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a b s t r a c t 

Rough set theory is one of important tools of soft computing, and rough approximations 

are the essential elements in rough set models. However, the existing fuzzy rough set 

model for set-valued data, which is directly constructed based on a kind of similarity rela- 

tion, fail to explicitly define fuzzy rough approximations. To solve this issue, in this paper, 

we propose two types of fuzzy rough approximations, and define two corresponding rela- 

tive positive region reducts. Furthermore, two discernibility matrices and two discernibil- 

ity functions are introduced to acquire these new proposed reducts, and the relationships 

among the new reducts and the existing reducts are also be provided. Theoretical analy- 

ses demonstrate that the new types of reducts have less redundancy and are more diverse 

(no lower number of reducts) than those obtained by means of the existing matrices, and 

experimental results illustrate the new reducts found by our methods outperform those 

obtained by existing method. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Rough set was initially proposed by Pawlak [22,23,25] , which is an important tool of soft computing research area. So

far, it has become a popular mathematical framework for data mining and knowledge discovery [1,21,37] . Pawlak’s rough set

is modeled using an equivalence relation, and is only suitable to process categorical data. However, numerical attributes, or

hybrid attributes (both categorical and numerical attributes) arise commonly in practice [10] . Thus, to solve this problem,

researchers found two feasible ways. One is to transform numerical and hybrid attributes into categorical attributes by

discretization [17,18] . But, this method could result in the information loss of original data. Therefore, the other way is to

process numerical or hybrid data by the fuzzy rough set [5,15,16,28,35,40] . 

Fuzzy rough sets encapsulate the related but distinct concepts of vagueness and indiscernibility [2,30] . It was first pro-

posed by Dubois and Prade [5,6] . Whereafter, researchers generalized fuzzy rough set models by the constructive and ax-

iomatic approaches. Radzikowska and Kerre [27] presented a more general fuzzy rough set model through employing t-norm

and t-conorm in lower and upper approximations. Mi and Zhang [14] introduced a new fuzzy rough set definition based on

a residual implication θ and its dual σ . Yeung et al. [39] proposed some fuzzy rough set models by means of arbitrary fuzzy

relations and investigated the connections between the existing fuzzy rough sets. Hu et al. [9] proposed a novel fuzzy rough

set model, based on which a simple and efficient hybrid attribute reduction algorithm was designed. Wang et al. [32] defined

new lower and upper approximations based on the similarity between two objects and extended some underlying concepts

to the fuzzy environment. Tsang et al. [30] introduced formal concepts of attributes reduction by means of fuzzy rough sets
∗ Corresponding author. Tel.: +86 351 7018176; fax: +86 351 7018176. 
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and give the structure of attribute reduction. Wei et al. [33] investigated the relationships among rough approximations of

fuzzy rough set models. Chen et al. [3] gave the interpretation of several types of membership functions geometrically by

using the lower approximations in fuzzy rough sets, in terms of square distances in Krein spaces. Yao et al. [38] presented

a variable precision ( θ , σ )-fuzzy rough set model based on fuzzy granules, which is more robust than the existing models.

These fuzzy rough set models mentioned above are the generalization of classical rough set model, and they are employed

to effectively process numerical data and hybrid data [33] . 

In many practical applications, a set may appear in some of the attribute values for an object. An information system

with set-valued attributes, which is commonly called set-valued information system, just represents the set-valued data very

well. Orlowska and Pawlak [19,20] investigated set-valued information systems considering non-deterministic information 

and introduced the concept of a non-deterministic information system. Yao and Noroozi [36] proposed a number of set-

based computation methods, set-valued information systems as one of these models was explicitly introduced. Guan and

Wang [7] proposed a rough set model based on a tolerance relation derived from set-valued information systems. Qian

et al. [26] first introduced a set-valued ordered information system, and to process the information system a rough set

model was proposed. Zhang et al. [41] introduced several approaches for updating the lower and upper approximations

in a set-valued information system. Moreover, set-valued information systems can be employed to handle incomplete data

through the set of all possible values for each attribute replacing missing values in an incomplete information system [8] . In

all, some significant research work about set-valued data has been done. However, so far, only a few studies have focused

on fuzzy rough set model for set-valued data. 

To process set-valued data by fuzzy rough set model, Dai and Tian [4] defined a fuzzy similar relation which retains

more information than the existing crisp similarity relation does. However, fuzzy rough approximations for set-valued data

was not explicitly defined. Though the fuzzy similarity relation is important to construct rough approximations, it does not

replace fuzzy rough approximations that are the key components for a rough set model. To solve this problem, in this paper,

we will propose two new types of fuzzy lower and upper approximations, and further define two discernibility matrices and

two discernibility functions will be introduced which is used to obtain the two new types of reducts, i.e. Type-1 and Type-2

reducts. Sequently, we will present the relationships among the two types of reducts and the existing reduct in [4] . Theo-

retical analyses and experimental results demonstrate that the new proposed reducts have less redundancy and are more

diverse (no lower number of reducts) than those obtained by the existing matrices, and the newfound reducts outperform

those by existing method from the perspective of coverage degree of rules and percentage of correct classification. 

The rest of this paper is organized as follows. Some preliminary concepts are briefly reviewed in Section 2 . In Section 3 ,

two new types of lower and upper approximations and the corresponding positive regions are proposed. In Section 4 , we

define two new types of reducts in the sense of positive region, construct the two discernibility matrices to obtain these

reducts, and investigate the relationships between the proposed reducts with Dai’s reducts. In Section 5 , we carry out several

numerical experiments to verify the theoretical results. Section 6 concludes this paper. 

2. Preliminaries 

2.1. Rough set model for Set-valued information systems 

A set-valued information system provides a convenient framework for the representation of the objects described with

set-valued attributes. Let SIS = (U, A, V, f ) be a set-valued information system, where U is a non-empty and finite set of

objects, called a universe, and A is a non-empty and finite set of attributes with set values. For each a ∈ A , a mapping f :

U → V a is determined by a set-valued information system, where V a is the domain of a . Additionally, f ( a , x ) indicates the

value of x on attribute a , and it will be represented by a ( x ) for brevity hereafter. 

Base on a set-valued information system SIS = (U, A, V, f ) , a similarity relation derived from a ∈ A can be constructed as

follow: 

R a = { (x i , x j ) | a (x i ) ∩ a (x j ) � = ∅} . 
And, we can define the corresponding similarity relation derived from B ⊆ A as 

R B = { (x i , x j ) | a (x i ) ∩ a (x j ) � = ∅ , ∀ a ∈ B } . 
The similar relation can also be represented by the following matrix 

R B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

r B 11 r B 12 · · · r B 
1 j 

· · · r B 1 n 

r B 21 r B 22 · · · r B 
2 j 

· · · r B 2 n 

· · · · · · · · · · · · · · · · · ·
r B 

i 1 
r B 

i 2 
· · · r B 

i j 
· · · r B 

in 

· · · · · · · · · · · · · · · · · ·
r B n 1 r B n 2 · · · r B 

n j 
· · · r B nn 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where r B 
i j 

= 1 if a ( x i ) ∩ a ( x j ) � = ∅ for ∀ a ∈ B , otherwise r B 
i j 

= 0 , and n = | U| . 
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Based on the fuzzy similarity relation mentioned above, the similarity class of x with respect to B ( B ⊆ C ) is defined as 

S B (x i ) = { x j | (x i , x j ) ∈ R B , ∀ x j ∈ U} , 
when x i and x j are indiscernible with respect to B , or x i is similar to x j with respect to B . 

For any Y ⊆ U , one defines that ( B (Y ) , B (Y )) is the rough set of Y with respect to B , where the lower approximation B

( Y ) and the upper approximation B (Y ) of Y [7] are described by 

B (Y ) = { x | S B (x ) ⊆ Y } , and 

B (Y ) = { x | S B (x ) ∩ Y � = ∅} . 
The objects in B ( Y ) can be certainly classified as members of Y by the knowledge in B , while the objects in B (Y ) can

be only classified as possible members of Y by the knowledge in B . The set BN B (Y ) = B (Y ) − B (Y ) is called the B − boundary

region of Y , and thus consists of those objects that we cannot decisively classify into Y on the basis of the knowledge in B

[11] . 

To represent a classification problem with set-valued condition attributes, we introduce a set-valued decision table SDT =
(U, C ∪ { d} , V, f ) . In a set-valued decision table, C is called a condition attribute set, { d } is called a decision attribute, and

 ∩ { d} = ∅ . In this paper, we focus on the set-valued decision table in which the values of condition attributes are set-valued

and the values of decision attributes are categorical. 

In a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , the lower and upper approximations of { d } with respect to B are

defined as [4] 

B ({ d} ) = ∪{ x | S B (x ) ⊆ Y i , Y i ∈ U/ { d}} , and 

B ({ d} ) = ∪{ x | S B (x ) ∩ Y i � = ∅ , Y i ∈ U/ { d}} . 
The relative positive region of { d } with respect to B is defined as P OS B ({ d} ) = ∪ Y i ∈ U/D B (Y i ) , where Y i ∈ U /{ d } and U /{ d }

represents the set of equivalence classes of partitioning U by { d }. 

2.2. Similarity relation derived from set-valued information systems 

For set-valued data, a similarity relation, which is derived from the similar degree between two objects, plays a critical

role of constructing fuzzy rough set models. In [4] , a similar degree in set-valued data is defined as follows. 

Definition 2.1 [4] . Given the set-valued information system SIS = (U, A, V, f ) , ∀ a ∈ A , a similar degree ̃  r a 
i j 

between x i and x j
is defined as 

˜ r a i j = 

| a (x i ) ∩ a (x j ) | 
| a (x i ) ∪ a (x j ) | , 

and for a set of attribute B ⊆ A , a fuzzy relation R B is defined as ̃  r B 
i j 

= min a ∈ B { ̃  r a 
i j 
} . 

Based on the similar degree, a fuzzy similarity relation is defined as 

˜ R B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

˜ r B 11 
˜ r B 12 · · · ˜ r B 

1 j 
· · · ˜ r B 1 n ˜ r B 21 

˜ r B 22 · · · ˜ r B 
2 j 

· · · ˜ r B 2 n 

· · · · · · · · · · · · · · · · · ·˜ r B 
i 1 

˜ r B 
i 2 

· · · ˜ r B 
i j 

· · · ˜ r B 
in 

· · · · · · · · · · · · · · · · · ·˜ r B n 1 
˜ r B n 2 · · · ˜ r B 

n j 
· · · ˜ r B nn 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where n = | U| . 
2.3. Fuzzy rough set models 

Dubois and Prade first introduced the fuzzy rough set [5] , hereafter called Dubois’ fuzzy rough set for simplicity. Accord-

ing to their definition, a universe of objects U = { x 1 , x 2 , . . . , x n } is described by a fuzzy binary relation 

˜ R , and the member-

ship of object x i in a fuzzy rough set ( ̃  R (X ) , ̃  R (X )) is described as 

μ˜ R (X ) (x i ) = inf 
x j ∈ U 

max { 1 − ˜ R (x i , x j ) , μX (x j ) } and 

μ˜ R (X ) 
(x i ) = sup 

x j ∈ U 
min { ̃  R (x i , x j ) , μX (x j ) } , 

where X ∈ F (U) . F (U) is the class of all fuzzy sets in U . 

Radzikowska and Kerre presented a more generalized fuzzy rough set model [27] . They introduced a broad family of fuzzy

rough sets, each called a ( I , T )-fuzzy rough set, determined by an implicator I and triangular norm T . The corresponding

fuzzy approximation space and fuzzy rough approximations are defined below. 
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Let S = (U, ̃  R ) be a fuzzy approximation space, U be the discoursed universe and 

˜ R be a fuzzy similarity relation on U .

Let I and T be a border implicator and a t-norm, respectively. The ( I , T )-fuzzy rough approximation in S is a mapping

Apr I , T 

S 
: F (U) → F (U) × F (U) , which is defined as 

for every X ∈ F (U) 

Apr I , T 

S 
= (( ̃  R ↓ X ) I 

(x i ) , ( ̃  R ↑ X ) T (x i )) , 

and for every x i ∈ U 

( ̃  R ↓ X ) I 

(x i ) = inf 
x j ∈ U 

I ( ̃  r i j , μX (x i )) , 

( ̃  R ↑ X ) T (x i ) = sup 

x j ∈ U 
T ( ̃  r i j , μX (x i )) , 

where F (U) is the class of all fuzzy sets of U . 

For explicitly indicating the above fuzzy rough set model, we briefly review the implicator and t -norm as follows. 

A triangular norm, or t-norm, is an increasing, associative and commutative mapping T : [0 , 1] 2 → [0 , 1] that satis-

fies the boundary condition (∀ x ∈ [0 , 1] , T (x, 1) = x ) . The standard min operator T M 

(x, y ) = min { x, y } , the algebraic prod-

uct T P (x, y ) = x ∗ y, and the bold intersection (also called the Łukasiewicz t-norm) T L (x, y ) = max { 0 , x + y − 1 } are the most

popular continuous t-norms. 

A triangular conorm, or t− conorm, is an increasing, associative and commutative mapping S : [0 , 1] 2 → [0 , 1] that sat-

isfies the boundary condition (∀ x ∈ [0 , 1] , S (x, 0) = x ) . The standard max operator S M 

(x, y ) = max { x, y } (the smallest t -

conorm), the probabilistic sum S P (x, y ) = x + y − x ∗ y, and the bounded sum S L (x ; y ) = min { 1 , x + y } are the most popolar

continuous conorms. 

A negator N is a decreasing [0 , 1] − [0 , 1] mapping satisfying N (0) = 1 and N (1) = 0 . The negator N s = 1 − x is usually

referred to as the standard negator. A negator N is involutive if N (N (x )) = x for all x ∈ [0, 1], and it is weakly involutive

if N (N (x )) ≥ x for all x ∈ [0, 1]. 

Let T , S and N be a t -norm, t -conorm and negator, respectively. An implicator I is called an S -implicator based on

S and N if I (x, y ) = T (N (x ) , y ) for all x , y ∈ [0, 1]. The Łukasiewicz implicator I L (x, y ) = min { 1 , 1 − x + y } , based on

S L and N s , the Kleene-Dienes implicator I KD (x, y ) = max { 1 − x, y } , based on S M 

and N s , the Kleene-Dienes-Łukasiewicz

implicator I � (x, y ) = 1 − x + x ∗ y, based on S P and N s are the most popular S -implicators. 

When X is a crisp subset of U , both Dubois’ fuzzy rough approximations and Radzikowska’s fuzzy rough approximations

are simplified as 

μC (X ) (x i ) = min 

x j / ∈ X 
{ 1 −˜ r i j } , x i ∈ X, and 

μC (X ) (x i ) = max 
x j ∈ X 

{ ̃  r i j } . 
In [9] , Hu et al. presented another fuzzy rough approximations based on the fuzzy information granules, which are

defined as follows: 

HC (X ) = { x i | [ x i ] C ⊆ X, x i ∈ U} , and 

HC (X ) = { x i | [ x i ] C ∩ X � = ∅ , x i ∈ U} , 
where [ x i ] C is a fuzzy information granule of x with respect to attribute set C . 

For a given decision table S = (U, C ∪ { d} , V, f ) , U/ { d} = { Y 1 , Y 2 , . . . , Y N } is a partition of discoursed universe U . The lower

and upper approximations with respect to D are 

HC ({ d} ) = ∪ 

N 
i =1 HC (Y i ) , and 

HC ({ d} ) = ∪ 

N 
i =1 HC (Y i ) . 

3. Fuzzy rough approximations for Set-valued data 

Lower and upper approximations are crucial for a rough set model. In this section, we will define two fuzzy rough

approximations for set-valued data based on the similar degree defined in Section 2.2 . The first type of fuzzy rough lower

and upper approximations are constructed by using a fuzzy similarity class of each object. The second type of fuzzy rough

lower and upper approximations are constructed by using a similar degree between two objects. 

To define the first type of fuzzy rough approximations, we define the similarity class in a similar way in Ref. [9] . 

Definition 3.1. Given the set-valued information system SIS = (U, A, V, f ) , a fuzzy similarity class of x i with respect to the

fuzzy similar relation 

˜ R B is defined as 

˜ S B (x i ) = 

n ∑ 

j=1 

˜ r B 
i j 

x i 
, 

where ̃  r B 
i j 

is a similar degree between two objects in U . 
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Furthermore, the relationship between fuzzy similarity class and crisp similarity class will be described by the following

theorem. 

Theorem 3.1. Given the set-valued information system SIS = (U, A, V, f ) , S B ( x i ) and ˜ S B (x i ) are crisp and fuzzy similarity classes

of x i , respectively. Then the relationship between them is 

( ̃  S B (x i )) 0 = S B (x i ) , 

where ( ̃  S B (x i )) 0 represents the 0-cut of ̃  S B (x i ) . 

Proof. 

( ̃  S B (x i )) α=0 = { x j | ̃  r B i j > 0 , 1 ≤ j ≤ n } 
= { x j | ̃  r a i j > 0 , ∀ a ∈ B, 1 ≤ j ≤ n } 
= { x j | a (x i ) ∩ a (x j ) � = ∅ , ∀ a ∈ B, 1 ≤ j ≤ n } 
= S B (x i ) . �

From Theorem 3.1 , it is easy to know that a 0- cut of fuzzy similarity class is identical to the classical similarity class in

[7] . 

Based on the fuzzy information granule mentioned above, we introduce the first type of fuzzy rough lower and upper

approximations in the following definition. 

Definition 3.2. Given a set-valued information system SIS = (U, A, V, f ) , B ⊆ A and X ⊆ U . Then Type-1 lower and upper

approximations of X with respect to B are defined as 

app 1 
B 
(X ) = { x i | ̃  S B (x i ) ⊆ X, X ⊆ U} , and 

app 
1 
B (X ) = { x i | ̃  S B (x i ) ∩ X � = ∅ , X ⊆ U} . 

If the fuzzy similarity class degrades to the crisp similarity class in a set-valued information system, Type-1 fuzzy rough

lower and upper approximations also degrade to the crisp ones, which is indicated in the following theorem. 

Theorem 3.2. Given a set-valued information system SIS = (U, A, V, f ) . If ̃  S B (x i ) is a crisp set, then 

app 1 
B 
(X ) = B (Y ) , and 

app 
1 
B (X ) = B (Y ) . 

The theorem is easy to be proved by the conclusion of Theorem 3.1 . Therefore, we omit the proof. 

Furthermore, for a set-valued decision table, we also define the corresponding Type-1 fuzzy rough lower and upper

approximations. 

Definition 3.3. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , Type-1 fuzzy rough lower upper approximations of

{ d } with respect to B are defined as 

app 1 
B 
({ d} ) = { x i | ̃  S B (x i ) ⊆ Y, Y ∈ U/ { d}} , and 

app 
1 
B ({ d} ) = { x i | ̃  S B (x i ) ∩ Y � = ∅ , Y ∈ U/ { d}} . 

Furthermore, the positive region of { d } with respect to B ( B ⊆ C ) in the set-valued decision table SDT = (U, C ∪ { d} , V, f )

is defined as 

P OS 1 B ({ d} ) = app 1 
B 
({ d} ) . 

We regard the set of the objects that belong to the positive region as the consistent part of a set-valued decision table, and

the set of the other objects as the inconsistent part of the set-valued decision table. 

Sequently, another type of lower and upper approximations are defined in the following definition. 

Definition 3.4. Given a set-valued information system SIS = (U, A, V, f ) , B ⊆ A and X ⊆ U , then the membership function of

X i with respect to Type-2 fuzzy rough lower and upper approximations are defined as 

μ˜ app 
2 

B 
(X ) 

(x i ) = min 

x j / ∈ X 
{ 1 −˜ r B i j } and 

μ˜ app 
2 

B (X ) 
(x i ) = max 

x j ∈ X 
{ ̃  r B i j } , 

where ̃  r B 
i j 

is the similar degree between x i ∈ U and x j ∈ U on B . 

Furthermore, for a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , the membership function of x i ∈ U with respect to

Type-2 positive region is defined as 

μ˜ POS 
2 

B ({ d} ) (x i ) = max 
Y ∈ U/ { d} 

{ μ˜ app 
2 

B 
(Y ) 

(x i ) } . 
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The Type-1 fuzzy rough lower and upper approximations are constructed based on a fuzzy similarity class, and the Type-

2 fuzzy rough lower and upper approximations are constructed based on a fuzzy similar degree. From the definition of the

fuzzy similarity class, it is easy to know that the fuzzy similarity class is the fuzzy set on which the membership function

of each object is the similar degree between the objects. Therefore, we can infer that there are some relationships between

them, and we will investigate these issues in the following theorems. 

Theorem 3.3. Given a set-valued information system SIS = (U, A, V, f ) , B ⊆ A and X ⊆ U , then the relationship between Type-1

fuzzy rough lower approximation and Type-2 rough lower approximation is 

app 1 
B 
(X ) = ( ̃  app 

2 

B 
(X )) 1 , 

where ( ̃  app 2 
B 
(X )) 1 is the 1-cut set of the fuzzy set ˜ app 2 

B 
(X ) . 

Proof. By the existing conditions, we have that 

( ̃  app 
2 

B 
(X )) 1 = { x i | ̃  app 

2 

B 
(X )(x i ) ≥ 1 } 

= { x i | min 

x j / ∈ X 
{ 1 −˜ r B i j } ≥ 1 } 

= { x i | (1 −˜ r B i j ) ≥ 1 , ∀ x j / ∈ X } 
= { x i | ̃  r B i j = 0 , ∀ x j / ∈ X } 
= { x i | ̃  S B (x i ) ⊆ X, X ⊆ U} 
= app 1 

B 
(X ) . 

�

From Theorem 3.3 , we can see that the Type-1 fuzzy rough low approximation is a special case of the Type-2 fuzzy

rough low approximation. And, by the results of Theorem 3.3 , we can infer a relationship between the Type-1 relative

positive region and the Type-2 relative positive region as follows. 

Corollary 3.1. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , B ⊆ A , then 

P OS 1 B ({ d} ) = ( ̃  P OS 
2 

B ({ d} )) 1 , 
where ( ̃  P OS 

2 

B ({ d} )) 1 is the 1-cut set of ˜ P OS 
2 

B ({ d} ) . 
Proof. From the definition of Type-2 positive region, we have μ˜ POS 

2 
B ({ d} ) (x i ) = max Y ∈ U/ { d} { μ˜ R (Y ) (x i ) } =

max Y k ∈ U/ { d} { min x j / ∈ Y k { 1 −˜ r B 
i j 
}} . For Y k ( Y k ∈ U /{ d }) containing x i , μ˜ POS 

2 
B ({ d} ) (x i ) = max Y k ∈ U/ { d} { min x j / ∈ Y k { 1 −˜ r B 

i j 
}} , and for

Y k not containing x i , μ˜ POS 
2 
B ({ d} ) (x i ) = 0 , we thus have that min x j / ∈ Y k { 1 −˜ r B 

i j 
} gets the maximum if x i ∈ Y k . Furthermore,

μ˜ POS 
2 
B ({ d} ) (x i ) = min x j / ∈ Y k { 1 −˜ r B 

i j 
} if x i ∈ Y k , and μ˜ POS 

2 
B ({ d} ) (x i ) = 0 if x i �∈ Y k (i.e. μ˜ POS 

2 
B ({ d} ) (x i ) = μ˜ app 2 

B 
(Y k ) 

(x i ) where x i ∈ Y k ).

Finally, by means of Theorem 3.3 , it is easy to obtain P OS 1 
B 
({ d} ) = ( ̃  P OS 

2 

B ({ d} )) 1 . �

From Corollary 3.1 , we can see that the Type-1 relative positive region is the special case of the Type-2 positive region. 

4. Attribute reduction based on discernibility matrix 

Discernibility matrix is one of important issues in rough set theory [29,34] , by which all reducts of condition attribute set

with respect to decision attribute can be obtained. In this section, we first propose two new types of discernibility matrices.

By them, we can get attribute reducts of preserving Type-1 positive region and Type-2 positive region, respectively. And

then, we investigate relationships among Type-1 positive region reducts, Type-2 positive region reducts and Dai’s reducts.

For the development of this section, the definition of attribute reduct in [4] is first reviewed. 

Definition 4.1 [4] . Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , B ⊆ C . B is a Dai’s reduct of C if and only if 

(1) ∀ x i , x j ∈ U , if d ( x i ) � = d ( x j ), then ̃

 r B 
i j 

= ̃

 r C 
i j 

; 

(2) For any B ′ ⊂ B , ∃ x i , x j ∈ U , d ( x ) � = d ( y ) and ̃

 r B 
i j 

� = ̃

 r C 
i j 

. 

To compute Dai’s reducts in Definition 4.1 , a discernibility matrix was defined in [4] , which is showed in the following

definition. 

Definition 4.2 [4] . Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . Then Dai’s discernibility matrix is defined as

M 

Dai 
n ×n = { m 

Dai 
i j 

} , where 

m 

Dai 
i j = 

{{ a ∈ C : ̃  r a 
i j 

= ̃

 r C 
i j 
} , d(x i ) � = d(x j ) 

∅ , d(x i ) = d(x j ) 
. 

Based on the discernibility matrix, a discernibility function can be defined as follow. 
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Definition 4.3 [4] . Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . A discernibility function f Dai for SDT is a Boolean

function of m Boolean variables c ∗1 , c 
∗
2 , . . . , c 

∗
m 

corresponding to the attribute c 1 , c 2 , . . . , c m 

, respectively, and defined as 

f Dai (c ∗1 , c 
∗
2 , . . . , c 

∗
m 

) = ∧{∨ m 

Dai 
i j ∈ M 

Dai 
n ∗n , m 

Dai 
i j � = ∅} , 

where ∨ m 

Dai 
i j 

is the disjunction of all variables c ∗ such that a ∈ m 

Dai 
i j 

and ∧ denotes conjunction. 

The discernibility function f Dai (c ∗
1 
, c ∗

2 
, . . . , c ∗m 

) describes the constraints which must hold to preserve similar degree be-

tween two objects from SDT . For a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , the set of all prime implicants of

f Dai (c ∗1 , c 
∗
2 , . . . , c 

∗
m 

) determines the set of all reducts of SDT . 

In addition, Ref. [4] gives the definition of core of condition attribute set with respect to decision attribute. We rewrite

the definition in the following definition. 

Definition 4.4. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , then Dai’s core of C with respect to { d } is defined

as 

C ore Dai 
{ d} (C ) = ∩ 

B ∈ RED Dai 
{ d} (C) 

B, 

where RED 

Dai 
{ d} (C) is the set of all reducts of preserving similar degree between two objects. 

From the definition of Dai’s reduct, we can see that the reduct preserves the similar degree between each pair-wise

objects after reducing a set-valued decision table. However, the discernibility of preserving similar degree is so strict that

it leads to many redundant attributes in reducts. To solve this problem, we will propose two types of new discernibility

matrixes. In the following, we introduce the first type of reduct that preserve the Type-1 positive region. 

Definition 4.5. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , B ( B ⊆ C ) is a Type-1 positive region reduct of C

with respect to { d } if and only if 

(1) ∀ x, y ∈ U, P OS 1 
C 
({ d} ) = P OS 1 

B 
({ d} ) ;

(2) For any B ′ ⊂ B, P OS 1 
B 
({ d} ) � = P OS 1 

B ′ ({ d} ) . 
To obtain the defined a Type-1 positive region reduct, we give a new discernibility matrix in the following definition. 

Definition 4.6. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . Then Type-1 discernibility matrix is defined as

M 

1 
n ×n = { m 

1 
i j 
} , where 

m 

1 
i j = 

⎧ ⎨ 

⎩ 

{ a ∈ C : ̃  r a 
i j 

= min b∈ C { ̃  r b 
i j 
} , d(x i ) � = d(x j ) , and x i , x j ∈ U 1 

{ a ∈ C : ̃  r a 
i j 

= min b∈ C { ̃  r b 
i j 
} , d(x i ) � = d(x j ) , and x i ∈ U 1 , x j ∈ U 2 

∅ , otherwise 

, 

U 1 is the consistent part of the decision table SDT , and U 2 is the inconsistent part of the decision table SDT . 

In the following, a theorem is employed to illustrate the relationship between a Type-1 positive region reduct and the

element in the Type-1 discernibility matrix derived from SDT , which is the theoretical fundament that assures all Type-1

positive region reducts can be obtained by a Type-1 discernibility matrix. 

Theorem 4.1. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , then B (B ⊆ C) is a Type-1 positive region reduct of C if

and only if B is the minimal set satisfying B ∩ m 

1 
i j 

� = ∅ for ∀ m 

1 
i j 

� = ∅ . 

Proof. ( ⇐ ) If d ( x i ) � = d ( x j ) and x i , x j ∈ U 1 , or d ( x i ) � = d ( x j ) and x i ∈ U 1 , x j ∈ U 2 , or d ( x i ) � = d ( x j ) and x i ∈ U 2 , x j ∈ U 1 , then

m 

1 
i j 

= { a ∈ C : ̃  r a 
i j 

= min b∈ C { ̃  r b 
i j 
} . 

By the existing condition, we have that B ∩ m 

1 
i j 

� = ∅ for ∀ m 

1 
i j 

� = ∅ . Without any loss of generality, let a ∈ B ∩ m 

1 
i j 
, then

a ∈ m 

1 
i j 

and a ∈ B . By Definition 4.5 , we have that ̃  r a 
i j 

= min b∈ C { ̃  r b 
i j 
} , if d ( x i ) � = d ( x j ) and x i , x j ∈ U 1 , or and x i ∈ U 1 and x j ∈

U 2 , or and x i ∈ U 2 and x j ∈ U 1 . Because of a ∈ B , ̃  r B 
i j 

= min b∈ B { ̃  r b 
i j 
} and B ⊆ C , ̃  r B 

i j 
= min b∈ B { ̃  r b 

i j 
} = ̃

 r a 
i j 

= min b∈ C { ̃  r b 
i j 
} = ̃

 r C 
i j 
, if d ( x i )

� = d ( x j ) and x i , x j ∈ U 1 , or and x i ∈ U 1 and x j ∈ U 2 . Moreover, by Definition 4.5 , it is easy to obtain m 

1 
i j 

= ∅ when x i , x j ∈ U 2 ,

thus B ∩ m 

1 
i j 

= ∅ . Then, ̃  r B 
i j 

≥ min b∈ C { ̃  r b 
i j 
} = ̃

 r C 
i j 

in this case. 

Furthermore, without any loss of generality, we suppose x i ∈ Y k . It is easy to know that 0 ≤ ˜ r C 
i j 

≤ r d 
i j 

= 1 for ∀ x j ∈ Y k , and

 r C 
i j 

= r d 
i j 

= 0 for ∀ x j �∈ Y k . For the development of the proof, we divide two cases as follows. 

(1) x i ∈ U 1 

In this case, it is evident that x i ∈ P OS 1 
C 
({ d} ) . And, without any loss of generality, we suppose x i ∈ Y k . Then, it is easy to

know ̃

 r C 
i j 

= r d 
i j 

= 0 for ∀ x j �∈ Y k . Furthermore, by the conclusion ̃

 r B 
i j 

= ̃

 r C 
i j 

if x i , x j ∈ U 1 , or x i ∈ U 1 and x j ∈ U 2 , we have that

x i ∈ P OS 1 
B 
({ d} ) . 

(2) x ∈ U 
i 2 
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In this case, it is evident that x i does not belong P OS 1 C ({ d} ) . Without any loss of generality, we suppose x i ∈ Y k , then it is

easy to know ̃

 r C 
i j 

= r d 
i j 

= 0 for ∀ x j �∈ Y k and x j ∈ U 1 , and ∃ x j �∈ Y k and x j ∈ U 2 such that ̃  r C 
i j 

> 0 . Furthermore, by the conclusion

 r B 
i j 

= ̃

 r C 
i j 

if x i ∈ U 2 and x j ∈ U 1 and the conclusion ̃

 r B 
i j 

≥ ˜ r C 
i j 
, we have that ̃  S B (x i ) ⊇ ˜ S C (x i ) and x i / ∈ P OS 1 B ({ d} ) . 

From the analysis of the two cases mentioned above, we have that for ∀ x i ∈ U , x i ∈ P OS 1 B ({ d} ) if x i ∈ P OS 1 C ({ d} ) and

x i / ∈ P OS 1 
B 
({ d} ) if x i / ∈ P OS 1 

C 
({ d} ) . Thus, P OS 1 

B 
({ d} ) = P OS 1 

C 
({ d} ) . 

Since B is the minimal set satisfying B ∩ m 

1 
i j 

� = ∅ for every m 

1 
i j 

� = ∅ , we know that for ∀ B ′ ⊂ B, ∃ m 

1 
pq � = ∅ such that B ′ ∩

m 

1 
pq = ∅ , where d ( x p ) � = d ( x q ), and x p , x q ∈ U 1 , or and x p ∈ U 1 and x q ∈ U 2 , or and x p ∈ U 2 and x q ∈ U 1 . Furthermore,

combination with Definition 4.5 , we have that for ∀ a ∈ B ′ , ̃  r a pq > min b∈ C { ̃  r b pq } . For the development of the proof, we divide

three cases as follows. 

(1) x p ∈ U 1 , x q ∈ U 1 

In this case, it is evident that x p belongs to P OS 1 C ({ d} ) and x q belongs to P OS 1 C ({ d} ) . Without any loss of generality, we

suppose x p ∈ Y k and x q �∈ Y k , then 

˜ r C pq = r d pq = 0 . By the conclusion 

˜ r B 
′ 

pq > ̃

 r C pq if x p , x q ∈ U 1 , we have that ˜ S B ′ (x p ) ⊇ ˜ S C (x p ) ,˜ S B ′ (x q ) ⊇ ˜ S C (x q ) . Therefore, x p / ∈ P OS 1 
B ′ ({ d} ) and x q / ∈ P OS 1 

B ′ ({ d} ) . 
(2) x p ∈ U 1 , x q ∈ U 2 

In this case, it is evident that x p belongs to P OS 1 
C 
({ d} ) and x q does not P OS 1 

C 
({ d} ) . Without any loss of generality, we

suppose x p ∈ Y k and x q �∈ Y k . Then, it is easy to know that ̃  r C pq = r d pq = 0 . By the conclusion ̃

 r B 
′ 

pq > ̃

 r C pq if x p , x q ∈ U 1 , we have

that ̃  S B ′ (x p ) ⊇ ˜ S C (x p ) . Therefore, x p / ∈ P OS 1 
B ′ ({ d} ) . 

(3) x p ∈ U 2 , x q ∈ U 1 

Because of the symmetry between x p and x q , this case is the same as Case (2). 

From the analyses of the three cases, we have that ∃ x p such that x p ∈ P OS 1 
C 
({ d} ) but x p / ∈ P OS 1 

B ′ ({ d} ) , i.e. P OS 1 
C 
({ d} ) � =

P OS 1 
B ′ ({ d} ) . 
In all, by Definition 4.5 , we know that B is a Type-1 positive region reduct of C with respect to { d }. 

( ⇒ ) Let B be a relative reduct of C . Then, we have P OS 1 B ({ d} ) = P OS 1 C ({ d} ) . If x i ∈ P OS 1 B ({ d} ) , ∃ Y k ∈ U /{ d } such that ̃  S B (x i ) ⊆
Y k and x i ∈ Y k . Because of P OS 1 

B 
({ d} ) = P OS 1 

C 
({ d} ) , we have x i ∈ P OS 1 

C 
({ d} ) and ̃

 S C (x i ) ⊆ Y k . By Definition 4.5 , we have d ( x i ) � =
d ( x j ) if m 

1 
i j 

= { a | ̃  r a 
i j 

= min b∈ C { ̃  r C 
i j 
}} � = ∅ . Furthermore, by the definition of positive region, we have that for ∀ x j �∈ Y k , ̃  r B 

i j 
= ̃

 r C 
i j 

= 0 .

Because of B ⊆ C , we have m 

1 
i j 

= { a | ̃  r a 
i j 

= min b∈ C { ̃  r C 
i j 
} = 0 } ⊇ { a | ̃  r a 

i j 
= min b∈ B { ̃  r B 

i j 
} = 0 } . Thus, m 

1 
i j 

∩ B � = ∅ . 
If x i / ∈ P OS 1 

B 
({ d} ) , then we have ̃  S B (x i ) ⊆ Y k for ∀ Y k ∈ U /{ d }. Because of P OS 1 

B 
({ d} ) = P OS 1 

C 
({ d} ) , x i / ∈ P OS 1 

C 
({ d} ) , i.e. x i �∈ U 1 .

By Definition 4.5 , if m 

1 
i j 

= { a | ̃  r a 
i j 

= min b∈ C { ̃  r C 
i j 
}} � = ∅ , x j must be in U 1 and d ( x i ) � = d ( x j ), i.e. x j ∈ P OS 1 C ({ d} ) and d ( x i ) � = d ( x j ).

Because of P OS 1 B ({ d} ) = P OS 1 C ({ d} ) , x j ∈ P OS 1 B ({ d} ) and d ( x i ) � = d ( x j ). Hence, ˜ r B 
i j 

= ̃

 r C 
i j 

= 0 . Furthermore, it is easy to know

m 

1 
i j 

= { a | ̃  r a 
i j 

= min b∈ C { ̃  r C 
i j 
} = ̃

 r C 
i j 

= 0 } and B ⊆ C , we have m 

1 
i j 

∩ B � = ∅ . 
By the existing condition that B is a Type-1 positive region reduct of C , we also know that for ∀ B ′ ⊂ B , P OS 1 

B ′ ({ d} ) ⊆
P OS 1 

C 
({ d} ) . Therefore, ∃ x p such that x p ∈ P OS 1 

C 
({ d} ) and x p / ∈ P OS 1 

B ′ ({ d} ) . Without any loss of generality, we suppose x p ∈ Y k .

We have ̃  r C 
pj 

= 0 for ∀ x j �∈ Y k because of x p ∈ P OS 1 
C 
({ d} ) , and ∃ x q such that ̃  r B 

′ 
pq > 0 because of x p / ∈ P OS 1 

B ′ ({ d} ) . Hence, for ∀ a

∈ C , if ̃  r a pq = 0 then a �∈ B ′ , and m pq = { a | ̃  r a pq = min b∈ C { ̃  r C pq } = 0 } � = ∅ . Therefore, B ′ ∩ m pq = ∅ . It follows that B is the minimal

set that satisfies B ∩ m ij � = ∅ for every m ij � = ∅ . �

Sequently, based on the Type-1 discernibility matrix mentioned above, we define a new discernibility function: Type-1

discernibility function. 

Definition 4.7. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . Type-1 discernibility function f 1 for SDT is a

Boolean function of m Boolean variables c ∗1 , c 
∗
2 , . . . , c 

∗
m 

corresponding to the attribute c 1 , c 2 , . . . , c m 

, respectively, and defined

as 

f 1 (c ∗1 , c 
∗
2 , . . . , c 

∗
m 

) = ∧{∨ m 

1 
i j ∈ M 

1 
n ×n , m 

1 
i j � = ∅} , 

where ∨ m 

1 
i j 

is the disjunction of all variables c ∗ such that a ∈ m 

1 
i j 

and ∧ denotes conjunction. 

The discernibility function f 1 (c ∗
1 
, c ∗

2 
, . . . , c ∗m 

) describes the constraints which must hold to preserve discernibility in the

sense of Tpye-1 positive region. For a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , the set of all prime implicants of

f 1 (c ∗1 , c 
∗
2 , . . . , c 

∗
m 

) determines the set of all Type-1 reducts of SDT . 

Definition 4.8. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , then Type-1 core of C with respect to { d } is defined

as 

C ore 1 { d} (C ) = ∩ 

B ∈ RED 1 { d} (C) B, 

where RED 

1 { d} (C) is the set of all Type-1 positive region reducts. 

The following theorem will give the approach to obtain Type-1 core of condition attribute set with respect to decision

attribute set in a set-valued decision table. 
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Theorem 4.2. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , then C ore 1 { d} (C ) = { a : m 

1 
i j 

= { a }} . 
Proof. a ∈ C ore 1 { d} (C ) ⇔ P OS 1 

B 
({ d} ) � = P OS 1 

B −{ a } ({ d} ) for ∀ B ∈ RED 

1 { d} (C) ⇔ There exists x i ∈ P OS 1 
C 
({ d} ) such that ˜ S B −{ a } (x i ) ⊂

[ x i ] { d} ([ x i ] { d} ∈ U/ { d} is a equi v al ent cl ass that contains x i ) ⇔ There exists x i ∈ P OS 1 
C 
({ d} ) and x j �∈ [ x i ] { d } such that ̃  r 

B −{ a } 
i j 

> ̃

 r B 
i j 

= 0

⇔ m 

1 
i j 

= { c : ̃  r c 
i j 

= min b∈ C { ̃  r b 
i j 
} , d(x i ) � = d(x j ) and x i ∈ U i } = { c : ̃  r c 

i j 
= min b∈ C { ̃  r b 

i j 
} , d(x i ) � = d(x j ) and x i ∈ P OS 1 C ({ d} ) } = { a } . �

The relationship between the elements of Dai’s discernibility matrix and those of Type-1 discernibility matrix will be

investigated in the following. 

Theorem 4.3. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , m 

Dai 
i j 

is an element in Dai’s discernibility matrix of SDT ,

and m 

1 
i j 

is an element in Type-1 discernibility matrix of SDT , then 

m 

1 
i j ⊆ m 

Dai 
i j , 

especially, if m 

1 
i j 

� = ∅ and m 

Dai 
i j 

� = ∅ (or m 

1 
i j 

= ∅ and m 

Dai 
i j 

= ∅ ) , 

m 

1 
i j = m 

Dai 
i j . 

Proof. For proving the theorem, there are four cases is analyzed as follows. 

(1) x i ∈ U 1 

From the definition of m 

1 
i j 

and m 

Dai 
i j 

, we have that m 

1 
i j 

= { a ∈ C : ̃  r a 
i j 

= ̃

 r C 
i j 

and d(x i ) � = d(x j ) } = m 

Dai 
i j 

, and it is impossible

that m 

1 
i j 

and m 

Dai 
i j 

are empty sets. 

(2) x i ∈ U 2 and x j ∈ U 1 

In this case, ˜ r B 
′ 

i j 
= ̃

 r C 
i j 

= 0 if d ( x i ) � = d ( x j ). Hence, m 

1 
i j 

= { a ∈ C : ̃  r a 
i j 

= ̃

 r B 
′ 

i j 
and d(x i ) � = d(x j ) } = { c ∈ C : ̃  r a 

i j 
= ̃

 r C 
i j 

and d(x i ) � =
d(x j ) } = m 

Dai 
i j 

, and it is impossible that m 

1 
i j 

and m 

Dai 
i j 

are empty sets. 

(3) x i , x j ∈ U 2 and d ( x i ) � = d ( x j ) 

In this case, m 

1 
i j 

= ∅ , m 

Dai 
i j 

= { a ∈ C : ̃  r a 
i j 

= ̃

 r C 
i j 

and d (x i ) � = d (x j ) } , then m 

Dai 
i j 

⊃ m 

1 
i j 
, because it is impossible that m 

Dai 
i j 

is a

empty set. 

(4) x i , x j ∈ U 2 and d(x i ) = d(x j ) 

In this case, m 

1 
i j 

= ∅ , m 

Dai 
i j 

= ∅ . Hence m 

1 
i j 

= m 

Dai 
i j 

. �

Corollary 4.1. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . If C ore Dai 
{ d} (C ) is the Dai’s core of C with respect to { d },

and C ore 1 { d} (C ) is the Type-1 core of C with respect to { d }, then 

C ore 1 { d} (C ) ⊆ C ore Dai 
{ d} (C ) . 

We omit the proof because the corollary is easily to be proved by means of Theorem 4.3 . 

To investigate the relationship between Dai’s reducts and Type-1 reducts, we give the following theorem and remark. 

Theorem 4.4. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , if B (B ⊆ C) is a Dai’s reduct of C with respect to { d },

then ∃ a Type-1 positive region reduct B ′ such that B ⊇ B ′ . 

Proof. From the exiting conditions, it is easy to know that ˜ r B 
i j 

= ̃

 r C 
i j 

f or x i , x j ∈ U ⇒ P OS 1 
C 
({ d} ) = P OS 1 

B 
({ d} ) and 

˜ r 
B −{ a } 
i j 

� =
 r C 

i j 
f or x i , x j ∈ U ⇒ P OS 1 

C 
({ d} ) � = P OS 1 

B −{ a } ({ d} ) for ∀ a ∈ B . Furthermore, by the definition of Type-1 positive region reducts,

we have that there exists a Type-1 positive region reduct B ′ such that B ⊇ B ′ . �

From Theorem 4.4 , we can see that, for each Dai’s reduct, it is either a Type-1 positive region reduct or the superset of

a Type-1 positive region. 

Remark: By Theorem 4.3 , without any loss of generality, we suppose that m 

Dai 
pq = { c w 

} ⊃ m 

1 
pq = ∅ , and m 

Dai 
i j 

= m 

1 
i j 

for

∀ i � = p , j � = q . The set of all Type-1 positive region reducts is RED 

1 { d} (C) = { r ed 1 { d} (C) 1 , r ed 1 { d} (C) 2 , . . . , r ed 1 { d} (C) | RED 1 { d} (C) | } ,
c w 

/ ∈ red 1 { d} (C) i , 1 ≤ i ≤ | RED 

1 { d} (C) | . Thus, we have that 

f Dai (c ∗1 , c 
∗
2 , . . . , c 

∗
m 

) = ∧ 

{
∨ m 

Dai 
i j ∈ M 

Dai 
n ×n , m 

Dai 
i j � = ∅ 

}
= ∨ 

k ≤| RED 1 { d} (C) | (c w 

∧ red 1 { d} (C) k ) . 

By the expression of f Dai , there exists red Dai 
{ d} (C) u ∈ RED 

Dai 
{ d} (C) such that c w 

∪ r ed 1 { d} (C) v ⊇ r ed Dai 
{ d} (C) u . Three cases should be

considered as follows. 

(1) c w 

∪ r ed 1 { d} (C) v = r ed Dai 
{ d} (C) u , c w 

/ ∈ r ed 1 { d} (C) v and c w 

∈ red Dai 
{ d} (C) u . In this case, r ed 1 { d} (C) v ⊂ r ed Dai 

{ d} (C) u ; 

(2) c w 

∪ r ed 1 { d} (C) v = r ed Dai 
{ d} (C) u , c w 

∈ r ed 1 { d} (C) v and c w 

∈ red Dai 
{ d} (C) u . In this case, r ed 1 { d} (C) v = r ed Dai 

{ d} (C) u ; 

(3) c w 

∪ r ed 1 { d} (C) v ⊃ r ed Dai 
{ d} (C) u . By Theorem 4.3 , the Type-1 positive region reducts in this case is the new reducts which

have no explicit relationship with each of Dai’s reducts. 
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From the above analyses, we can find out that among all Dai’s reducts, some are exactly Type-1 positive region reducts,

the others are the superset of the corresponding Type-1 positive region reducts. Additionally, some of Type-1 positive region

reducts are the attribute set which are not explicitly relative with the Dai’s reducts. The results indicate Type-1 positive

region reducts have less redundancy and are more diverse (no lower number of reducts) than Dai’s reducts. 

In the sequence, based on the Type-2 positive region in Section 3 , we can define Type-2 positive region reducts. 

Definition 4.9. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , then B ( B ⊆ C ) is Type-2 positive region reduct of

C with respect to D if and only if 

(1) ∀ x, y ∈ U, ̃  P OS 
2 

C ({ d} ) = 

˜ P OS 
2 

B ({ d} ) ;
(2) For any B ′ ⊂ B, ̃  P OS 

2 

C ({ d} ) � = 

˜ P OS 
2 

B ′ ({ d} ) . 
To obtain Type-2 positive region reducts, the following discernibility matrix is defined in the following. 

Definition 4.10. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . Then Type-2 discernibility matrix is defined as

M 

2 
n ×n = { m 

2 
i j 
} , where 

m 

2 
i j = 

{{ a ∈ C : 1 −˜ r a 
i j 

≥ min d (x i ) � = d (x k ) 
{ 1 −˜ r C 

ik 
} , d(x i ) � = d(x j ) 

∅ , d(x i ) = d(x j ) 
. 

Furthermore, the following theorem is employed to demonstrate relationships between Type-2 positive region reducts 

and the elements in a Type-2 discernibility matrix, which is the theoretical foundation that assures all Type-2 positive

region reducts can be obtained by a Type-2 discernibility matrix. 

Theorem 4.5. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , then B ( B ⊆ C ) is a Type-2 relative reduct of C if and

only if B is the minimal set satisfying B ∩ m 

2 
i j 

� = ∅ for ∀ m 

2 
i j 

� = ∅ . 

Proof. ( ⇐ ) If d ( x i ) � = d ( x j ), then m 

2 
i j 

= { a ∈ C : 1 −˜ r a 
i j 

≥ min d (x i ) � = d (x k ) 
{ 1 −˜ r C 

ik 
}} . Let B ∩ m 

2 
i j 

� = ∅ for ∀ m 

2 
i j 

� = ∅ and 1 −˜ r C 
ip 

=
min d (x i ) � = d (x k ) 

{ 1 −˜ r C 
ik 
} (i.e. ̃  r C 

ip 
= max d (x i ) � = d (x k ) 

{ ̃  r C 
ik 
} ). For the development of the proof, we divide two cases as follows. 

(1) For x j = x p 
By the definition of discernibility matrix and the existing condition B ∩ m 

2 
i j 

� = ∅ for ∀ m 

2 
i j 

� = ∅ , we have that ∃ c ∈ B such

that ̃  r c 
ip 

≤ ˜ r C 
ip 

= min b∈ C { ̃  r b 
ip 
} . Because of c ∈ C , ̃  r c 

ip 
is not less than min b∈ C { ̃  r b 

ip 
} . We thus have that ̃  r c 

ip 
= ̃

 r C 
ip 

= min b∈ C { ̃  r b 
ip 
} . Fur-

thermore, because of c ∈ B and B ⊆ C , we have that ̃  r C 
ip 

≤ ˜ r B 
ip 

≤ ˜ r c 
ip 

, i.e. ̃  r B 
ip 

= ̃

 r C 
ip 

. 

(2) For ∀ x j � = x p 

∀ c ∈ B ∩ m 

2 
i j 
, 1 −˜ r c 

i j 
≥ min d (x i ) � = d (x k ) 

{ 1 −˜ r C 
ik 
} . Because of c ∈ B , we have that ̃  r B 

i j 
≤ ˜ r c 

i j 
≤ ˜ r C 

ip 
. 

In all, from the conclusion of the two cases, we have that ̃  r B 
ip 

= ̃

 r C 
ip 

and ̃

 r B 
i j 

≤ ˜ r C 
ip 

for x j � = x p . Hence, max d (x i ) � = d (x k ) 
{ ̃  r B 

ik 
} =

 r C 
ip 

= max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} . Then, it is easy to obtain μ˜ C (Y ) (x i ) = min x j / ∈ Y { 1 −˜ r C 

i j 
} = 1 − max x j / ∈ Y { ̃  r C 

i j 
} = 1 − max x j / ∈ Y { ̃  r B 

i j 
} =

min x j / ∈ Y { 1 −˜ r B 
i j 
} = μ˜ B (Y ) (x i ) . 

( ⇒ ) For any m 

2 
i j 

� = ∅ , we have d ( x i ) � = d ( x j ) by definition. 

Let B be a relative reduct of C . Then, we have that μ˜ C (Y ) (x i ) = min d (x i ) � = d (x j ) 
{ 1 −˜ r C 

i j 
} = min d (x i ) � = d (x j ) 

{ 1 −˜ r B 
i j 
} = μ˜ B (Y ) (x i ) ,

i.e. max d (x i ) � = d (x j ) 
{ ̃  r C 

i j 
} = max d (x i ) � = d (x j ) 

{ ̃  r B 
i j 
} , ˜ r B 

i j 
≤ max d (x i ) � = d (x j ) 

{ ̃  r C 
i j 
} , and for ∀ x i , x j ∈ U and d ( x i ) � = d ( x j ), ∃ c ∈ B , such that

 r c 
i j 

= min b∈ B { ̃  r b 
i j 
} = ̃

 r B 
i j 

. Thus, ∃ c ∈ B , ̃  r c 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} , i.e. 1 −˜ r c 

i j 
≥ min d (x i ) � = d (x j ) 

{ 1 −˜ r C 
i j 
} . In summary, we have c ∈ m 

2 
i j 

and B ∩ m 

2 
i j 

� = ∅ . 
If a ∈ B ′ , we have that ˜ r a 

ip 
= min b∈ B ′ { ̃  r b 

ip 
} = ̃

 r B 
′ 

ip 
= ̃

 r C 
ip 

because of B ′ ⊆ C . Then min d (x i ) � = d (x k ) 
{ 1 −˜ r B 

′ 
ik 
} ≥ min d (x i ) � = d (x k ) 

{ 1 −
 r C 

ik 
} = 1 −˜ r B 

′ 
ip 

, and min d (x i ) � = d (x k ) 
{ 1 −˜ r B 

′ 
ik 
} = 1 −˜ r B 

′ 
ip 

. Therefore, min d (x i ) � = d (x k ) 
{ 1 −˜ r B 

′ 
ik 
} = min d (x i ) � = d (x k ) 

{ 1 −˜ r C 
ik 
} , which is contract

with B ′ is not a reduct. Therefore, a �∈ B , i.e. B ∩ m 

2 
i j 

= ∅ . �

Sequently, based on Type-2 discernibility matrix we proposed, we define a new discernibility function: Type-2 discerni-

bility function. 

Definition 4.11. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . Type-2 discernibility function f 2 for SDT is a

Boolean function of m Boolean variables c ∗1 , c 
∗
2 , . . . , c 

∗
m 

corresponding to the attributes c 1 , c 2 , . . . , c m 

, respectively, and de-

fined as 

f 2 (c ∗1 , c 
∗
2 , . . . , c 

∗
m 

) = ∧{∨ m 

2 
i j : m 

2 
i j ∈ M 

2 
n ×n , m 

2 
i j � = ∅} , 

where 
∨ 

m 

2 
i j 

is the disjunction of all variables c ∗ such that a ∈ m 

2 
i j 

and 

∧ 

m 

2 
i j 

is the conjunction of them. 

Definition 4.12. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . Type-2 core of C with respect to { d } is defined

as 

C ore 2 { d} (C ) = ∩ 

B ∈ RED 2 { d} (C) B, 
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where RED 

2 { d} (C) is the set of all Type-2 positive region reducts. 

The following theorem will give the approach to obtain Type-2 core of condition attribute set with respect to decision

attribute set in a set-valued decision table. 

Theorem 4.6. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , then C ore 2 { d} (C ) = { a : m 

2 
i j 

= { a }} . 
Proof. a ∈ C ore 2 { d} (C ) ⇔ P OS 2 

C 
({ d} ) � = P OS 2 

C−{ a } ({ d} ) for ∀ B ∈ RED 

2 { d} (C) ⇔ There exists x i ∈ U such that

max Y ∈ U/ { d} { min x j / ∈ Y { 1 −˜ r 
C−{ a } 
i j 

}} � = max Y ∈ U/ { d} { min x j / ∈ Y { 1 −˜ r C 
i j 
}} ⇔ There exists x i ∈ U such that min x j / ∈ [ x i ] { d} { 1 −˜ r 

C−{ a } 
i j 

} � =
min x j / ∈ [ x i ] { d} { 1 −˜ r C 

i j 
} ⇔ m 

2 
i j 

= { c : ̃  r c 
i j 

≤ 1 − min x k / ∈ [ x i ] { d} { 1 −˜ r C 
ik 
} , d(x i ) � = d(x j ) and x i ∈ U i } = { a } . �

Theorem 4.6 states that a attribute belongs to Type-2 core if it is the sole attribute contained in an element in a Type-2

discernibility matrix. 

The relationships between the elements of a Dai’s discernibility matrix and those of a Type-2 discernibility matrix will

be investigated in the following theorem. 

Theorem 4.7. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . m 

Dai 
i j 

is an element in Dai’s discernibility matrix of SDT ,

and m 

2 
i j 

is an element in Type-2 discernibility matrix of SDT , then 

m 

2 
i j ⊇ m 

Dai 
i j , 

especially, when ̃  r C 
i j 

= ̃

 r max 
i j 

, or ̃  r C 
i j 

= max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} , or m 

2 
i j 

= ∅ and m 

Dai 
i j 

= ∅ , 

m 

2 
i j = m 

Dai 
i j . 

where ̃  r max 
i j 

= max a ∈ C { ̃  r a 
i j 
} . 

Proof. For the development of the proof, four possible cases are analyzed as follows. 

(1) ̃  r C 
i j 

≤ ˜ r max 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} and d ( x i ) � = d ( x j ) 

In this case, m 

2 
i j 

= { a ∈ C : ̃  r a 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
}} = C ⊇ { a ∈ C : ̃  r a 

i j 
= min a ∈ C { ̃  r a 

i j 
}} = m 

Dai 
i j 

. Especially, if ˜ r C 
i j 

= ̃

 r max 
i j 

, m 

2 
i j 

=
m 

Dai 
i j 

. 

(2) ̃  r C 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} < ̃

 r max 
i j 

and d ( x i ) � = d ( x j ) 

In this case, m 

2 
i j 

= { a ∈ C : ̃  r a 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
}} ⊇ { a ∈ C : ̃  r a 

i j 
= min a ∈ C { ̃  r a 

i j 
}} = m 

Dai 
i j 

. Especially, if ̃  r C 
i j 

= max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} ,

m 

2 
i j 

= m 

Dai 
i j 

. 

(3) max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} < ̃

 r C 
i j 

≤ ˜ r max 
i j 

and d ( x i ) � = d ( x j ) 

It is obviously impossible that ̃  r C 
i j 

> max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} . Hence, this case cannot appear. 

(4) d(x i ) = d(x j ) 

In this case, m 

2 
i j 

= ∅ , m 

Dai 
i j 

= ∅ . Hence m 

2 
i j 

= m 

Dai 
i j 

. �

Corollary 4.2. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . If C ore Dai 
{ d} (C ) is a Dai’s core of C with respect to { d }, and

 ore 2 { d} (C ) is the core of C with respect to { d } in the sense of Type-2 positive region, then 

C ore 2 { d} (C ) ⊆ C ore Dai 
{ d} (C ) . 

We omit the proof because it is easy to prove the corollary by means of Theorem 4.7 . 

To investigate the relationship between Dai’s reducts and Type-2 reducts, we give the following theorem and remark. 

Theorem 4.8. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . If B (B ⊆ C) is a Dai’s reduct, then ∃ a Type-2 positive

region reduct B ′ such that B ⊇ B ′ . 

The proof of this theorem is similar with that of Theorem 4.4 , hence we omit it. 

From Theorem 4.8 , we can see that, for each Dai’s reduct, it is either a Type-2 positive region reduct or the superset

of a Type-2 positive region. Remark: By Theorem 4.7 , without any loss of generality, we suppose that m 

2 
pq = { c w 

} ∪ m 

Dai 
pq ,

c w 

/ ∈ m 

Dai 
pq , and m 

Dai 
i j 

= m 

2 
i j 

for ∀ i � = p , j � = q . Thus, ˜ r c w pq > ̃

 r C pq . The set of all positive region reducts is RED 

2 { d} (C) =
{ r ed 2 { d} (C) 1 , r ed 2 { d} (C) 2 , . . . , r ed 2 { d} (C) | RED 2 { d} (C) | } , c w 

/ ∈ r ed 2 { d} (C) i , 1 ≤ i ≤ | RED 

2 { d} (C) | . Thus, we have that 

f (M 

2 ) = ∧ 

{
∨ m 

2 
i j , m 

2 
i j � = ∅ 

}
= 

(
∧ 

{
∨ i � = p, j � = q m 

2 
i j , m 

2 
i j � = ∅ 

})
∧ (∨ m 

2 
pq ) 

= 

(
∧ 

{
∨ i � = p, j � = q m 

2 
i j , m 

2 
i j � = ∅ 

})
∧ (∨ ({ c w 

} ∪ m 

Dai 
pq )) . 

Furthermore, without any loss of generality, we assume that (∧{∨ i � = p, j � = q m 

Dai 
i j 

, m 

Dai 
i j 

� = ∅} ) = r ed ′ { d} (C) 1 ∨ r ed ′ { d} (C) 2 ∨ · · · ∨
red ′ { d} (C) l . Three cases will be considered as follows. 



192 W. Wei et al. / Information Sciences 360 (2016) 181–201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ˜
 

 ˜
 

 

(1) c w 

∈ red ′ { d} (C) k . In this case, we have that ∨{ red ′ { d} (C) k ∧ {∨ (m 

Dai 
pq ∪ { c w 

} ) }} = red ′ { d} (C) k and red ′ { d} (C) k ∈ RED 

2 { d} (C) . For

any conjunctive term A in the formula obtained by reducing ∨{ red ′ { d} (C) k ∧ {∨ m 

Dai 
pq }} to the simplest form, it is easy to know

A ∈ RED 

Dai 
{ d} (C) and red ′ { d} (C) k ⊂ A . 

(2) c w 

/ ∈ red ′ { d} (C) k and red ′ { d} (C) k ∩ m 

Dai 
pq � = ∅ . In this case, we have that ∨{ red ′ { d} (C) k ∧ {∨ (m 

Dai 
pq ∪ { c w 

} ) }} = red ′ { d} (C) k .

Hence red ′ { d} (C) k ∈ RED 

2 { d} (C) . And we have that ∨{ red ′ { d} (C) k ∧ {∨ (m 

Dai 
pq ) }} = red ′ { d} (C) k . Hence red ′ { d} (C) k ∈ RED 

Dai 
{ d} (C) . 

(3) c w 

/ ∈ red ′ { d} (C) k and red ′ { d} (C) k ∩ m 

Dai 
pq = ∅ . In this case, we have that for red ′ { d} (C) k ∪ { c w 

} ∈ RED 

2 { d} (C ) and red ′ { d} (C ) k ∪
{ c w 

} / ∈ RED 

Dai 
{ d} (C) . For any conjunctive term A in the formula obtained by reducing ∨{ red ′ { d} (C) k ∧ {∨ m 

Dai 
pq }} to the simplest

form, it is easy to know that A ∈ RED 

Dai 
{ d} (C) and red ′ { d} (C) k ∪ { c w 

} ∪ { a } ⊃ A for ∀ a ∈ m 

Dai 
pq . In other words, the union of the

Type-2 reducts of some attribute is superset of Dai’s reducts in this case. By Theorem 4.7 , Type-2 positive region reducts in

this case is the new reducts which have no explicit relationship with Dai’s reducts. 

From the above analyses, we can find out that among all Dai’s reducts, some of them are exactly Type-2 positive region

reducts, the others are the superset of the corresponding Type-2 positive region reducts. Additionally, some of Type-2 pos-

itive region reducts are the attribute sets which are not explicitly relative with Dai’s reducts. The results indicate Type-2

positive region reducts have less redundancy and are more diverse (no lower number of reducts) than Dai’s reducts. 

Sequently, we will investigate the relationships between Type-1 positive region reducts and Type-2 positive region

reducts. 

Theorem 4.9. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , if B ⊆ C is a Type-2 positive region reduct, then ∃ a

Type-1 positive region reduct B ′ such that B ⊇ B ′ . 

Proof. From the exiting conditions, it is easy to know 

˜ P OS 
2 

C ({ d} ) = 

˜ P OS 
2 

B ({ d} ) ⇒ max Y ∈ U/ { d} { min x j / ∈ Y { 1 −˜ r B 
i j 
}} =

max Y ∈ U/ { d} { min x j / ∈ Y { 1 −˜ r C 
i j 
}} ⇒ min x j / ∈ Y { 1 −˜ r B 

i j 
} = min x j / ∈ Y { 1 −˜ r C 

i j 
} and x i ∈ Y ⇒ if ̃  r C 

i j 
= 0 for ∀ x j �∈ Y then ̃

 r B 
i j 

= 0 for ∀ x j �∈ Y

and if ∃ x j �∈ Y such that ̃  r C 
i j 

> 0 then ̃

 r B 
i j 

≥ ˜ r C 
i j 

> 0 ⇒ P OS 1 
C 
({ d} ) = P OS 1 

B 
({ d} ) . In the similar way, ˜ P OS 

2 

C ({ d} ) � = 

˜ P OS 
2 

B −{ a } ({ d} ) for

∀ a ∈ B ⇒ P OS 1 
C 
({ d} ) � = P OS 1 

B −{ a } ({ d} ) for ∀ a ∈ B . Furthermore, by the definition of Type-1 positive region reducts, we have

that there exists a Type-1 positive region reduct B ′ such that B ⊇ B ′ . �

The relationship between the elements of a Type-1 discernibility matrix and those of a Type-2 discernibility matrix will

be demonstrated in the following. 

Theorem 4.10. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . m 

Dai 
i j 

is an element in Dai’s discernibility matrix of SDT ,

and m 

1 
i j 

is an element in Type-1 discernibility matrix of SDT , then 

m 

2 
i j ⊇ m 

1 
i j , 

especially, if m 

2 
i j 

� = ∅ and m 

1 
i j 

� = ∅ (or m 

2 
i j 

= ∅ and m 

1 
i j 

= ∅ ) , 
m 

2 
i j = m 

1 
i j . 

Proof. We first suppose ̃  r max 
i j 

= max a ∈ C { ̃  r a 
i j 
} . For the development of the proof, four possible cases are analyzed as follows. 

(1) ̃  r C 
i j 

≤ ˜ r max 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} and d ( x i ) � = d ( x j ) 

If x i ∈ U 1 and d ( x i ) � = d ( x k ), then 

˜ r C 
ik 

= 0 for ∀ x k ∈ U . Hence m 

2 
i j 

= C = { a ∈ C : ̃  r a 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} = 0 } = { a ∈ C :

 r a 
i j 

= min a ∈ C { ̃  r a 
i j 
} = 0 } = m 

1 
i j 

. If x i ∈ U 2 , x j ∈ U 1 and d ( x j ) � = d ( x i ), then 

˜ r C 
i j 

= 0 for ∀ x j ∈ U . Hence m 

2 
i j 

= { a ∈ C : ̃  r a 
i j 

≤
max d (x i ) � = d (x k ) 

{ ̃  r C 
ik 
} = 0 } = C = { a ∈ C : ̃  r a 

i j 
= min a ∈ C { ̃  r a 

i j 
} = 0 } = m 

1 
i j 

. If x i ∈ U 2 , x j ∈ U 2 and d ( x j ) � = d ( x i ), then m 

1 
i j 

= ∅ . Hence

m 

2 
i j 

= { a ∈ C : ̃  r a 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
}} = C ⊃ m 

1 
i j 

. 

(2) ̃  r C 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} < ̃

 r max 
i j 

and d ( x i ) � = d ( x j ) 

If x i ∈ U 1 and d ( x i ) � = d ( x k ), then 

˜ r C 
ik 

= 0 for ∀ x k ∈ U . Hence m 

2 
i j 

= C = { a ∈ C : ̃  r a 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} = 0 } = { a ∈ C :

 r a 
i j 

= min a ∈ C { ̃  r a 
i j 
} = 0 } = m 

1 
i j 

. If x i ∈ U 2 , x j ∈ U 1 and d ( x j ) � = d ( x i ), then 

˜ r C 
i j 

= 0 for ∀ x j ∈ U . Hence m 

2 
i j 

= { a ∈ C : ̃  r a 
i j 

≤
max d (x i ) � = d (x k ) 

{ ̃  r C 
ik 
} = 0 } = C = { a ∈ C : ̃  r a 

i j 
= min a ∈ C { ̃  r a 

i j 
} = 0 } = m 

1 
i j 

. If x i ∈ U 2 , x j ∈ U 2 and d ( x j ) � = d ( x i ), then m 

1 
i j 

= ∅ . Hence

m 

2 
i j 

= { a ∈ C : ̃  r a 
i j 

≤ max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
}} ⊃ m 

1 
i j 

. 

(3) max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} < ̃

 r C 
i j 

≤ ˜ r max 
i j 

and d ( x i ) � = d ( x j ) 

It is obviously impossible that ̃  r C 
i j 

> max d (x i ) � = d (x k ) 
{ ̃  r C 

ik 
} . 

(4) d(x i ) = d(x j ) 

In this case, m 

2 
i j 

= ∅ , m 

Dai 
i j 

= ∅ . Hence m 

2 
i j 

= m 

1 
i j 

. �

Corollary 4.3. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) . If C ore 1 { d} (C ) is Type-1 core of C with respect to { d }, and

C ore 2 { d} (C ) is the core of C with respect to { d } in the sense of Type-2 positive region, then 

C ore 1 { d} (C ) ⊆ C ore 2 { d} (C ) . 
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Table 1 

Data set: Soybean(Large). 

U a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 ��� d 

x 1 6 0 2 1 0 1 1 1 0 0 ��� 1 

x 2 4 0 2 1 0 2 0 2 1 1 ��� 1 

x 3 3 0 2 1 0 1 0 2 1 2 ��� 1 

x 4 3 0 2 1 0 1 0 2 0 1 ��� 1 

x 5 6 0 2 1 0 2 0 1 0 2 ��� 1 

x 6 5 0 2 1 0 3 0 1 0 1 ��� 1 

x 7 5 0 2 1 0 2 0 1 1 0 ��� 1 

x 8 4 0 2 1 1 1 0 1 0 2 ��� 1 

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

x 301 3 ∗ ∗ ∗ ∗ 2 1 ∗ ∗ ∗ ��� 17 

x 302 4 ∗ ∗ ∗ ∗ 2 1 ∗ ∗ ∗ ��� 17 

x 303 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ��� 18 

x 304 1 1 ∗ 0 ∗ 1 0 ∗ ∗ ∗ ��� 19 

x 305 0 1 ∗ 0 ∗ 0 3 ∗ ∗ ∗ ��� 19 

x 306 1 1 ∗ 0 ∗ 0 0 ∗ ∗ ∗ ��� 19 

x 307 1 1 ∗ 0 ∗ 1 3 ∗ ∗ ∗ ��� 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We omit the proof because it is easy to prove the corollary by means of Theorem 4.10 . 

By Corollary 4.1 -4.3, it is easily to know C ore 1 { d} (C ) ⊆ C ore 2 { d} (C ) ⊆ C ore Dai 
{ d} (C ) . 

To investigate the relationship between Type-1 positive region reducts and Type-2 positive region reducts, we give the

following theorem and remark. 

Theorem 4.11. Given a set-valued decision table SDT = (U, C ∪ { d} , V, f ) , if B ⊆ C is a Type-2 reduct, then ∃ a Type-1 positive

region reduct B ′ such that B ⊇ B ′ . 

The proof of the theorem is similar with the one of Theorem 4.4 , hence we omit it. 

From Theorem 4.11 , we can see that for each Type-2 reduct, it is either a Type-1 positive region reduct or the superset

of a Type-1 positive region. 

Remark: The relationship between Type-1 positive region reducts and Type-2 positive region reducts is similar with the

one between Type-1 positive region reducts and Type-2 positive region reducts. Therefore, without the concrete analysis,

we only list three cases of their relationship as follows. 

(1) A Type-1 positive region reduct is the real subset of some Type-2 positive region reduct. 

(2) A Type-1 positive region reduct is equal to some Type-2 positive region reduct. 

(3) A Type-1 positive region reduct is the attribute set which has no explicit relationship with all Type-2 positive region

reducts. 

From the above analyses, we can find, among all Type-2 reducts, some of them are exactly Type-1 positive region reducts,

the others are the superset of some Type-1 positive region reducts. Additionally, some of Type-1 positive region reducts are

the attribute sets which are not explicitly relative with all Type-2 positive region reducts. The results indicate Type-1 positive

region reducts have less redundancy and are more diverse (no lower number of reducts) than Type-2 reducts. 

5. Experimental analysis 

In this section, we use the same data set Soybean(Large) [4] and Soybean(large)-test [42] to show the effectiveness and

performance of the two new types of fuzzy rough approximations for set-valued data. Data set Soybean(Large) (Shown in

Table 1 ) and Soybean(large)-test contain 307 objects and 376 objects, respectively. And, in the two data sets, there are 35

conditional attributes ( a 1 , a 2 , . . . , a 35 ), one decision attribute ( d ), and some attribute values are missed. All the attributes are

categorical attributes, and missing values are denoted by ∗ in the two data sets. 

To facilitate our experiment, we convert the two data sets into a set-valued decision table by replacing missing values

∗ on an attribute with the set of containing all values of the attribute, as shown in Table 2 . For example, a 2 is the second

conditional attribute “plant-stand” in the original data set, whose domain { normal , l t − normal } is indicated by {0, 1}: 0 in-

dicates “normal” and 1 indicates “lt-normal”. If we employ the set value {0, 1} to represent a missing value on this attribute,

the attribute “plant-stand” becomes a set-valued attribute. If we do the same change to every attribute in Soybean(Large),

the data set will become a set-valued decision table. 

5.1. Experiments on effectiveness of reducts 

We will illustrate the effectiveness of two proposed fuzzy rough approximations by comparing Dai’s reducts with the

reducts obtained by the new rough approximations. To conduct the experiments, we first construct Dai’s, Type-1 and Type-

2 discernibility matrices on data set Soybean(Large) (shown in Table 3–5 ). For the limit of the length of the paper, we only

give some elements of these discernibility matrices. 
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Table 2 

Set-valued decision table converted from Soybean(Large). 

U a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 ��� d 

x 1 6 0 2 1 0 1 1 1 0 0 ��� 1 

x 2 4 0 2 1 0 2 0 2 1 1 ��� 1 

x 3 3 0 2 1 0 1 0 2 1 2 ��� 1 

x 4 3 0 2 1 0 1 0 2 0 1 ��� 1 

x 5 6 0 2 1 0 2 0 1 0 2 ��� 1 

x 6 5 0 2 1 0 3 0 1 0 1 ��� 1 

x 7 5 0 2 1 0 2 0 1 1 0 ��� 1 

x 8 4 0 2 1 1 1 0 1 0 2 ��� 1 

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

x 301 3 {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} 2 1 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 17 

x 302 4 {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} 2 1 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 17 

x 303 {0, 1, 2, 3, 4, 5, 6} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 18 

x 304 1 1 {0, 1, 2} 0 {0, 1} 1 0 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

x 305 0 1 {0, 1, 2} 0 {0, 1} 0 3 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

x 306 1 1 {0, 1, 2} 0 {0, 1} 0 0 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

x 307 1 1 {0, 1, 2} 0 {0, 1} 1 3 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

Table 3 

Dai’s discernibility matrix on data set Soybean(Large). 

D x 1 x 2 ��� x 33 ��� x 303 ��� x 307 

x 1 ∅ ∅ ��� { a 1 , a 2 , a 4 , a 6 , a 22 , a 24 , a 35 } ��� { a 17 } ��� { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

x 2 − ∅ ��� { a 1 , a 2 , a 4 , a 7 , a 22 , a 24 , a 35 } ��� { a 17 } ��� { a 1 , a 2 , a 4 , a 6 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

x 3 − − ��� { a 1 , a 2 , a 4 , a 6 , a 7 , a 22 , a 24 , a 35 } ��� { a 17 } ��� { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

��� ��� ��� ��� ��� ��� ��� ��� ���

x 307 − − ��� − ��� − ��� ∅ 

Table 4 

Type-1 discernibility matrix on data set Soybean(Large). 

D x 1 x 2 ��� x 33 ��� x 303 ��� x 307 

x 1 ∅ ∅ ��� ∅ ��� ∅ ��� { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

x 2 − ∅ ��� ∅ ��� ∅ ��� { a 1 , a 2 , a 4 , a 6 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

x 3 − − ��� ∅ ��� ∅ ��� { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

��� ��� ��� ��� ��� ��� ��� ��� ���

x 307 − − ��� − ��� − ��� ∅ 

Table 5 

Type-2 discernibility matrix on data set Soybean(Large). 

D x 1 x 2 ��� x 33 ��� x 303 ��� x 307 

x 1 ∅ ∅ ��� { a 1 , a 2 , a 4 , a 6 , a 22 , a 24 , a 35 } ��� { a 1 , a 17 } ��� { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

x 2 − ∅ ��� { a 1 , a 2 , a 4 , a 7 , a 22 , a 24 , a 35 } ��� { a 1 , a 17 } ��� { a 1 , a 2 , a 4 , a 6 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

x 3 − − ��� { a 1 , a 2 , a 4 , a 6 , a 7 , a 22 , a 24 , a 35 } ��� { a 1 , a 17 } ��� { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } 

��� ��� ��� ��� ��� ��� ��� ��� ���

x 307 − − ��� − ��� − ��� ∅ 

 

 

 

 

 

 

 

 

 

 

From Table 3 and 4 , we can see that an element in the Dai’s discernibility matrix derived from Table 2 is equal to that

in the corresponding element of the Type-1 discernibility matrix derived from Table 2 if both of these two elements are not

empty sets, such as m 

Dai 
1 , 307 

= { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } = m 

2 
1 , 307 , and an element in the Type-1 discernibility

matrix must be an empty set if it is a proper subset of the element in the Dai’s discernibility matrix, such as m 

Dai 
1 , 33 

=
{ a 1 , a 2 , a 4 , a 6 , a 22 , a 24 , a 35 } ⊃ m 

1 
1 , 33 

= ∅ . The experimental results are consistent with the theoretical results in Section 4 . 

From Table 3 and Table 5 , we can see that an element in the Dai’s discernibility matrix derived from Table 2 is the

subset of the corresponding element of the Type-2 discernibility matrix derived from Table 2 if both of these two elements

are not empty sets, such as m 

Dai 
1 , 307 

= { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } = m 

2 
1 , 307 

and m 

Dai 
1 , 33 

= { a 17 } ⊂ m 

2 
1 , 33 

= { a 1 , a 17 } .
The experimental results are consistent with the theoretical conclusion in Section 4 . 

From Table 4 and 5 , we can see that an element in the Type-1 discernibility matrix derived from Table 2 is equal to that

in the corresponding element of the Type-2 discernibility matrix derived from Table 2 if both of these two elements are not

empty sets, such as m 

1 
1 , 307 

= { a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 } = m 

2 
1 , 307 

, and an element of the Type-1 discernibility
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Table 6 

Comparison of Dai’s reducts and Type-1 positive region reducts on data set Soybean(Large). 

No . Red Dai 
D (C) No . Red 1 D (C) Relation 

Red Dai 
1 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 Red 1 1 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 red Dai 

1 = red 1 1 

Red Dai 
2 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 Red 1 2 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 red Dai 

2 = red 1 2 

��� ��� ��� ��� ���

Red Dai 
3490 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , Red 1 3490 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , red Dai 

3490 = red 1 3490 

a 16 , a 17 , a 24 , a 35 a 16 , a 17 , a 24 , a 35 

− − Red 1 3491 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 9 , a 12 , a 15 , a 16 , −
a 17 , a 23 , a 28 , a 30 , a 35 

− − Red 1 3492 a 1 , a 2 , a 3 , a 4 , a 6 , a 7 , a 9 , a 12 , a 15 , a 16 , a 17 , −
a 20 , a 23 , a 28 , a 30 , a 35 

��� ��� ��� ���

− − Red 1 4557 a 2 , a 3 , a 4 , a 5 , a 7 , a 8 , a 9 , a 10 , a 12 , a 14 , a 16 , −
a 17 , a 19 , a 27 , a 31 , a 32 , a 33 , a 35 

Table 7 

Comparison of Dai’s reducts and Type-2 positive region reducts on data set Soybean(Large). 

No . Red Dai 
D (C) No . Red 1 D (C) Relation 

Red Dai 
1 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 Red 1 1 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 red Dai 

1 = red 1 1 

Red Dai 
2 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 Red 1 2 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 red Dai 

2 = red 1 2 

��� ��� ��� ��� ���

Red Dai 
3490 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , Red 1 3490 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , red Dai 

3490 = red 1 3490 

a 16 , a 17 , a 24 , a 35 a 16 , a 17 , a 24 , a 35 

Table 8 

Comparison of Type-2 positive region reducts and Type-1 positive region reducts on data set Soybean(Large). 

No . Red 2 D (C) No . Red 1 D (C) Relation 

Red 2 1 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 Red 1 1 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 red Dai 
1 = red 1 1 

Red 2 2 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 Red 1 2 a 1 , a 2 , a 4 , a 7 , a 13 , a 14 , a 15 , a 17 , a 28 , a 35 red Dai 
2 = red 1 2 

��� ��� ��� ��� ���

Red 2 3490 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , Red 1 3490 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , red Dai 
3490 = red 1 3490 

a 16 , a 17 , a 24 , a 35 a 16 , a 17 , a 24 , a 35 

– – Red 1 3491 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 9 , a 12 , a 15 , a 16 , –

a 17 , a 23 , a 28 , a 30 , a 35 

– – Red 1 3492 a 1 , a 2 , a 3 , a 4 , a 6 , a 7 , a 9 , a 12 , a 15 , a 16 , a 17 , –

a 20 , a 23 , a 28 , a 30 , a 35 

��� ��� ��� ���

– – Red 1 4557 a 2 , a 3 , a 4 , a 5 , a 7 , a 8 , a 9 , a 10 , a 12 , a 14 , a 16 , –

a 17 , a 19 , a 27 , a 31 , a 32 , a 33 , a 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matrix must be an empty set if it is a proper subset of the element in the Type-2 discernibility matrix, such as m 

2 
1 , 33 =

{ a 1 , a 2 , a 4 , a 6 , a 22 , a 24 , a 35 } ⊃ m 

1 
1 , 33 = ∅ . The experimental results are consistent with the theoretical conclusion in Section 4 .

By the discernibility matrices shown in Table 3 - 5 , we can obtain all of the Dai’s reducts, the Type-1 positive region

reducts and the Type-2 positive region reducts from Table 2 , and Table 6 –8 show the comparison of these reducts. From

Table 6 , we can see that the number of the Dai’s reducts is 3490, the number of the Type-1 positive region reducts is

4557. Among these Type-1 positive region reducts, there are 3490 reducts that are identical with some reduct in these

Dai’s reducts, and 1067 Type-1 positive region reducts are the reducts that cannot be found by the Dai’s discernibility

matrix. From Table 7 , we can see that the number of Type-2 positive region reducts derived from Table 2 is 3490, and

they are all some reduct in the Dai’s reducts (the Type-2 positive region reducts derived from Table 2 are all identical with

those Dai’s reducts, respectively). Thus, the relationship between Type-2 positive region reducts and Type-1 positive region

reducts is the same as that between the Dai’s reducts and the Type-1 positive region reducts derived from Table 2 , which is

demonstrated by Table 8 . 

The experimental results on data set Soybean(Large) cannot thoroughly illustrate the differences among Dai’s reducts,

Type-1 positive region reducts, and Type-2 positive region reducts derived from a decision table. In order to better exhibit

the differences, we construct a new set-valued decision table by deleting the attributes in C ore Dai 
D 

(C ) of Soybean(Large) in

which the condition attribute set becomes { a 2 , a 3 , a 4 , a 5 , a 6 , a 8 , a 9 , a 10 , a 11 , a 13 , a 14 , a 15 , a 18 , a 19 , a 20 , a 21 , a 22 , a 23 , a 24 , a 25 ,

a 26 , a 27 , a 28 , a 29 , a 30 , a 31 , a 32 , a 33 , a 34 , a 35 } (shown in Table 9 ), and we will investigate the differences among Dai’s reducts,

Type-1 positive region reducts, and Type-2 positive region reducts derived from the modified data set. 

From Table 10 , we can see that the number of Dai’s reducts is 265 and the number of Tpye-1 positive region reducts

is 271, which are derived from Table 9 . Among the 265 Dai’s reducts, there are 30 reducts in which each reduct is identi-



196 W. Wei et al. / Information Sciences 360 (2016) 181–201 

Table 9 

Modified Soybean(Large) by deleting five attributes. 

U a 2 a 3 a 4 a 5 a 6 a 8 a 9 a 10 ��� d 

x 1 0 2 1 0 1 1 0 0 ��� 1 

x 2 0 2 1 0 2 2 1 1 ��� 1 

x 3 0 2 1 0 1 2 1 2 ��� 1 

x 4 0 2 1 0 1 2 0 1 ��� 1 

x 5 0 2 1 0 2 1 0 2 ��� 1 

x 6 0 2 1 0 3 1 0 1 ��� 1 

x 7 0 2 1 0 2 1 1 0 ��� 1 

x 8 0 2 1 1 1 1 0 2 ��� 1 

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

x 301 {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} 2 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 17 

x 302 {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} 2 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 17 

x 303 {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} {0, 1, 2, 3} {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 18 

x 304 1 {0, 1, 2} 0 {0, 1} 1 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

x 305 1 {0, 1, 2} 0 {0, 1} 0 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

x 306 1 {0, 1, 2} 0 {0, 1} 0 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

x 307 1 {0, 1, 2} 0 {0, 1} 1 {0, 1, 2} {0, 1, 2} {0, 1, 2} ��� 19 

Table 10 

Comparison of Dai’s reducts and Type-1 positive region reducts on modified Soybean(Large). 

No . Red Dai 
D (C) No . Red 1 D (C) Relationship 

Red Dai 
1 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 27 , a 30 Red 1 1 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 27 , a 30 Red Dai 

1 = Red 1 1 

Red Dai 
2 a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 12 , a 13 , a 17 , a 23 , a 30 Red 1 2 a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 12 , a 13 , a 17 , a 23 , a 30 Red Dai 

2 = Red 1 2 

��� ��� ��� ��� ���

Red Dai 
30 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 12 , a 16 , Red 1 30 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 12 , a 16 , Red Dai 

30 = Red 1 30 

a 19 , a 29 , a 30 a 19 , a 29 , a 30 

Red Dai 
31 a 1 , a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 28 , a 30 Red 1 31 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 28 , a 30 Red Dai 

31 ⊃ Red 1 31 

Red Dai 
32 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 16 , a 17 , a 28 , a 30 Red 1 31 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 28 , a 30 Red Dai 

32 ⊃ Red 1 31 

��� ��� ��� ��� ���

Red Dai 
35 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 , a 28 , a 30 Red 1 31 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 28 , a 30 Red Dai 

35 ⊃ Red 1 31 

Red Dai 
35 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 , a 28 , a 30 Red 2 32 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 , a 28 Red Dai 

35 ⊃ Red 1 32 

��� ��� ��� ��� ���

Red Dai 
265 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 14 , a 16 , a 19 , Red 1 149 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 24 , Red Dai 

265 ⊃ Red 1 149 

a 24 , a 28 , a 30 a 28 , a 30 

– – Red 1 150 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 14 , a 17 , a 26 , a 30 –

��� ��� ��� ��� ���

– – Red 1 271 a 1 , a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 12 , a 16 , a 19 , –

a 27 , a 29 , a 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cal with some reduct in the Type-1 positive region reducts, and the others are the supersets of the Type-1 positive region

reducts. It should be point out that among 271 Tpye-1 positive region reducts, there are 122 reducts have no explicit re-

lationship with each of the Dai’s reducts. It can be said that the attribute reduction method based a Type-1 discernibility

matrix can obtain 122 new reducts. The experimental results are consistent with the theoretical results in Section 4 . 

From Table 11 , we can see that the number of Dai’s reducts is 265 and the number of Type-2 positive region reducts is

382, which are derived from Table 9 . Among the 265 Dai’s reducts, there are 187 reducts in which each reduct is identical

with some reduct in the Type-2 positive region reducts, and the others are the supersets of the Type-2 positive region

reducts. It should be point out that 136 Type-2 positive region reducts have no explicit relationship with each of these Dai’s

reducts (i.e. the attribute reduction method based Type-2 discernibility matrix can find 136 new reducts). The experimental

results are consistent with the theoretical results in Section 4 . 

From Table 12 , we can see that the number of Type-1 reducts is 271 and the number of Tpye-2 positive region reducts is

382, which are derived from Table 9 . Among the 382 Type-2 reducts, there are 38 reducts in which each reduct is identical

with some reduct in the Type-1 positive region reducts, and the others are the supersets of the Type-2 positive region

reducts. It should be point out that 59 Type-1 positive region reducts have no explicit relation with each of Type-2 reducts.

It can be said that the attribute reduction method based Type-1 discernibility matrix can find 59 reducts that cannot be

found by the attribute reduction method based Type-2 discernibility matrix. The experimental results are consistent with

the theoretical results in Section 4 . 

Furthermore, we illustrate the relationships among the Dai’s core, Type-1 core and Type-2 core through computing these

types of cores on the set-valued decision tables shown in Table 2 and 9 , which are exhibited in Table 13 . From Table 13 , we

can find these types of cores and the relationships among them as follows: 

C ore Dai 
{ d} (C ) = { a 1 , a 7 , a 12 , a 16 , a 17 } , C ore 1 { d} (C ) = { a 7 , a 12 , a 16 , a 17 } , and C ore 2 { d} (C ) = { a 1 , a 7 , a 12 , a 16 , a 17 } . 

It is obvious that C ore Dai 
{ d} (C ) ⊇ C ore 2 { d} (C ) ⊇ C ore 1 { d} (C ) . 
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Table 11 

Comparison of Dai’s reducts and Type-2 positive region reducts on modified Soybean(Large). 

No . Red Dai 
D (C) No . Red 2 D (C) Relationship 

Red Dai 
1 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 27 , a 30 Red 2 1 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 27 , a 30 Red Dai 

1 = Red 2 1 

Red Dai 
2 a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 12 , a 13 , a 17 , a 23 , a 30 Red 2 2 a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 12 , a 13 , a 17 , a 23 , a 30 Red Dai 

2 = Red 2 2 

��� ��� ��� ��� ���

Red Dai 
187 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , Red 2 187 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , Red Dai 

187 = Red 2 187 

a 22 , a 23 , a 29 , a 30 a 22 , a 23 , a 29 , a 30 ���

Red Dai 
188 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 , a 28 , a 30 Red 2 188 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 , a 28 Red Dai 

188 ⊃ Red 2 188 

Red Dai 
189 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 11 , a 12 , a 13 , a 17 , a 23 , a 30 Red 2 189 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 11 , a 12 , a 13 , a 17 , a 23 Red Dai 

189 ⊃ Red 2 189 

��� ��� ��� ��� ���

Red Dai 
262 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , a 22 , Red 2 245 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , a 22 , Red Dai 

262 ⊃ Red 2 245 

a 23 , a 28 , a 30 a 28 , a 30 

Red Dai 
263 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 14 , a 16 , a 19 , Red 2 244 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , a 21 , Red Dai 

263 ⊃ Red 2 244 

a 21 , a 28 , a 30 a 28 , a 30 

Red Dai 
264 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 14 , a 16 , a 19 , Red 2 245 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , a 22 , Red Dai 

264 ⊃ Red 2 245 

a 22 , a 28 , a 30 a 28 , a 30 

Red Dai 
265 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 14 , a 16 , Red 2 243 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 14 , a 19 , Red Dai 

265 ⊃ Red 2 243 

a 19 , a 24 , a 28 , a 30 a 24 , a 28 , a 30 

Red Dai 
265 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 14 , a 16 , Red 2 246 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , Red Dai 

265 ⊃ Red 2 246 

a 19 , a 24 , a 28 , a 30 a 24 , a 28 , a 30 

– – Red 2 247 a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 –

��� ��� ��� ��� ���

– – Red 2 382 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 14 , a 19 , a 22 , –

a 23 , a 29 , a 30 

Table 12 

Comparison of Type-1 reducts and Type-2 positive region reducts on modified Soybean(Large). 

No . Red 2 D (C) No . Red 1 D (C) Relationship 

Red 2 1 a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 Red 1 1 a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 Red 2 1 = Red 1 1 

Red 2 2 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 11 , a 12 , a 13 , a 17 , a 23 Red 1 2 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 11 , a 12 , a 13 , a 17 , a 23 Red 2 2 = Red 1 2 

��� ��� ��� ��� ���

Red 2 38 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 12 , a 16 , Red 1 38 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 12 , a 16 , Red 2 38 = Red 1 38 

a 19 , a 29 , a 30 a 19 , a 29 , a 30 

Red 2 39 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 , a 25 Red 1 39 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 17 , a 23 , a 25 Red 2 39 ⊃ Red 1 39 

Red 2 40 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 13 , a 17 , a 23 , a 26 Red 1 40 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 17 , a 23 , a 26 Red 2 40 ⊃ Red 1 40 

Red 2 41 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 14 , a 17 , a 23 , a 25 Red 1 39 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 17 , a 23 , a 25 Red 2 41 ⊃ Red 1 39 

Red 2 42 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 14 , a 17 , a 23 , a 26 Red 2 32 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 17 , a 23 , a 26 Red 2 42 ⊃ Red 1 40 

Red 2 42 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 14 , a 17 , a 23 , a 26 Red 2 32 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 12 , a 14 , a 23 , a 26 Red 2 42 ⊃ Red 1 41 

��� ��� ��� ��� ���

Red 2 382 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 19 , a 22 , Red 1 212 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 10 , a 12 , a 16 , a 22 , a 23 , Red 2 382 ⊃ Red 1 212 

a 23 , a 29 , a 30 a 29 , a 30 

– – Red 1 213 a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 12 , a 16 , a 23 , a 24 –

��� ��� ��� ��� ���

– – Red 1 271 a 1 , a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 12 , a 16 , a 19 , –

a 27 , a 29 , a 30 

Table 13 

Three types of cores in Soybean(Large) and Modified Soybean(Large). 

No . Soybean(Large) Modified Soybean(Large) 

C ore Dai 
D (C ) a 1 , a 7 , a 12 , a 16 , a 17 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 12 , a 30 

C ore 1 D (C ) a 7 , a 12 , a 16 , a 17 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 12 

C ore 2 D (C ) a 1 , a 7 , a 12 , a 16 , a 17 a 2 , a 3 , a 5 , a 6 , a 7 , a 8 , a 12 

 

 

 

 

In summary, all the experimental results given in this section well verify the theoretical results in Section 4 . 

5.2. Experiments on performance of reducts 

In this subsection, we conduct some experiments to demonstrate the advantages of the new reducts found by our pro-

posed rough approximation. Since reducts are essential to define rules, it is necessary to evaluate the reducts by employing

cov erage degree and percentage of correct classification which are two important assessment indexes of decision rules. 

We will use the method of extracting rules in Ref. [12] . The rules extracted from a set-valued decision table (SDT =
(U, C)) can be formulated by t → s , where t = ∧ (c, τ ) , c ∈ B ⊆ C , τ ∈ V c − {∗} , and s = (d, w ) , w ∈ V d . Sequently, we will call

t and s condition and decision part of a rule, respectively. 
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Table 14 

Comparison between Dai’s and Type-1 reducts from the perspective of coverage degree. 

Acov (R D = T1 ) Acov (R D ⊃T1 ) Acov (R T1 ⊂D ) Acov (R T1 −D ) Acov (R D ) Acov (R T1 ) 

S Dai’s Method 0.0700 N/A N/A N/A 0.0700 N/A 

Type-1Method 0.0700 N/A N/A 0.0770 N/A 0.0715 

MS Dai’s Method 0.0746 0.0739 N/A N/A 0.0739 N/A 

Type-1Method 0.0746 N/A 0.0745 0.0748 N/A 0.0747 

Note : where S represents Soybean ( large ), and MS represents Modified Soybean ( large ). 

Table 15 

Comparison between Dai’s and Type-2 reducts from the perspective of coverage degree. 

Acov (R D = T2 ) Acov (R D ⊃T2 ) Acov (R T2 ⊂D ) Acov (R T2 −D ) Acov (R D ) Acov (R T2 ) 

S Dai’s Method 0.0700 N/A N/A N/A 0.0700 N/A 

Type-2 Method 0.0700 N/A N/A N/A N/A 0.0700 

MS Dai’s Method 0.0741 0.0734 N/A N/A 0.0739 N/A 

Type-2 Method 0.0741 N/A 0.0742 0.0746 N/A 0.0743 

Note : where S represents Soybean ( large ), and MS represents Modified Soybean ( large ). 

Table 16 

Comparison between Type-1 and Type-2 reducts from the perspective of coverage degree. 

Acov (R T 1= T 2 ) Acov (R T 1 ⊂T 2 ) Acov (R T 2 ⊃T 1 ) Acov (R T 1 −T 2 ) Acov (R T1 ) Acov (R T2 ) 

S Tpye-1Method 0.0700 N/A N/A 0.0770 0.0715 N/A 

Type-2Method 0.0700 N/A N/A N/A N/A 0.0700 

SM Tpye-1Method 0.0751 N/A 0.0747 0.0743 0.0747 N/A 

Type-2Method 0.0751 0.0742 N/A N/A N/A 0.0743 

Note : where S represents Soybean ( large ), and MS represents Modified Soybean ( large ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To compare the performance of reducts from the perspective of cov erage degree of rules, we first extract a set of rules

from a reduced incomplete decision table by means of the above definition of rules, and then the coverage degree can be

denoted by the following formular [13,24,31] : 

cov (t → s ) = 

card(‖ t‖ ∩ ‖ s ‖ ) 

card‖ s ‖ 

, 

where ‖ t‖ = { x ∈ U : v ∈ a (x ) , ∀ (a, v ) ∈ t} and ‖ s ‖ = { x ∈ U : w ∈ d(x ) , (d, w ) ∈ s } . Furthermore, we introduce

A v erage cov erage degree ( Acov ) of a set of rules extracted from a set-valued decision table SDT as follows: 

Acov (RuleSet SDT ) = 

∑ 

t→ s ∈ RuleSet SDT 
cov (t → s ) 

| RuleSet SDT | , 

where RuleSet SDT indicates the set of all rules extracted from a set-valued decision table SDT , and | RuleSet SDT | is the number

of rules in RuleSet SDT . 

To detect the difference between the sets of all reducts obtained by Dai’s, Type-1 and Type-2 discernibility matrices

from the perspective of cov erage degree, we need another criterion to evaluate the set of reducts RedSet , which is given as

follows: 

RAcov (RedSet) = 

∑ 

SDT ∈ SDT RedSet 
Acov (RuleSet SDT ) 

| RedSet| , 

where RedSet is a set of reducts, and SDT RedSet indicates the set of all the data sets derived from RedSet . 

Furthermore, to facilitate the display of experimental results, based on the conclusions in Section 4 , we can denote the

set of all the Type-1 reducts as R T 1 , and R T 1 = R T 1= D ∪ R T 1 ⊂D ∪ R T 1 −D , where R T 1= D is the set of the reducts which are

Dai’s reducts and Type-1 reducts simultaneously, and R T 1 ⊂ D indicates a set of Type-1 reducts, each of which is the subset

of some Dai’s reduct, R T 1 −D is the set of Type-1 reducts, each of which is neither a Dai’s reduct nor a subset of some

Dai’s reduct. And the set of all the Dai’s reducts can be denoted as R D , and R D = R T 1= D ∪ R D ⊃T 1 , where R D ⊃T 1 is a subset

of R D in which each reduct includes at least one Type-1 reduct. It is needs to be emphasized that the reducts in R T 1 ⊂ D 

and R T 1 −D are The newfound reducts by our proposed Type-1 discernibility matrix. We will employ Table 14 to shows the

advantage of these new reducts from the perspective of cov erage degree . From Table 14 , we can see that for Soybean(large),

RAcov (R T 1 −D ) = 0 . 0770 > RAcov (R D ) = 0 . 0700 , which illustrates our newfound reducts have better performance in the sense

of cov erage degree . In a similar way, Table 15 and 16 display the comparisons between Dai’s and Type-2 reducts, and between

Type-1 and Type-2 reducts, respectively. From the Table 15 , we can draw the same conclusion that is consistent with that

from Table 14 , i.e. the newfound Type-2 reducts work better than those derived by Dai’s methods. Table 16 indicates that

the Type-1 reducts are more optimal than Type-2 ones. 
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Table 17 

Comparison between Dai’s and Type-1 reducts from the perspective of percentage of correct classification. 

Apcc(R D = T1 ) Apcc ( R D ⊃T 1 ) Apcc ( R T 1 ⊂ D ) Apcc(R T1 −D ) Apcc ( R D ) Apcc ( R T 1 ) 

S-St Dai’s Method 66.55% N/A N/A N/A 66.55% N/A 

Type-1 Method 66.55% N/A N/A 72.77% N/A 68.00% 

MS-MSt Dai’s Method 52.53% 50.37% N/A N/A 50.61% N/A 

Type-1 Method 52.53% N/A 51.81% 53.05% N/A 52.45% 

Note : where S − St represents that Soybean ( large ) and Soybean (large ) − test are regarded as training set and testing set respectively, and M S − M St represents 

Modified Soybean ( large ) and Modi f ied Soybean (large ) − test are regarded as training set and testing set respectively. 

Table 18 

Comparison between Dai’s and Type-2 reducts from the perspective of percentage of correct classification. 

Apcc(R D = T2 ) Apcc ( R D ⊃T 2 ) Apcc ( R T 2 ⊂ D ) Apcc(R T2 −D ) Apcc ( R D ) Apcc ( R T 2 ) 

S-St Dai’s Method 66.55% N/A N/A N/A 66.55% N/A 

Type-2 Method 66.55% N/A N/A N/A N/A 66.55% 

MS-MSt Dai’s Method 50.95% 49.81% N/A N/A 50.61% N/A 

Type-2 Method 50.95% N/A 49.99% 51.09% N/A 50.85% 

Note : where S − St represents that Soybean ( large ) and Soybean (large ) − test are regarded as training set and testing set respectively, and M S − M St represents 

Modified Soybean ( large ) and Modi f ied Soybean (large ) − test are regarded as training set and testing set respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Sequently, to evaluate the performance of reducts more comprehensively, we introduce percentage of correct classification

of classifier ( pcc ), which can be denoted as: 

pcc(Dat a T ra , Dat a Tes ) = 

∑ 

x i ∈ U ′ d i f f (d (x i ) − d reduct (x i )) 

| U 

′ | , 

where Data T ra = (U, C) is a training data set, Data Tes = (U 

′ , C) is a testing data set, U 

′ is the objects in Data Tes , x i ∈ U 

′ , d ( x i )
is the original label, d ′ ( x i ) is the label given by classifier constructed based on Data Tra , and di f f (a, b) = 0 if a = b, otherwise

di f f (a, b) = 1 . 

To calculate pcc ( Data Tra , Data Tes ), we need to construct a classifier based on rules, in which how to match a new object

with a rule is a key issue. We thus introduce a type of distance to solve the problem as follows: 

dis C (x i , r) = 

∑ 

c∈ C 
dis c (x i , r) , 

where d c (x i , r) = 1 − | a (x i ) ∩ a (t r ) | 
| a (x i ) ∪ a (t r ) | , t r indicates the condition part of Rule r , and a ( t r ) is the value of t r on Attribute a . 

Furthermore, by means of the distance, we design a classifier based on rules, which can be described as follows: 

Algorithm 1: An classifier based on rules. 

Input: A training set-valued data set Data T ra = (U, C) and a testing set-valued data set Data Tes ( U 

′ , C ); 
Output: pcc ( Data Tra , Data Tes ). 

Step 1: Extract a set of rules R from the training data set; 

Step 2: For each object x i ∈ U 

′ 
{For each rule r ∈ R , 

{Calculate the distance d ( x i , r );} 

Find a rule r ∗ = ar g min r∈ R dis (x i , r ) ; 

d ′ (x i ) := w (r∗) ;} 
Step 3: Calculate pcc ( Data Tra , Data Tes ); 

Step 4: End, 

where, w (r∗) indicates the decision value w of the condition part of r ∗. 

Furthermore, we present A v erage pcc ( Apcc ) to assess the performance of a set of reducts as follows: 

Apcc(RedSet) = 

∑ 

red uct∈ Red Set pc c (Dat a reduct 
T ra , Dat a reduct 

Tes ) 

| RedSet| , 

where Data reduct 
T ra 

indicates a training data set in which reduct is its attribute set, and Data reduct 
Tes 

indicates a testing data set

in which reduct is its attribute set. 

Sequently, we conduct experiments on the training data sets (Soybean(large) and Modified Soybean(large)) and the

testing data set (Soybean(large)-test and Modified Soybean(large)-test that is constructed by the same method to con-

struct Modified Soybean(large)). Table 17 , 18 and 19 are used to illustrate the advantage of the newfound reducts by

our proposed methods from the perspective of percentage of correct classification . Table 17 shows that when Soybean(large)

and Soybean(large)-test are regarded as the training data set and the testing data set respectively, the Apcc(R T 1 −D ) =
0 . 7277 > Apcc(R D ) = 0 . 6655 , which indicates the newfound reducts is better than the old ones in the sense of percent-

age of correct classification . Similarly, Table 18 and 19 display the comparison between Dai’s and Type-2 reducts, and the
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Table 19 

Comparison between Type-1 and Type-2 reducts from the perspective of percentage of correct classification. 

Apcc(R T 1= T 2 ) Apcc ( R T 1 ⊂T 2 ) Apcc ( R T 2 ⊃ T 1 ) Apcc(R T 1 −T 2 ) Apcc ( R T 1 ) Apcc ( R T 2 ) 

S-St Tpye-1 reducts 66.55% N/A N/A 72.77% 68.00% N/A 

Type-2 reducts 66.55% N/A N/A N/A N/A 66.55% 

MS-MSt Tpye-1 reducts 52.55% N/A 52.31% 52.81% 52.45% N/A 

Type-2 reducts 52.55% 50.66% N/A N/A N/A 50.85% 

Note : where S − St represents that Soybean ( large ) and Soybean (large ) − test are regarded as training set and testing set respectively, and M S − M St represents 

Modified Soybean ( large ) and Modi f ied Soybean (large ) − test are regarded as training set and testing set respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

comparison of between Type-1 and Type-2 reducts, respectively. From Table 18 , the similar results, which is that Type-2

reducts are better than Dai’s reducts, can still be got. And the experimental results in Table 19 illustrate the Type-1 reducts

are more optimal than Type-2 reducts from the perspective of percentage of correct classification . 

In all, from the experimental results, it is evident that the newfound reducts obtained by our proposed methods are

more optimal than those by Dai’s method. 

6. Conclusions 

In this paper, we have proposed two new types of lower and upper approximations and their corresponding positive

regions for set-valued data, based on which two new types of discernibility matrices and discernibility functions were con-

structed. These new discernibility matrixes and discernibility functions enables us to acquire some new reducts that can

not be found by means of Dai’s method. We introduced some theorems to theoretically demonstrate that these newfound

reducts have less redundancy and are more diverse (no lower number of reducts) than the Dai’s reducts. Experiments have

been conducted on some data sets from UCI to verify the theoretical results and to illustrate the newfound reducts are more

optimal than Dai’s reducts from the respective of coverage degree of rules and percentage of correct classification. 
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