 holds.

(2) we can obtain BI1 I1
2 ¼ B and DI2 I2

2 ¼ D on the basis of ðB2ÞþM ¼ B and ðD2ÞþN ¼ D, then BI1
2 ¼ BI1 and DI2

2 ¼ DI2 hold. In addi-
tion, since B ? D is a concept decision dependency, there exists BI1 ~# DI2 such that BI1

2
~# DI2

2 . That is, B2 ? D2 holds. h

In general, the number of decision dependencies in a decision table is quite large, and in a given set there are always many
redundant decision dependencies that can be deduced from others by means of so-called ab-decision inference.
3
ortance factor of B1 # B relative to D in ðeA;BÞ !roughðeC ;DÞ.

a1 a3 a7 a1a3 a1a7 a3a7

B1) 0.5 0 0 0.5 0.5 0.25
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(ab-DECISION INFERENCE) Let B ? D and B1 ? D1 be concept decision dependencies, and B2 ? D2 is a decision depen-
dency, then

	 (a-INFERENCE RULE) If B # B1 and D1 # D, then B1 ? D1 can be inferred from B ? D.
	 (b-INFERENCE RULE) If ðB2ÞþM ¼ B and ðD2ÞþN ¼ D, then B2 ? D2 can be inferred from B ? D.

The a-inference rule can be characterized by the following form:
B # B1; D1 # D; concept decision dependency B! D
concept decision dependency B1 ! D1
which means that, if B # B1, D1 # D and B ? D is a concept decision dependency, then a concept decision dependency
B1 ? D1 can be inferred. In a similar way, the b-inference rule can be characterized in the following form:
ðB2ÞþM ¼ B; ðD2ÞþN ¼ D; concept decision dependency B! D
B2 ! D2
which means that, if ðB2ÞþM ¼ B; ðD2ÞþN ¼ D, and B ? D is a concept decision dependency, then a decision dependency B2 ? D2

can be inferred.
Let R be a set of decision dependencies and B ? C be a decision dependency. If B ? C can be inferred from R by some

decision inference s, we say B ? C can be s-inferred from R. In this case, we call B ? C is redundant relative to R. Further-
more, if all decision dependencies of S can be s-inferred from

P
, we say R is s-complete relative to S. In addition, a concept

decision dependency B ? D is maximal, if

(1) there is no concept decision dependency B1 ? D satisfying B1 � B.
(2) there is no concept decision dependency B ? D1 satisfying D � D1.

In this case, we also say that B ? D is a maximal concept decision dependency in S.

Theorem 10. In a decision table S, the set R of all maximal concept decision dependencies is ab-complete and ab-non-redundant.
Proof 6. Firstly, we prove that R is ab-non-redundant. Assume R is ab-redundant, then there must exist a maximal concept
decision dependency B1 ? D1 which can be inferred from B2 ? D2 in Rn(B1 ? D1) by the a-inference rule. Obviously we have
B2 # B1 and D1 # D2. In addition, since there exists B1 ? D1 R Rn(B1 ? D1), there must exist B1 – B2 or D1 – D2.

If D1 – D2, then D1 � D2. Since there exists B2 # B1, then BI1
1

~# BI1
2 holds. In addition, we can obtain BI1

2
~# DI2

2 by B2 ? D2,
then BI1

1
~# DI2

2 holds, that is, B1 ? D2 holds. Obviously, B1 ? D2 contradicts with the condition of B1 ? D1 being the maximum
concept decision dependency.

When D1 = D2 and B1 – B2, because there exists B2 # B1, then B2 � B1 holds. Since there exists D1 = D2, B2 ? D1 holds,
which contradicts with the condition of B1 ? D1 being the maximal concept decision dependency. Hence one can see R is ab-
non-redundant from above discussions.

Next, we prove that R is ab-complete. Let B2 ? D2 be a decision dependency, one can easily see that B2 ? D2 can be
inferred from the concept decision dependency ðB2ÞþM ! ðD2ÞþN by the b-inference rule. And further we can see that there
must exist a maximal concept decision dependency B1 ? D1 and ðB2ÞþM ! ðD2ÞþN can be inferred from B1 ? D1 by the a-
inference rule, hence B2 ? D2 can be inferred from B1 ? D1. It indicates that R is ab-complete. h

This section was inspired by the work of Qu et al. [32] and can be viewed as an extension of that work. Based on BðSMÞ and
BðSNÞ, steps for generating an ab-complete and ab-non-redundant set R of decision dependencies are listed below. However,
the time complexity is very high, which is not desirable, especially for larger experiments. Thus, the following method only
serves as a basis for opportunities for further development.

1. For every condition rough concept ðeA;BÞ, find ðeCi;DiÞ, which is the minimal-decision rough concept satisfying B ? Di;
add ðeCi;DiÞ to D.

2. Choose ðeCj;DjÞ from D randomly and find ðeAk;BkÞ, which is the maximal-condition rough concept satisfying Bk ? Dj;
delete ðeCj;DjÞ from D.

3. Add Bk ? Dj to R; if D – £, then switch to step 2.
4. Output R.

From Table 12, we can obtain an ab-complete and an ab-non-redundant set R of decision dependencies using the meth-
ods described above. The experimental results are shown in Tables 14–16.

In Table 12, according to the ab-decision inference rule, it is clear that all the decision dependencies can be inferred from
the decision dependencies in Table 16 based on Tables 14 and 15. For example, since a1a3a7 ¼ ða1a3ÞþM and d3 ¼ ðd3ÞþN for the
decision dependency a1a3 ? d3, then a1a3 ? d3 can be deduced from a1a3a7 ? d3 by the b-inference rule. In addition, because
there exist a1a3a7 # a1a3a7 and d3 # d2d3, then a1a3a7 ? d3 can be inferred from the decision dependency a1a3a7 ? d2d3 by
the a-inference rule. It is clear that a1a3 ? d3 can be inferred from a1a3a7 ? d2d3 by the ab-decision inference.



Table 14
Condition rough concepts in Table 12.

Rough intent Rough extent Rough intent Rough extent

a1a2a3a7a8 12, 34, 56, 78 a1a6 178, 234, 56
a1a3a4a5a7 134, 2, 5, 6, 7, 8 a2a4a5 1, 25, 34, 6, 7, 8
a1a3a7 1234, 56, 78 a4a5 134, 258, 67
a2 1256, 34, 78 a8 1278, 3456
a2a5 16, 25, 34, 7, 8 a1a4a5a8 1, 28, 34, 5, 6, 7
a5 13467, 258 a1a4a5 134, 28, 5 6, 7
a1a5a6a8 17, 34, 2, 5, 6, 8 a1a5a8 17, 28, 34, 5, 6
a1a8 1278, 34, 56 a1a2a3a4a5a6a7a8 1, 2, 34, 5, 6, 7, 8
a1a5 1347, 28, 5, 6 a5a8 17, 28, 346, 5
a1 123478, 56 a1a2a3a6a7a8 1, 2, 34, 56, 78
a1a6a8 178, 2, 34, 56 a3a7 1234, 5678
a1a3a6a7 1, 234, 56, 78 a3a4a5a7 134, 2, 58, 67
ø 12345678

Table 15
Decision rough concepts in Table 12.

Rough intent Rough extent Rough intent Rough extent

d2d3 1234, 56, 78 d1d2d3d4d5 12, 34, 56, 78
d1 125678, 34 d1d3 1256, 34, 78
d5 1278, 3456 d1d5 1278, 34, 56
d4 12, 3478, 56 d3d5 12, 3456, 78
d3 123456, 78 ø 12345678

Table 16
A ab-complete and ab-not-redundant set R in Table 12.

ø ? ø a8 ? d5 a1a8 ? d1d5

a2 ? d1d3 a1a3a7 ? d2d3 a1a2a3a7a8 ? d1d2d3d4d5
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6. Conclusions

This paper introduces FCA into rough set theory naturally and proposes a rough set model based on FCA that can be
viewed as expansion and application of the theories of Ganter and Wille [6] to rough set theory. In this model, we provide
a solution to the problem of algebraic structure in an information system; that is, a rough concept lattice is inferred from the
information system. We also investigated applications of rough concepts in rough set theory. In addition, since the number of
decision dependencies in a decision table increases exponentially with the scale of the decision table, we presented some
inference rules to eliminate superfluous decision dependencies. Thus, we can obtain a complete and non-redundant set of
decision dependencies from a decision table. In future research we will investigate whether this theory can be widely applied
to some special rough set models, such as the variable-precision rough set model, the probability rough set model, the fuzzy
rough set model, and rough set models based on random sets. Exploration of wider combinations of FCA and rough set theory
will also be a focus of our future work.
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