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Many  real  data  sets  in  databases  may  vary  dynamically.  With  such  data  sets,  one  has  to  run a knowl-
edge acquisition  algorithm  repeatedly  in  order  to  acquire  new  knowledge.  This  is  a  very time-consuming
process.  To  overcome  this  deficiency,  several  approaches  have  been  developed  to  deal  with  dynamic
databases.  They  mainly  address  knowledge  updating  from  three  aspects:  the  expansion  of  data,  the
increasing  number  of attributes  and  the  variation  of  data  values.  This  paper  focuses  on  attribute  reduc-
tion  for  data  sets  with  dynamically  varying  data  values.  Information  entropy  is  a common  measure  of
uncertainty  and  has  been  widely  used  to  construct  attribute  reduction  algorithms.  Based  on  three  repre-
sentative  entropies,  this  paper  develops  an  attribute  reduction  algorithm  for data  sets  with  dynamically
varying  data  values.  When  a  part of  data  in  a given  data  set  is  replaced  by  some  new  data,  compared
with  the  classic  reduction  algorithms  based  on  the  three  entropies,  the  developed  algorithm  can find  a
new reduct  in  a  much  shorter  time.  Experiments  on  six  data  sets  downloaded  from  UCI  show  that  the
algorithm  is effective  and  efficient.

©  2012  Elsevier  B.V.  All  rights  reserved.

. Introduction

In real world databases, data sets usually vary with time. This phenomenon occurs in many fields such as economic research, social
urvey and medical research. As data sets change with time, especially at an unprecedented rate, it is very time-consuming or even infeasible
o run repeatedly a knowledge acquisition algorithm. To overcome this deficiency, researchers have recently proposed many new analytic
echniques. They usually can directly carry out the computation using the existing result from the original data set. These techniques mainly
ddress knowledge updating from three aspects: the expansion of data [1–7], the increasing number of attributes [8–11] and the variation
f data values [12,13]. For the first two aspects, a number of incremental techniques have been developed to acquire new knowledge
ithout recomputation. However, little research has been done on the third aspect in knowledge acquisition, which motivates this study.

his paper concerns attribute reduction for data sets with dynamically varying data values. For convenience of the following discussion,
ere are some specific explanations regarding data sets with dynamically varying data values. Generally speaking, this case usually occurs

n the following several situations. One situation is that a part of the original data in a database is identified as wrong, thus needing to be
orrected. Wrong data obviously lose their value to store further, and will be directly replaced by correct ones. Another familiar situation
s that, initially collected data in a database may  increase gradually, though it usually is not necessary to acquire knowledge from total data
ll the time. In other words, the sizes of interested data sets do not change. For example, in a pollution survey of X city, observed data in
ast few years or even decades may  be stored in a database totally. However, analysis of pollution in each week (or each day, each month,
tc.) does not require total observed data in the past. In this situation, because data sets of adjacent time intervals are usually similar to
ach other, an interested data set at one moment can be slightly amended to obtain a data set for the next moment. In addition, with
he rapid development of information technology, timeliness of data becomes more and more important. Thus, any out-of-date data in
atabases are usually useless. To improve the efficiency of knowledge acquisition, useless data should be directly updated by the latest
r real-time ones. Furthermore, other similar situations occur rather often in applications such as stock analysis, tests for the disease and

nnual appraisal of workers.

Feature selection, a common technique for data preprocessing in many areas including pattern recognition, machine learning and
ata mining, has hold great significance. Among various approaches to select useful features, a special theoretical framework is Pawlak’s
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ough set model [14,15]. One can use rough set theory to select a subset of features that is most suitable for a given recognition problem
16–21]. Rough feature selection is also called attribute reduction, which aims to select those features that keep the discerniblity ability
f the original ones [22–26].  The feature subset generated by an attribute reduction algorithm is called a reduct. In the last two  decades,
esearchers have proposed many reduction algorithms [27–32].  However, most of these algorithms can only be applicable to static data
ets. Although several algorithms have been proposed for dynamic data sets [1–11], as mentioned above, they are incremental approaches
nly for the dynamic expansion of data or attributes.

This paper focus on attribute reduction for dynamically varying data values. To tackle this problem, this paper will exploit information
ntropy. The information entropy from classical thermodynamics is used to measure out-of-order degree of a system. Information entropy
s introduced in rough set theory to measure uncertainty of a given data set [33–36],  which have been widely applied to devise heuristic
ttribute reduction algorithms [37–41].  Complementary entropy [33], combination entropy [35] and Shannon’s entropy [36] are three
epresentative entropies which have been mainly used to construct reduction algorithms in rough set theory. To fully explore properties in
educt updating caused by the variation of data values, this paper develops an attribute reduction algorithm for dynamic data sets based on
he three entropies. In view of that a key step of the development is the computation of entropy, this paper first introduces three updating

echanisms of the three entropies, which determine an entropy by changing one object to a new one in a decision table. When only one
bject is changed, instead of recomputation on the given decision table, the updating mechanisms derive new entropies by integrating the
hanges of conditional classes and decision classes into the existing entropies. With these mechanisms, an attribute reduction algorithm
s proposed for dynamic decision tables. When a part of data in a given data set is replaced by some new data, compared with the classic
eduction algorithms based on the three entropies, the developed algorithm can find a new reduct in a much shorter time. Experiments
n six data sets downloaded from UCI show that the algorithm is effective and efficient.

The rest of this paper is organized as follows. Some preliminaries in rough set theory are briefly reviewed in Section 2. Traditional heuristic
eduction algorithms based on three representative entropies are introduced in Section 3. Section 4 presents the updating mechanisms of
he three entropies for dynamically varying data values. In Section 5, based on the updating mechanisms, a reduction algorithm is proposed
o compute reducts for dynamic data sets. In Section 6, six UCI data sets are employed to demonstrate effectiveness and efficiency of the
roposed algorithm. Section 7 concludes this paper with some discussions.

. Preliminary knowledge on rough sets

.1. Basic concepts

This section reviews several basic concepts in rough set theory. Throughout this paper, the universe U is assumed a finite nonempty set.
An information system, as a basic concept in rough set theory, provides a convenient framework for the representation of objects in

erms of their attribute values. An information system is a quadruple S = (U, A, V, f), where U is a finite nonempty set of objects and is called
he universe and A is a finite nonempty set of attributes, V =

⋃
a∈AVa with Va being the domain of a, and f : U × A → V is an information

unction with f(x, a) ∈ Va for each a ∈ A and x ∈ U. The system S can often be simplified as S = (U, A).
Each nonempty subset B ⊆ A determines an indiscernibility relation in the following way,

RB = {(x, y) ∈ U × U | f (x, a) = f (y, a), ∀a ∈ B}.
he relation RB partitions U into some equivalence classes given by

U/RB = {[x]B | x ∈ U}, just U/B,

here [x]B denotes the equivalence class determined by x with respect to B, i.e.,

[x]B = {y ∈ U | (x, y) ∈ RB}.
Given an equivalence relation R on the universe U and a subset X ⊆ U, one can define a lower approximation of X and an upper

pproximation of X by

RX =
⋃
{x ∈ U | [x]R ⊆ X}

nd

RX =
⋃
{x ∈ U | [x]R ∩ X /= Ø},

espectively [39]. The order pair (RX, RX) is called a rough set of X with respect to R. The positive region of X is denoted by POSR(X) = RX .
A partial relation �on the family {U/B | B ⊆ A} is defined as follows [37]: U/P � U/Q (or U/Q 	 U/P) if and only if, for every Pi ∈ U/P, there

xists Qj ∈ U/Q such that Pi⊆ Qj, where U/P = {P1, P2, . . .,  Pm} and U/Q = {Q1, Q2, . . .,  Qn} are partitions induced by P, Q ⊆ A, respectively. In
his case, we say that Q is coarser than P, or P is finer than Q. If U/P � U/Q and U/P /= U/Q, we say Q is strictly coarser than P (or P is strictly
ner than Q), denoted by U/P ≺ U/Q (or U/Q � U/P).

It is clear that U/P ≺ U/Q if and only if, for every X ∈ U/P, there exists Y ∈ U/Q such that X ⊆ Y, and there exist X0 ∈ U/P and Y0 ∈ U/Q such
hat X0⊂ Y0.

A decision table is an information system S = (U, C ∪ D) with C∩ D = Ø, where an element of C is called a condition attribute, C is called a
ondition attribute set, an element of D is called a decision attribute, and D is called a decision attribute set. Given P ⊆ C and U/D = {D1, D2,

 . .,  Dr}, the positive region of D with respect to the condition attribute set P is defined by POSP(D) =
⋃r

k=1PDk.

For a decision table S and P ⊆ C, X ∈ U/P is consistent iff all its objects have the same decision value; otherwise, X is inconsistent. The

ecision table S is called a consistent decision table iff ∀X ∈ U/C are consistent; and if ∃x, y ∈ U are inconsistent, then the table is called an
nconsistent decision table. One can extract certain decision rules from a consistent decision table and uncertain decision rules from an
nconsistent decision table.
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For a decision table S and P ⊆ C, when a new object x is added to S, x is indistinguishable on B iff, ∃y ∈ U, ∀a ∈ P, such that f(x, a) = f(y, a);
nd x is distinguishable on P iff, ∀y ∈ U, ∃a ∈ P such that f(x, a) /= f(y, a).

.2. Attribute reduction in rough set theory

Given an information system, all the attributes are not necessarily in the same importance, and some of them are irrelevant to the
earning or recognition tasks. The concept of attribute reduction was first originated by Pawlak in [14,15],  which aimed to delete the
rrelevant or redundant attributes on the condition of retaining the discernible ability of original attributes (the whole attributes set). The
etained attribute subset got from attribute reduction is called a reduct.

efinition 1. Let S = {U, A} be an information system. Then B ⊆ A is a reduct of S if

1) U/B = U/A and
2) ∀a ∈ B, U/(B − {a}) /= U/B.

There are usually multiple reducts in a given information system, and the intersection of all reducts is called core. Given a decision table,
he retained attribute subset got from attribute reduction is called a relative reduct, and the intersection of all relative reducts is called
elative core [14,15].

efinition 2. Let S = {U, C ∪ D} be a decision table. Then B ⊆ C is a relative reduct of S if

1) POSB(D) = POSC(D) and
2) ∀a ∈ B, POSB−{a}(D) /= POSB(D).

For these two  definitions, the first condition guarantees that the reduct has the same distinguish power as the whole attribute set, and
he second condition guarantees that there is no redundant attributes in the reduct. A reduct is called an exact reduct if it satisfies both of
hese two constraints, otherwise, is just an approximate reduct. In [40], Skowron proposed a discernibility matrix method to find all exact
educts of an information system without decision attributes. However, it has been proved that using this algorithm to generate reducts is
n NP-hard problem. For decision tables, Kryszkiewicz proposed an approach to computing the minimal set of attributes that functionally
etermine a decision attribute [41]. This algorithm can find an exact reduct of a given decision table. These two  approaches are both very
ime-consuming.

As is well known, Pawlak’s rough set model is applicable for the case that only nominal attributes exist in data sets. However, many real
ata in applications usually come with a complicated form. To conceptualize and analyze various types of data, researchers have generalized
awlak’s classic rough set model, and attribute reduction based on these generalizations was also redefined. Reducts generated by these
eduction algorithms are usually approximate reducts. Ziarko provided the concept of ˇ-reduct based on the introduction of variable
recision rough set model (VPRS) [42]. VPRS deals with partial classification by introducing a probability value ˇ. The  ̌ value represents

 bound on the conditional probability of objects in a condition class which are classified to the same decision class. Yao proposed the
ecision-theoretic rough set model and also defined attribute reduction based on this generalized model [43,44]. This model with loss
unctions aims to obtain optimization decisions by minimizing the overall risk with Bayesian decision procedures. An extensive review of

ulti-criteria decision analysis based on dominance rough sets was  given by Greco et al. [45]. Dominance rough set model has also been
pplied for ordinal attribute reduction and multi-criteria classification [46,47]. Dubois and Prade constructed the first fuzzy rough model
y extending equivalence relation to fuzzy equivalence relation [48], where fuzzy equivalence relations satisfy reflexivity, symmetry and
ax-min transitivity. Reduction algorithms based on above generalized rough set models usually generate one or more approximation

educts and have been applied to solve their corresponding issues. It is deserved to point out that each kind of attribute reduction tries to
reserve a particular property of a given table.

In addition, to save computational time of finding reduct, researchers have also developed many heuristic attribute reduction algorithms
hich can generate a single reduct from a given table [33,35,37,38,49]. Most of them are greedy and forward search algorithms, keeping

electing attributes with high significance until the dependence no longer increases. The reduct generated by a heuristic reduction algorithm
s usually considered as an approximation reduct. It will be an exact reduct when deleting its redundant attributes.

However, the above analysis about generating an exact reduct and an approximation reduct is not very rigorous. For example, though
educts generated by heuristic reduction algorithms are considered as approximation reducts, some of them are often exact redcuts.
ecause so many reduction algorithms have been proposed in the last two  decades and it is very difficult to list all of them here, this section

ust introduces a common distinction between generating an exact reduct and generating an approximation reduct.

. Attribute reduction based on information entropy

Among various heuristic attribute reduction algorithms, reduction based on information entropy (or its variants) is a kind of common
lgorithm which has attracted much attention. There are three representative entropies which are used to construct reduction algorithms.
hey are complementary entropy [33], combination entropy [35] and Shannon’s information entropy [36]. The heuristic attribute reduction
lgorithms based on these three entropies are reviewed in this section.
In [33], the complementary entropy was introduced to measure uncertainty in rough set theory. Liang et al. also proposed the conditional
omplementary entropy to measure uncertainty of a decision table in [34]. By preserving the conditional entropy unchanged, the conditional
omplementary entropy was applied to construct reduction algorithms and reduce the redundant features in a decision table [35]. The
onditional complementary entropy used in this algorithm is defined as follows [33–35].
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efinition 3. Let S = (U, C ∪ D) be a decision table and B ⊆ C. Then, one can obtain the condition partitions U/B = {X1, X2, . . .,  Xm} and
/D = {Y1, Y2, . . .,  Yn}. Based on these partitions, a conditional entropy of B relative to D is defined as

E(D|B) =
m∑

i=1

n∑
j=1

|Xi ∩ Yj|
|U|

|Yc
j
− Xc

i
|

|U| , (1)

here Yc
i

and Xc
j

are complement set of Yi and Xj respectively.

Another information entropy, called combination entropy, was presented in [35] to measure the uncertainty of data tables. The con-
itional combination entropy was also introduced and can be used to construct the heuristic reduction algorithms [35]. This reduction
lgorithm can find a feature subset that possesses the same number of pairs of indistinguishable elements as that of the original decision
able. The definition of the conditional combination entropy is defined as follows [35].

efinition 4. Let S = (U, C ∪ D) be a decision table and B ⊆ C. Then one can obtain the condition partitions U/B = {X1, X2, . . .,  Xm} and U/D = {Y1,
2, . . .,  Yn}. Based on these partitions, a conditional entropy of B relative to D is defined as

CE(D|B) =
m∑

i=1

⎛
⎝ |Xi|
|U|

C2
|Xi |

C2
|U|
−

n∑
j=1

|Xi ∩ Yj|
|U|

C2
|Xi∩Yj |
C2
|U|

⎞
⎠ . (2)

here C2
|Xi | denotes the number of pairs of objects which are not distinguishable from each other in the equivalence class Xi.

Based on the classical rough set model, Shannon’s information entropy [36] and its conditional entropy were also introduced to find a
educt in a heuristic algorithm [38,50].  In [38], the reduction algorithm keeps the conditional entropy of target decision unchanged, and
he conditional entropy is defined as follows [38].

efinition 5. Let S = (U, C ∪ D) be a decision table and B ⊆ C. Then, one can obtain the condition partitions U/B = {X1, X2, . . .,  Xm} and
/D = {Y1, Y2, . . .,  Yn}. Based on these partitions, a conditional entropy of B relative to D is defined as

H(D|B) = −
m∑

i=1

|Xi|
|U|

n∑
j=1

|Xi ∩ Yj|
|Xi|

log

(
|Xi ∩ Yj|
|Xi|

)
. (3)

For convenience, a uniform notation ME(D|B) is introduced to denote these three entropies. For example, if one adopts Shannon’s
onditional entropy to define the attribute significance, then ME(D|B) = H(D|B). Given a decision table S = (U, C ∪ D) and B1, B2⊆ C. According
o literatures [33,35,38],  if U/B1 � U/B2, one can get that ME(D|B1) ≤ ME(D|B2). This conclusion indicates that, for a given decision table,
s its condition classifications become finer, its entropies (the three entropies) are monotone decreasing. In addition, as the condition
lassifications become finer, the classified quality (see Definition 11)  of the given decision table is monotone increasing. Thus, one can
et that the three entropies of a given decision table are monotone decreasing with the classified quality increasing. Especially, when the
lassified quality is one, the entropies are zero [33,35,38].

The attribute significances based on entropies in a heuristic reduction algorithm is defined as follows (see Definitions 6 and 7) [33,35,38].

efinition 6. Let S = (U, C ∪ D) be a decision table and B ⊆ C. ∀a ∈ B, the significance measure (inner significance) of a in B is defined as

Siginner(a, B, D) = ME(D|B − {a}) − ME(D|B). (4)

efinition 7. Let S = (U, C ∪ D) be a decision table and B ⊆ C. ∀a ∈ C − B, the significance measure (outer significance) of a in B is defined as

Sigouter(a, B, D) = ME(D|B) − ME(D|B ∪ {a}). (5)

Given a decision table S = (U, C ∪ D) and a ∈ C. From the literatures [26–29],  one can get that if Siginner(a, C, D) > 0, then the attribute a is
ndispensable, i.e., a is a core attribute of S. Based on core attributes, a heuristic attribute reduction algorithm can find a reduct by gradually
dding selected attributes to the core. The definition of reduct based on information entropy is defined as follows [26–29].

efinition 8. Let S = (U, C ∪ D) be a decision table and B ⊆ C. Then the attribute set B is a relative reduct if B satisfies:

1) ME(D|B) = ME(D|C);
2) ∀a ∈ B, ME(D|B) /= ME(D|B − {a}) .

Formally, the searching strategies in reduction algorithms based on the three entropies are similar to each other. The specific steps are
ritten as follows [33,35,38].

lgorithm 1. Classic attribute reduction algorithm based on information entropy for a decision table (CAR).

Input: A decision table S = (U, C ∪ D)
Output: Reduct red
Step 1: red← ∅;

Step 2: for (j = 1 ; j ≤ |C| ; j ++)
{ if Siginner(aj, C, D) > 0, then red ← red ∪ {aj};
}

Step 4: P ← red, while (ME(D|P) /= ME(D|C)) do
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{
Compute and select sequentially Sigouter(a0, P, D) = max{Sigouter(ai, P, D)}, ai∈ C − P ;
P ← P ∪ {a0};
}

Step 5: red ← P, return red and end.

Based on Definition 6, one can get core attributes according to steps 1 and 2 in this algorithm. Steps 3 and 4 add selected attributes to
he core gradually, and then one can obtain a reduct of the given table. This algorithm can be considered as the common attribute reduction
lgorithm based on information entropy. The time complexity of CAR given in [37] is O(|U||C|2). However, this time complexity does not
nclude the computational time of entropies. For a given decision table, computing entropies is a key step in above reduction algorithm,

hich is not computationally costless. Thus, to analyze the exact time complexity of above algorithm, the time complexity of computing
ntropies is given as well.

Given a decision table, according to Definitions 3–5,  it first needs to compute the conditional classes and decision classes, respectively,
nd then computes the value of entropy. Xu et al. in [51] gave a fast algorithm for partition with time complexity being O(|U||C|). So, the
ime complexity of computing entropy is

O

⎛
⎝|U||C| + |U| +

m∑
i=1

|Xi| ·
n∑

j=1

|Yj|

⎞
⎠ = O(|U||C| + |U| + |U||U|) = O(|U|2),

here the specific introduction of m,  n, Xi and Yj is shown in Definitions 3–5.  Thus, the time complexity of computing core (steps 1 and 2)
s O(|C||U|2), and the time complexity of computing reduct according to CAR is

O(|C||U|2 + |C|(|U||C| + |U|2)) = O(|C|2|U| + |C||U|2).

. Updating mechanism of information entropy

Given a dynamic decision table, based on the three representative entropies, this section presents the updating mechanisms of the three
ntropies for dynamically varying data values. As data values in a decision table vary with time, recomputing entropy is obviously time-
onsuming. To overcome this deficiency, the updating mechanisms derive new entropies by integrating the changes of conditional classes
nd decision classes into existing entropies. When data values of a single object vary, Theorems 1–4 introduce the updating mechanisms
or the three entropies respectively.

For convenience, here are some explanations which will be used in the following theorems. Let S = (U, C ∪ D) be a decision table, B ⊆ C
nd x ∈ U. U/B = {X1, X2, . . .,  Xm}, U/D = {Y1, Y2, . . .,  Yn}, x ∈ Xp1 and x ∈ Yq1 (p1 ∈ {1, 2, . . .,  m} and q1 ∈ {1, 2, . . .,  n}). If attribute values of x are
aried, and here assumes that x is changed to x′. Let Ux′ denotes the new universe, one has x′ ∈ X ′p2

and x′ ∈ Y ′q2
(X ′p2

∈ Ux′/B and Y ′q2
∈ Ux′/D).

bviously, one can get that X ′p2
− {x} ∈ U/B, Y ′q2

− {x} ∈ U/D, Xp1 − {x} ∈ Ux′/B and Yq1 − {x} ∈ Ux′/D.  In addition, X ′p1
, Y ′q1

, Xp2 and Yq2 denote
p1 − {x}, Yq1 − {x}, X ′p2

− {x} and Y ′q2
− {x}, respectively.

heorem 1. Let S = (U, C ∪ D) be a decision table and B ⊆ C. The complementary conditional entropy of D with respect to B is EU(D|B). Then, one
an obtain the partitions U/B = {X1, X2, . . .,  Xm} and U/D = {Y1, Y2, . . .,  Yn}. x ∈ Xp1 and x ∈ Yq1 . If one and only object x ∈ U is changed to x′, then
′ ∈ X ′p2

and x′ ∈ Y ′q2
(X ′p2

∈ Ux′/B and Y ′q2
∈ Ux′/D). The new conditional complementary entropy becomes

EUx′ (D|B) = EU(D|B) +
2|X ′p2

− Y ′q2
| − 2|X ′p1

− Y ′q1
|

|U|2 ,

here X ′p1
= Xp1 − {x} and Y ′q1

= Yq1 − {x}.
roof. For the decision table S, when x is changed to x′, there are four situations about the changes of conditional classes and decision
lasses, which are as follows:

(a) Ux′/B = {X1, X2, . . . , X ′p1
, . . . , Xm, {x′}} and Ux′/D = {Y1, Y2, . . . , Y ′q1

, . . . , Yn, {x′}};
b) Ux′/B = {X1, X2, . . . , X ′p1

, . . . , X ′p2
, . . . , Xm, }, x′ ∈ X ′p2

, and Ux′/D = {Y1, Y2, . . . , Y ′q1
, . . . , Yn, {x′}};

(c) Ux′/B = {X1, X2, . . . , X ′p1
, . . . , Xm, {x′}}, Ux′/D = {Y1, Y2, . . . , Y ′q1

, . . . , Y ′q2
, . . . , Yn} and x′ ∈ Y ′q2

;
d) Ux′/B = {X1, X2, . . . , X ′p1

, . . . , X ′p2
, . . . , Xm, }, x′ ∈ X ′p2

and Ux′/D = {Y1, Y2, . . . , Y ′q1
, . . . , Y ′q2

, . . . , Yn}, x′ ∈ Y ′q2
.

or convenience, here introduces a uniform notation about these four situations.
Let U/B = {X1, X2, . . .,  Xm, Xm+1} and Xm+1 =∅. Then, we have Ux′/B = {X1, X2, . . . , X ′p1

, . . . , X ′p2
, . . . , Xm+1, }, X ′p1

= Xp1 − {x′} and X ′p2
=

x′} ∪ Xp2 . Similarly, let Yn+1 =∅, we can get that U/D = {Y1, Y2, . . .,  Yn+1}, Ux′/D = {Y1, Y2, . . . , Y ′q1
, . . . , Y ′q2

, . . . , Yn+1} and Y ′q2
= {x′} ∪ Yq2 .

bviously, for situation (a), we have X ′p2
= Xm+1 ∪ {x′} = ∅ ∪ {x′} = {x′} and Y ′q2

= Yn+1 ∪ {x′} = {x′}. Similarly, for situation (b), we have Y ′q2
=

n+1 ∪ {x′} = {x′}. And for situation (c), we have X ′p2
= {x′}.

According to the uniform notation, the updating mechanism of complementary conditional entropy is as follows.

m n c c m n
E(D|B) =
∑
i=1

∑
j=1

|Xi ∩ Yj|
|U|

|Y
j
− X

i
|

|U| =
∑
i=1

∑
j=1

|Xi ∩ Yj|
|U|

|Xi − Yj|
|U| .

Hence



T

F
A
i

D
.

T
c
x

w

P
e

F. Wang et al. / Applied Soft Computing 13 (2013) 676–689 681

EUx′ (D|B) =
m−1∑
i=1

⎛
⎝ n−1∑

j=1

|Xi ∩ Yj||Xi − Yj|
|U|2 +

|Xi ∩ Y ′q1
||Xi − Y ′q1

|
|U|2 +

|Xi ∩ Y ′q2
||Xi − Y ′q2

|
|U|2

⎞
⎠+ n−1∑

j=1

|X ′p1
∩ Yj||X ′p1

− Yj|
|U|2 +

|X ′p1
∩ Y ′q1

||X ′p1
− Y ′q1

|
|U|2

+
|X ′p1
∩ Y ′q2

||X ′p1
− Y ′q2

|
|U|2 +

n−1∑
j=1

|X ′p2
∩ Yj||X ′p2

− Yj|
|U|2 +

|X ′p2
∩ Y ′q1

||X ′p2
− Y ′q1

|
|U|2 +

|X ′p2
∩ Y ′q2

||X ′p2
− Y ′q2

|
|U|2

=
m−1∑
i=1

⎛
⎝ n−1∑

j=1

|Xi ∩ Yj||Xi − Yj|
|U|2 + |Xi ∩ Yq1 ||Xi − Yq1 |

|U|2 + |Xi ∩ Yq2 ||Xi − Yq2 |
|U|2

⎞
⎠

+
n−1∑
j=1

|Xp1 ∩ Yj| · (|Xp1 − Yj| − 1)

|U|2 + (|Xp1 ∩ Yq1 | − 1) · |Xp1 − Yq1 |
|U|2 + |Xp1 ∩ Yq2 | · (|Xp1 − Yq2 | − 1)

|U|2 +
n−1∑
j=1

|Xp2 ∩ Yj| · (|Xp2 − Yj| + 1)

|U|2

+ |Xp2 ∩ Yq1 | · (|Xp2 − Yq1 | + 1)
|U|2 + (|Xp2 ∩ Yq2 | + 1) · |Xp2 − Yq2 |

|U|2 =
m+1∑
i=1

n+1∑
j=1

|Xi ∩ Yj||Xi − Yj|
|U|2 + |Xp2 − Yq2 | − |Xp1 − Yq1 |

|U|2

+
n+1∑

j=1,j /=  q2

|Xp2 ∩ Yj|
|U|2 −

n+1∑
j=1,j /=  q1

|Xp1 ∩ Yj|
|U|2 = EU(D|B) +

|X ′p2
− Y ′q2

| − |X ′p1
− Y ′q1

|
|U|2 +

n+1∑
j=1,j /= q2

|X ′p2
∩ Yj|
|U|2 −

n+1∑
j=1,j /=  q1

|X ′p1
∩ Yj|
|U|2 = EU(D|B)

+
|X ′p2
− Y ′q2

| − |X ′p1
− Y ′q1

|
|U|2 +

n+1∑
j=1,j /=  q2

|X ′p2
∩ Yj|
|U|2 +

|X ′p2
∩ Y ′q2

|
|U|2 −

|X ′p2
∩ Y ′q2

|
|U|2 −

n+1∑
j=1,j /=  q1

|X ′p1
∩ Yj|
|U|2 −

|X ′p1
∩ Y ′q1

|
|U|2 +

|X ′p1
∩ Y ′q1

|
|U|2 = EU(D|B)

+
|X ′p2
− Y ′q2

| − |X ′p1
− Y ′q1

|
|U|2 +

|X ′p2
| − |X ′p2

∩ Y ′q2
|

|U|2 −
|X ′p1
| − |X ′p1

∩ Y ′q1
|

|U|2 = EU(D|B) +
2|X ′p2

− Y ′q2
| − 2|X ′p1

− Y ′q1
|

|U|2 .

his completes the proof.

or convenience of introducing combination entropy, here gives a deformation of the definition of combination entropy (see Definition 1).
ccording to C2

N = (N(N − 1))/2, the following deformation can be got. Then the updating mechanism of combination conditional entropy
s introduced on the basis of this deformation.

efinition 9. Let S = (U, C ∪ D) be a decision table and B ⊆ C. One can obtain the condition partition U/B = {X1, X2, . . .,  Xm} and U/D = {Y1, Y2,
 . .,  Yn}. The combination conditional entropy of B relative to D is defined as

CE(D|B) =
m∑

i=1

⎛
⎝ |Xi|2(|Xi| − 1)
|U|2(|U| − 1)

−
n∑

j=1

|Xi ∩ Yj|2(|Xi ∩ Yj| − 1)

|U|2(|U| − 1)

⎞
⎠ . (6)

heorem 2. Let S = (U, C ∪ D) be a decision table and B ⊆ C. The combination conditional entropy of D with respect to B is EU(D|B). Then, one
an obtain the partitions U/B = {X1, X2, . . .,  Xm} and U/D = {Y1, Y2, . . .,  Yn}. x ∈ Xp1 and x ∈ Yq1 . If one and only object x ∈ U is changed to x′, then
′ ∈ X ′p2

and x′ ∈ Y ′q2
(X ′p2

∈ Ux′/B and Y ′q2
∈ Ux′/D). The new combination conditional entropy becomes

CEUx′ (D|B) = CEU(D|B) + �,

here � = |X
′
p2
−Y ′q2

|(3|X ′p2
|+3|X ′p2

∩Y ′q2
|−5)−|X ′p1

−Y ′q1
|(3|X ′p1

|+3|X ′p1
∩Y ′q1

|+1)

|U|2 , X ′p1
= Xp1 − {x} and Y ′q1

= Yq1 − {x}.

roof. Similarly, when x is added to S, there are four same situations as the proof in Theorem 1. Then, the combination conditional
ntropy is

CEUx′ (D|B) =
m−1∑
i=1

⎛
⎝ |Xi|2(|Xi| − 1)
|U|2(|U| − 1)

−
n−1∑
j=1

|Xi ∩ Yj|2(|Xi ∩ Yj| − 1)

|U|2(|U| − 1)
−
|Xi ∩ Y ′q1

|2(|Xi ∩ Y ′q1
| − 1)

|U|2(|U| − 1)
−
|Xi ∩ Y ′q2

|2(|Xi ∩ Y ′q2
| − 1)

|U|2(|U| − 1)

⎞
⎠

+
|X ′p1
|2(|X ′p1

| − 1)

|U|2(|U| − 1)
−

n−1∑
j=1

|X ′p1
∩ Yj|2(|X ′p1

∩ Yj| − 1)

|U|2(|U| − 1)
−
|X ′p1
∩ Y ′q1

|2(|X ′p1
∩ Y ′q1

| − 1)

|U|2(|U| − 1)
−
|X ′p1
∩ Y ′q2

|2(|X ′p1
∩ Y ′q2

| − 1)

|U|2(|U| − 1)
+
|X ′p2
|2(|X ′p2

| − 1)

|U|2(|U| − 1)
−
n−1∑
j=1

|X ′p2
∩ Yj|2(|X ′p2

∩ Yj| − 1)

|U|2(|U| − 1)
−
|X ′p2
∩ Y ′q1

|2(|X ′p2
∩ Y ′q1

| − 1)

|U|2(|U| − 1)
−
|X ′p2
∩ Y ′q2

|2(|X ′p2
∩ Y ′q2

| − 1)

|U|2(|U| − 1)
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=
m−1∑
i=1

⎛
⎝ |Xi|2(|Xi| − 1)
|U|2(|U| − 1)

−
n+1∑
j=1

|Xi ∩ Yj|2(|Xi ∩ Yj| − 1)

|U|2(|U| − 1)

⎞
⎠+ (|Xp1 | − 1)2(|Xp1 | − 2)

|U|2(|U| − 1)
−

n−1∑
j=1

|Xp1 ∩ Yj|2(|Xp1 ∩ Yj| − 1)

|U|2(|U| − 1)

− (|Xp1 ∩ Yq1 | − 1)2(|Xp1 ∩ Yq1 | − 2)
|U|2(|U| − 1)

− |Xp1 ∩ Yq2 |2(|Xp1 ∩ Yq2 | − 1)
|U|2(|U| − 1)

+ (|Xp2 | + 1)2|Xp2 |
|U|2(|U| − 1)

−
n−1∑
j=1

|Xp2 ∩ Yj|2(|Xp2 ∩ Yj| − 1)

|U|2(|U| − 1)

− |Xp2 ∩ Yq1 |2(|Xp2 ∩ Yq1 | − 1)
|U|2(|U| − 1)

− (|Xp2 ∩ Yq2 | + 1)2|Xp2 ∩ Yq2 |
|U|2(|U| − 1)

=
m+1∑
i=1

⎛
⎝ |Xi|2(|Xi| − 1)
|U|2(|U| − 1)

−
n+1∑
j=1

|Xi ∩ Yj|2(|Xi ∩ Yj| − 1)

|U|2(|U| − 1)

⎞
⎠

+ −3|Xp1 |2 + 5|Xp1 | + 3|Xp1 ∩ Yq1 |2 − 5|Xp1 ∩ Yq1 |
|U|2(|U| − 1)

+ 3|Xp2 |2 + |Xp2 | − 3|Xp2 ∩ Yq2 |2 − |Xp2 ∩ Yq2 |
|U|2(|U| − 1)

= CEU(D|B)

+ |Xp2 − Yq2 |(3|Xp2 | + 3|Xp2 ∩ Yq2 | + 1)
|U|2(|U| − 1)

− |Xp1 − Yq1 |(3|Xp1 | + 3|Xp1 ∩ Yq1 | − 5)
|U|2(|U| − 1)

.

And because X ′p2
= Xp2 ∪ {x} and Y ′q2

= Yq2 ∪ {x}, from Theorem 2, one can also get that

CEUx′ (D|B) = CEU(D|B) + |Xp2 − Yq2 |(3|Xp2 | + 3|Xp2 ∩ Yq2 | + 1)
|U|2(|U| − 1)

− |Xp1 − Yq1 |(3|Xp1 | + 3|Xp1 ∩ Yq1 | − 5)
|U|2(|U| − 1)

.

his completes the proof.

he following two theorems are the updating mechanisms of Shannon’s conditional entropy shown in Definition 3.

heorem 3. Let S = (U, C ∪ D) be a decision table and B ⊆ C. The Shannon’s conditional entropy of D with respect to B is EU(D|B). Then, one can
btain the partitions U/B = {X1, X2, . . .,  Xm} and U/D = {Y1, Y2, . . .,  Yn}. x ∈ Xp1 and x ∈ Yq1 . If one and only object x ∈ U is changed to x′, then
′ ∈ X ′p2

and x′ ∈ Y ′q2
(X ′p2

∈ Ux′/B and Y ′q2
∈ Ux′/D). The new Shannon’s conditional entropy becomes

HUx′ (D|B) = HU(D|B) − �,

here

� =
n∑

j=1,j /=  q1

|Xp1 ∩ Yj|
|U| log

|Xp1 |
|X ′p1
| +

n∑
j=1,j /=  q2

|Xp2 ∩ Yj|
|U| log

|Xp2 |
|X ′p2
| +
|Xp1 ∩ Yq1 |
|U| · log

|X ′p1
∩ Y ′q1

||Xp1 |
|Xp1 ∩ Yq1 ||X ′p1

| +
|Xp2 ∩ Yq2 |
|U| log

|X ′p2
∩ Y ′q2

||Xp2 |
|Xp2 ∩ Yq2 ||X ′p2

|

+ 1
|U| log

|X ′p1
||X ′p2

∩ Y ′q2
|

|X ′p2
||X ′p1

∩ Y ′q1
| , X ′p1

= Xp1 − {x} and Y ′q1
= Yq1 − {x}

roof. Similar to the proof in Theorem 4, it can be easily proved.

n view of that the formula of � is complicated, thus, for the large-scale data tables, an approximate computational formula is proposed in
he following theorem.

heorem 4. Let S = (U, C ∪ D) be a large-scale decision table and B ⊆ C. The conditional Shannon’s entropy of D with respect to B is EU(D|B). Then,
ne can obtain the partitions U/B = {X1, X2, . . .,  Xm} and U/D = {Y1, Y2, . . .,  Yn}. x ∈ Xp1 and x ∈ Yq1 . If one and only object x ∈ U is changed to x′,
hen x′ ∈ X ′p2

and x′ ∈ Y ′q2
(X ′p2

∈ Ux′/B and Y ′q2
∈ Ux′/D). The new Shannon’s conditional entropy becomes

HUx′ (D|B) ≈ HU(D|B) − 1
|U| log

|X ′p1
||X ′p2

∩ Y ′q2
|

|X ′p2
||X ′p1

∩ Y ′q1
| ,

here X ′p1
= Xp1 − {x} and Y ′q1

= Yq1 − {x}.
roof. Similarly, when x is added to S, there are four same situations as the proof in Theorem 1. Then, the Shannon’s conditional
ntropy is

HUx′ (D|B) = −

⎛
⎝m−1∑

i=1

|Xi|
|U|

⎛
⎝ n−1∑

j=1

|Xi ∩ Yj|
|Xi|

log
|Xi ∩ Yj|
|Xi|

+
|Xi ∩ Y ′q1

|
|Xi|

log
|Xi ∩ Y ′q1

|
|Xi|

+
|Xi ∩ Y ′q2

|
|Xi|

log
|Xi ∩ Y ′q2

|
|Xi|

⎞
⎠

+
|X ′p1
|

|U|

⎛
⎝ n−1∑

j=1

|X ′p1
∩ Yj|
|X ′p1
| log

|X ′p1
∩ Yj|
|X ′p1
| +

|X ′p1
∩ Y ′q1

|
|X ′p1
| · log

|X ′p1
∩ Y ′q1

|
|X ′p1
| +

|X ′p1
∩ Y ′q2

|
|X ′p1
| ·  log

|X ′p1
∩ Y ′q2

|
|X ′p1
|

⎞
⎠

+
|X ′p2
|

|U|

⎛
⎝ n−1∑

j=1

|X ′p2
∩ Yj|
|X ′p2
| log

|X ′p2
∩ Yj|
|X ′p2
| +

|X ′p2
∩ Y ′q1

|
|X ′p2
| log

|X ′p2
∩ Y ′q1

|
|X ′p2
| +

|X ′p2
∩ Y ′q2

|
|X ′p2
| ·  log

|X ′p2
∩ Y ′q2

|
|X ′p2
|

⎞
⎠

⎞
⎠
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= −

⎛
⎝m−1∑

i=1

|Xi|
|U| (

n+1∑
j=1

|Xi ∩ Yj|
|Xi|

log
|Xi ∩ Yj|
|Xi|

) + |Xp1 |
|U|

n−1∑
j=1

|Xp1 ∩ Yj|
|Xp1 |

log
|Xp1 ∩ Yj|
|X ′p1
| + |Xp1 |

|U| ·
|Xp1 ∩ Yq1 | − 1

|Xp1 |
log
|X ′p1
∩ Y ′q1

|
|X ′p1
| + |Xp1 |

|U| ·

|Xp1 ∩ Yq2 |
|Xp1 |

·  log
|X ′p1
∩ Y ′q2

|
|X ′p1
| + |Xp2 |

|U|

n−1∑
j=1

|Xp2 ∩ Yj|
|Xp2 |

· log
|Xp2 ∩ Yj|
|X ′p2
| + |Xp2 |

|U| ·
|Xp2 ∩ Yq1 |
|Xp2 |

log
|Xp2 ∩ Yq1 |
|X ′p2
| + |Xp2 |

|U| ·
|Xp2 ∩ Yq2 | + 1

|Xp2 |
·

log
|X ′p2
∩ Y ′q2

|
|X ′p2
|

⎞
⎠ = −

⎛
⎝m−1∑

i=1

|Xi|
|U|

n+1∑
j=1

|Xi ∩ Yj|
|Xi|

log
|Xi ∩ Yj|
|Xi|

+ |Xp1 |
|U|

n−1∑
j=1

|Xp1 ∩ Yj|
|Xp1 |

(
log
|Xp1 ∩ Yj|
|Xp1 |

+ log
|Xp1 |
|X ′p1
|

)
+ |Xp1 |
|U| ·

|Xp1 ∩ Yq1 |
|Xp1 |

(
log
|Xp1 ∩ Yq1 |
|Xp1 |

+ log
|X ′p1
∩ Y ′q1

||Xp1 |
|Xp1 ∩ Yq1 ||X ′p1

|

)
− 1
|U| log

|X ′p1
∩ Y ′q1

|
|X ′p1
| + |Xp1 |

|U| ·
|Xp1 ∩ Yq2 |
|Xp1 |

·
(

log
|Xp1 ∩ Yq2 |
|Xp1 |

+ log
|Xp1 |
|X ′p1
|

)

+ |Xp2 |
|U|

n−1∑
j=1

|Xp2 ∩ Yj|
|Xp2 |

·
(

log
|Xp2 ∩ Yj|
|Xp2 |

+ log
|Xp2 |
|X ′p2
|

)
+ |Xp2 |
|U| ·

|Xp2 ∩ Yq1 |
|Xp2 |

(
log
|Xp2 ∩ Yq1 |
|Xp2 |

+ log
|Xp2 |
|X ′p2
|

)
+ |Xp2 |
|U| ·

|Xp2 ∩ Yq2 |
|Xp2 |

·

(
log
|Xp2 ∩ Yq2 |
|Xp2 |

+ log
|X ′p2
∩ Y ′q2

||Xp2 |
|Xp2 ∩ Yq2 ||X ′p2

|

)
+ 1
|U| log

|X ′p2
∩ Y ′q2

|
|X ′p2
|

⎞
⎠ .

o simplify the calculations of above formula, for the large-scale decision tables, here are some approximated expressions. In view of
hat |Xp1 | and |Xp2 | based on the large-scale decision tables are relatively large, respectively, one can get that |Xp1 | ≈ |X ′p1

| and |Xp2 | ≈ |X ′p2
|

X ′p1
= Xp1 − {x} and X ′p2

= Xp2 ∪ {x}), e.t. log|Xp1 |/|X ′p1
| ≈ 0 and log|Xp2 |/|X ′p2

| ≈ 0. Similarly, one can also get from |Xp1 ∩ Yq1 | ≈ |X ′p1
∩ Y ′q1

|
nd |Xp2 ∩ Yq2 | ≈ |X ′p2

∩ Y ′q2
| that log|X ′p1

∩ Y ′q1
||Xp1 |/|Xp1 ∩ Yq1 ||X ′p1

| ≈ 0 and log|X ′p2
∩ Y ′q2

||Xp2 |/|Xp2 ∩ Yq2 ||X ′p2
| ≈ 0. Hence, the above formula

an be simplified to

HUx′ (D|B) ≈ −

⎛
⎝ m∑

i=1

|Xi|
|U|

n∑
j=1

|Xi ∩ Yj|
|Xi|

log
|Xi ∩ Yj|
|Xi|

− 1
|U| log

|X ′p1
∩ Y ′q1

|
|X ′p1
| + 1

|U| · log
|X ′p2
∩ Y ′q2

|
|X ′p2
|

⎞
⎠ = HU(D|B) − 1

|U| log
|X ′p2
∩ Y ′q2

||X ′p1
|

|X ′p2
||X ′p1

∩ Y ′q1
| .

hus, this completes the proof.

. Attribute reduction algorithm for decision tables with dynamically varying attribute values

Based on the updating mechanisms of the three entropies, this section introduces an attribute reduction algorithm based on information
ntropy for decision tables with dynamically varying attribute values. In view of that core is another key concept besides redcut in rough
et theory [14,15],  this section also gives an algorithm for core computation. In rough set theory, core is the intersection of all reducts of a
iven table, and core attributes are considered as the indispensable attributes in a reduct. Note that, for the three entropies, the following
lgorithms are commonly used to update core and reduct.

lgorithm 2. An algorithm to core computation for a dynamic decision table (ACOREx′ ).

Input: A decision table S = (U, C ∪ D) and object x ∈ U is changed to x′

Output: Core attribute COREx′ on Ux′
Step 1: Find X ′p1

and X ′p2
: in U/C = {X1, X2, . . .,  Xm} and x ∈ Xp1 . If x is changed to x′, and x′ ∈ X ′p2

. One have X ′p1
= Xp1 − {x′} and Ux′/C =

{X1, X2, . . . , X ′p1
, . . . , X ′p2

, . . . , Xm}.
Step 2: Find Y ′q1

and Y ′q2
: in U/D = {Y1, Y2, . . .,  Yn} and x ∈ Yq1 . If x is changed to x′, and x′ ∈ Y ′q2

. We  have Y ′q1
= Yq1 − {x′} and Ux′/D =

{Y1, Y2, . . . , Y ′q1
, . . . , Y ′q2

, . . . , Yn}.
Step 3: Compute MEUx′ (D|C) (according to Theorems 1, 2 or 4);
Step 4: COREUx′ ← ∅, for each a ∈ C
(1) In U/(C − {a}) = {M1, M2, . . . , Mm′ } (m′ ≤ m)  and x ∈ Mt1 . If x is changed to x′, one have x′ ∈ M′t2

, M′t1
= Mt1 − {x′} and Ux′/(C − {a}) =

{M1, M2, . . . , M′t1
, . . . , M′t2

, . . . , Mm′ }.
(2) Compute MEUx′ (D|C − {a}) (according to Theorems 1, 2 or 4).
(3) If MEUx′ (D|C − {a}) /= MEUx′ (D|C), then COREUx′ = COREUx′ ∪ {a}.
Step 5: Return COREUx′ and end.

Based on updating mechanisms of the three entropies, an attribute reduction algorithm for decision tables with dynamically varying
ttribute values is introduced in the following. In this algorithm, the existing reduction result is one of inputs, which is used to find its new
educt after data changes.
lgorithm 3. An algorithm to reduct computation for a dynamic decision table (AREDx′ ).

Input: A decision table S = (U, C ∪ D), reduct REDU on U, and the changed object x which is changed to x′

Output: Attribute reduct REDUx′ on Ux′
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Table 1
Comparison of time complexity.

Entropy Classic Incremental

O(|U|2) O(|U||C| + max(|X ′p1
||Y ′q1
|, |X ′p2

||Y ′q2
|))

Core  CA COREx′ ACOREx′

O(|C||U|2) O(max(|C||X ′p1
||Y ′q1
|, |C||X ′p2

||Y ′q2
|))

1
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Reduct CA REDx′ AREDx′

O(|C|2|U| + |C||U|2) O(|C|2|U| + max(|C||X ′p1
||Y ′q1
|, |C||X ′p2

||Y ′q2
|))

Step 1: B ← REDU . Find M′t1
and M′t2

: in U/B = {M1, M2, . . . , Mm′ } and x ∈ Mt1 . If x is changed to x′, and x′ ∈ M′t2
. One have M′t1

= Mt1 − {x′}
and Ux′/B = {M1, M2, . . . , M′t1

, . . . , M′t2
, . . . , Mm′ }.

Step 2: Find Y ′q1
and Y ′q2

: in U/D = {Y1, Y2, . . .,  Yn} and x ∈ Yq1 . If x is changed to x′, and x′ ∈ Y ′q2
. One have Y ′q1

= Yq1 − {x′} and Ux′/D =
{Y1, Y2, . . . , Y ′q1

, . . . , Y ′q2
, . . . , Yn}.

Step 3: Compute MEUx′ (D|B) (according to Theorems 1, 2 or 4);
Step 4: Find X ′p1

and X ′p2
: in U/C = {X1, X2, . . .,  Xm} and x ∈ Xp1 . If x is changed to x′, and x′ ∈ X ′p2

. One have X ′p1
= Xp1 − {x′} and Ux′/C =

{X1, X2, . . . , X ′p1
, . . . , X ′p2

, . . . , Xm}.
Step 5: Compute MEUx′ (D|C) (according to Theorems 1, 2 or 4);
Step 6: If MEUx′ (D|B) = MEUx′ (D|C), then REDUx′ ← REDU , turn to Step 8; else turn to Step 7.
Step 7: While MEUx′ (D|B) /= MEUx′ (D|C) do

{ For each a ∈ C − B, compute Sigouter
Ux′ (a, B, D) (according to Theorems 1, 2 or 4 and Definition 6);

Select a0 = max{Sigouter
Ux′ (a, B, D)}, a ∈ C − B;

B ← B ∪ {a0}.
}

Step 8: For each a ∈ B do
{ Compute Siginner

Ux′ (a, B, D);

If Siginner
Ux′ (a, B, D) = 0, then B ← B − {a}. }

Step 9: REDUx′ ← B, return REDUx′ and end.

The following is time complexities of above two  algorithms. First is the time complexity of computing entropy according to Theorems
, 2, and 4, which is O(m|C| + n + |X ′p1

||Y ′q1
| + |X ′p2

||Y ′q2
|) = O(max(|X ′p1

||Y ′q1
|, |X ′p2

||Y ′q2
|)) (the explanations of m, n, X ′p1

, Y ′q1
, X ′p2

and Y ′q2
are

hown in Theorems 1, 2, and 4). For convenience, �′ is used to denote the above time complexity, i.e., �′ = O(max(|X ′p1
||Y ′q1
|, |X ′p2

||Y ′q2
|)).

In the algorithm ACOREx′ , the time complexity of steps 1–3 is �′; in step 4, the time complexity is |C|�′. Hence, the time complexity of
lgorithm ACOREx′ is

O(�′ + |C|�′) = O(|C|(max(|X ′p1
||Y ′q1
|, |X ′p2

||Y ′q2
|))) = O(max(|C||X ′p1

||Y ′q1
|, |C||X ′p2

||Y ′q2
|)).

In algorithm AREDx′ , the time complexity of steps 1–3 is �′; the time complexity of steps 4 and 5 is also O(�′); in step 7, the time
omplexity of adding attributes is O(|C|�′); in step 8, the time complexity of deleting redundant attributes is O(|B|�′). Hence, the total
ime complexity of algorithm IA REDx is

O(�′ + |C|�′ + |B|�′) = O(|C|�′) = O(|C|2|U| + max(|C||X ′p1
||Y ′q1
|, |C||X ′p2

||Y ′q2
|)).

To stress above findings, the time complexities of computing core and reduct are shown in Table 1. CA COREx′ and CA REDx′ denote
lassic algorithms based on information entropy for computing core and reduct, respectively.

In Table 1, |X ′p1
||Y ′q1
| (or |X ′p2

||Y ′q2
|) is usually much smaller than |U|2. Hence, based on the three entropies, the calculation of proposed

lgorithms (ACOREx′ and AREDx′ ) are usually much smaller than that of the classic algorithms for reduct (or core).

. Experimental analysis

The objective of the following experiments is to show effectiveness and efficiency of the proposed reduction algorithm AREDx′ . Due
o that the core is a subset of a reduct, we only run the reduction algorithms in the experiments. Data sets used in the experiments are

utlined in Table 2, which were all downloaded from UCI repository of machine learning databases. All the experiments have been carried
ut on a personal computer with Windows XP and Inter(R) Core(TM) 2 Quad CPU Q9400, 2.66 GHz and 3.37 GB memory. The software
eing used is Microsoft Visual Studio 2005 and programming language is C#.

able 2
escription of data sets.

Data sets Samples Attributes Classes

1 Backup-large 307 35 19
2  Dermatology 366 33 6
3  Breast-cancer-wisconsin (Cancer) 683 9 2
4 Mushroom 5644 22 2
5  Letter-recognition (Letter) 20,000 16 26
6 Shuttle 58,000 9 7
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Table  3
Comparison of reducts based on complementary entropy.

Data sets CAR AREDx′

Reduct Time/s Reduct Time/s

Backup-large 1,4,7,8,10,13,16,22 4.5937 1,4,7,8,10,13,22 0.1406
Dermatology 1,2,3,4,5,14,16,18,19 5.7812 1,2,3,4,5,14,18,19 0.2031
Cancer 1,2,4,6 2.0000 1,2,4,6 0.5000
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Mushroom 1,2,3,5,7,8,9,20 486.2600 1,2,3,5,7,9,20 37.3120
Letter 1,2,3,4,5,8,9,10,11,12,13,15,16 9602.6000 1,2,3,4,5,8,9,10,11,12,15,16 358.81
Shuttle 1,2,3,5 17010.1000 1,2,3,5 5122.1000

There are two objectives to conduct the experiments. The first one is to show whether the reduct found by AREDx′ is feasible by comparing
ith that of CAR (see in Section 6.1). The second one is to compare the efficiency of AREDx′ and CAR (see in Section 6.2). Six UCI data sets are

mployed to test the two algorithms. Mushroom and Breast-cancer-wisconsin are data sets with missing values, and for a uniform treatment
f all data sets, the objects with missing values have been removed. Moreover, Shuttle is preprocessed using the data tool Rosetta.

.1. Effectiveness analysis

In this subsection, to test the effectiveness of AREDx′ , four common evaluation measures in rough set theory are employed to evaluate
he decision performance of the reducts found by CAR and AREDx′ . The four evaluation measures are approximate classified precision,
pproximate classified quality, certainty measure and consistency measure.

In [14], Pawlak defined the approximate classified precision and approximate classified quality to describe the precision of approximate
lassification in rough set theory.

efinition 10. Let S = (U, C ∪ D) be a decision table and U/D = {X1, X2, . . .,  Xr}. The approximate classified precision of C with respect to D
s defined as

APC (D) = |POSC (D)|∑r
i=1|CXi|

. (7)

efinition 11. Let S = (U, C ∪ D) be a decision table. The approximate classified quality of C with respect to D is defined as

AQ C (D) = |POSC (D)|
|U| . (8)

In rough set theory, by adopting reduction algorithms, one can get reducts for a given decision table. Then, based on a reduct, a set of
ecision rules can be generated from a decision table. Here briefly recalls the notions of decision rules [14,52], which will be used in the
ollowing development.

efinition 12. Let S = (U, C ∪ D) be a decision table. U/C = {X1, X2, . . .,  Xm}, U/D = {Y1, Y2, . . .,  Yn} and ∩Yj /= ∅. des(Xi) and des(Yj) are denoted
he descriptions of the equivalence classes Xi and Yj, respectively. A decision rule induced by C is formally defined as

Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D. (9)

In [53,54], certainty measure and support measure were introduced to evaluate a single decision rule. For a rule set, two measures
ere introduced to measure the certainty and consistency in [15]. However, it has been pointed out that those two measures cannot give

laborate depictions of the certainty and consistency for a rule set in [52]. To address this issue, Qian et al. [52] defined certainty measure
nd consistency measure to evaluate the certainty and consistency of a set of decision rules, which has attracted considerable attention
55].

efinition 13. Let S = (U, C ∪ D) be a decision table, U/C = {X1, X2, . . .,  Xm}, U/D = {Y1, Y2, . . .,  Yn}, and RULE = {Zij|Zij : des(Xi) → des(Yj), Xi ∈ U/C,
j ∈ U/D}. The certainty measure  ̨ of the decision rules on S is defined as

˛(S) =
m∑

i=1

n∑
j=1

|Xi ∩ Yj|2
|U||Xi|

. (10)

efinition 14. Let S = (U, C ∪ D) be a decision table, U/C = {X1, X2, . . .,  Xm}, U/D = {Y1, Y2, . . .,  Yn}, and RULE = {Zij|Zij : des(Xi) → des(Yj), Xi ∈ U/C,
j ∈ U/D}. The consistency measure  ̌ of the decision rules on S is defined as

ˇ(S) =
m∑

i=1

|Xi|
|U|

⎡
⎣1 − 4

|Xi|

n∑
j=1

|Xi ∩ Yj|2
|Xi|

(
1 − |Xi ∩ Yj|

|Xi|

)⎤
⎦ . (11)

For each data set in Table 2, 50% objects are selected randomly and replaced by new ones. Then, algorithms CAR and AREDx′ are employed
o update reduct of each varying data set. The generated reducts are shown in Tables 3, 5 and 7, and the evaluation results of reducts based
n the four evaluation measures are shown in Tables 4, 6 and 8.

• Comparison of CAR and AREDx′ based on complementary entropy
It is easy to note from Table 4 the values of the four evaluation measures of the generated reducts by using the two algorithms are very

lose, and even identical on some data sets. But, according to Table 3, the computational time of AREDx′ is much smaller than that of CAR. In
ther words, the performance and decision making of the reduct found by AREDx′ are very close to that of CAR, but AREDx′ is more efficient.
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Table 4
Comparison of evaluation measures based on complementary entropy.

Data sets CAR AREDx′

AQ AP  ̨  ̌ AQ AP  ̨ ˇ

Backup-large 1.0000 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000
Dermatology 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cancer  0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Mushroom 1.0000 1.0000 1.0000 1.0000 0.9996 0.9993 0.9993 0.9986
Letter 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Shuttle  0.9988 0.9977 0.9976 0.9953 0.9988 0.9977 0.9976 0.9953

Table 5
Comparison of reducts based on combination entropy.

Data sets CAR AREDx′

Reduct Time/s Reduct Time/s

Backup-large 1,4,7,8,10,13,16,22 4.5312 1,4,7,8,10,13,22 0.1366
Dermatology 1,2,3,4,5,14,16,18,19 5.7500 1,2,3,4,5,14,18,19 0.2030
Cancer 1,2,4,6 1.9843 1,2,4,6 0.4987
Mushroom 1,2,3,4,7,8,9,20 478.3700 1,2,3,4,7,8,9,20 37.3010
Letter  1,2,3,4,5,8,9,10,11,12,13,15,16 8825.6000 1,2,3,4,5,8,9,11,12,13,15,16 358.8100
Shuttle 1,2,3,5 19935.7000 1,2,3,5 5089.1000

Table 6
Comparison of evaluation measures based on combination entropy.

Data sets CAR AREDx′

AQ AP  ̨  ̌ AQ AP  ̨ ˇ

Backup-large 1.0000 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000
Dermatology 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cancer  0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Mushroom 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Letter 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Shuttle  0.9988 0.9977 0.9976 0.9953 0.9988 0.9977 0.9976 0.9953

Table 7
Comparison of reducts based on Shannon’s entropy.

Data sets CAR AREDx′

Reduct Time/s Reduct Time/s

Backup-large 1,4,5,6,7,8,10,16,22 5.3281 1,4,5,6,7,8,10,22 0.1368
Dermatology 1,4,5,9,12,14,17,18,21,22,26 5.7500 1,4,5,9,12,14,17,18,26 0.2030
Cancer 2,3,5,6 1.9843 2,3,5,6 0.5125
Mushroom 1,2,3,4,5,9,20,22 482.75 1,2,3,5,9,20,22 37.7510
Letter 1,2,3,4,5,8,9,10,11,12,13,15,16 8389.8000 1,2,3,4,5,8,9,10,11,13,16 358.8700
Shuttle  1,2,3,5 23698.5000 1,2,3,5 5130.6000

Table 8
Comparison of evaluation measures based on Shannon’s entropy.

Data sets CAR AREDx′

AQ AP  ̨  ̌ AQ AP  ̨ ˇ

Backup-large 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Dermatology 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cancer  0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Mushroom 1.0000 1.0000 1.0000 1.0000 0.9996 0.9993 0.9993 0.9986

H
a

o
e

Letter 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000
Shuttle  0.9988 0.9977 0.9976 0.9953 0.9988 0.9977 0.9976 0.9953

ence, the experimental results indicate that, compared with the classic reduction algorithm CAR based on complementary entropy, the
lgorithm AREDx′ can find a feasible reduct in a much shorter time.
• Comparison of CAR and AREDx′ based on combination entropy
From Tables 5 and 6, it is easy to get that algorithm AREDx′ can find a reduct which has same performance and decision making as those

f reduct generated by CAR in a much shorter time. Thus, compared with CAR based on combination entropy, the algorithm AREDx′ is more

fficient to deal with dynamic data sets.
• Comparison of CAR and AREDx′ based on Shannon’s entropy
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Table  9
Comparison of computational time based on complementary entropy.

Data sets CAR AREDx′

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Backup-large 4.6875 4.8594 5.0625 4.4688 4.5937 0.0312 0.0468 0.0781 0.1250 0.1406
Dermatology 5.3906 5.5781 5.6093 6.6250 5.7812 0.0468 0.0781 0.1250 0.1562 0.2031
Cancer 1.4843 1.5937 1.7187 1.9062 2.0000 0.0781 0.1718 0.2656 0.4062 0.5000
Mushroom 221.0100 283.7800 368.7100 411.2800 468.2600 4.3125 9.9218 17.9060 29.0000 37.3120
Letter 8133.2000 8283.2000 8630.1000 9260.2000 9602.6000 83.6250 140.2500 220.4800 292.6800 358.8100
Shuttle 12909.8000 13905.3000 14523.9000 16100.1000 17010.1000 776.1000 1707.3000 2979.3000 4098.7000 5122.1000

Table 10
Comparison of computational time based on combination entropy.

Data sets CAR AREDx′

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Backup-large 4.8125 4.8750 5.0468 4.4531 4.5312 0.0412 0.0568 0.0781 0.1193 0.1366
Dermatology 5.3906 5.4687 5.5156 5.7500 5.7500 0.0478 0.0781 0.1250 0.1563 0.2030
Cancer 1.4843 1.5781 1.7187 1.9062 1.9843 0.0781 0.1718 0.2656 0.4063 0.4987
Mushroom 222.7500 253.1500 371.0600 424.5100 478.3700 4.3712 9.9118 17.8600 28.9370 37.3010
Letter 7201.4000 7669.8000 8011.8000 8485.2000 8825.6000 83.5050 142.0500 200.4500 289.6600 358.8100
Shuttle 14122.1000 15468.9000 16236.1000 18896.9000 19935.7000 758.1100 1668.3000 3005.3000 4120.8000 5089.1000

Table 11
Comparison of computational time based on Shannon’s entropy.

Data sets CAR AREDx′

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Backup-large 4.5937 4.7343 5.0000 5.2187 5.3281 0.0402 0.0568 0.0781 0.1194 0.1368
Dermatology 5.1875 5.5781 4.2500 6.3125 6.6562 0.0478 0.0750 0.1250 0.1565 0.2036
Cancer 1.4843 1.6093 1.7500 1.8750 1.9843 0.0781 0.1709 0.2625 0.4063 0.5125
Mushroom 221.8400 256.3600 330.3100 370.5900 482.7500 4.3825 9.9288 17.8760 28.9370 37.7510
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Letter 7189.7000 7502.8000 7686.7000 8015.2000 8389.8000 83.6250 141.2500 223.4800 295.4800 358.8700
Shuttle 12968.3000 15126.7000 17356.1000 20123.3000 23698.5000 775.1000 1705.3000 2985.3000 4101.5000 5130.6000

According to experimental results in Tables 7 and 8, it is easy to see that performance and decision making of reducts generated by
REDx′ and CAR are relatively close. But, AREDx′ is more efficient than CAR. Hence, one can observe that algorithm AREDx′ can find a feasible
educt, and save lots of computational time.

.2. Efficiency analysis

The objective of experiments in this subsection is to further illustrate efficiency of algorithm AREDx′ . For each data set in Table 2,
0%, 20%, . . .,  50% objects are selected, in order, and are replaced by new ones. For each data set after each variation (from 10% to 50%),
lgorithms CAR and AREDx′ are used to update reducts, respectively. The efficiency of the two algorithms are demonstrated by comparing
heir computational time. Experimental results are shown in Tables 9–11. 10%, 20%, . . .,  50% in the tables mean 10%, 20%, . . .,  50% objects
ith data values being varied, respectively.

Based on the three entropies, it is easy to see from Tables 9–11 that, for each data set after each variation, the computational time of
lgorithm AREDx′ is much smaller than that of the classic reduction algorithm CAR, especially for the larger data sets Mushroom and Letter.
n addition, with the number of varying objects increasing (from 10% to 50%), the computational time of AREDx′ is always much smaller
han that of CAR. Hence, the experimental results show that algorithm AREDx′ is efficient to solving data sets with dynamically varying data
alues.

.3. Related discussion

This subsection summarizes the advantages of algorithm AREDx′ for generating reduct and offers explanatory comments. Obviously, in
bove two subsections, the experimental results better illustrate effectiveness and efficiency of AREDx′ .

Algorithm AREDx′ based on each of the three entropies can find a feasible reduct of a given dynamic decision table.
According to experimental results in Section 6.1,  it is easy to get that the decision performance of reducts generated by CAR and AREDx′

are very close, and even identical on some data sets. Hence, compared with the classic reduction algorithms based on the three entropies,
the reduct generated by AREDx′ can be considered as a feasible reduct.
Compared with the classic reduction algorithms (CAR) based the three entropies, AREDx′ finds a reduct in a very efficient manner.
Experimental results in Section 6.2 show that, based on the three entropies, the computational time of generating reduct by using
AREDx′ is much shorter than that of CAR.
The development in the paper may  make an important contribution to deal with large-scale dynamic data sets in applications.
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The experimental results show that the efficiency of AREDx′ is obvious in solving large-scale dynamic data sets. In reality, acquiring
nowledge from large-scale complicated data sets is still a challenging issue. It is our wish that this paper provides new techniques for
ealing with large-scale dynamic data sets.

. Conclusions and future work

Feature selection for dynamic data sets is still a challenging issue in the field of artificial intelligence. In this paper, based on three
epresentative entropies, an attribute reduction algorithm is proposed to update reduct of data sets with dynamically varying data values.
he experimental results show that, compared with the classic reduction algorithms based on the three entropies, this algorithm can
enerate a feasible reduct in a much shorter time. It is our wish that this study provides new views and thoughts on dealing with large-scale
nd complicated dynamic data sets in applications.

It should be pointed out that updating mechanisms of the three entropies introduced in this paper are only applicable when data are
aried one by one, whereas many real data may  vary in groups in application. This gives rise to many difficulties for the proposed feature
election algorithm to deal with. Hence, it is expected to carry out the following work to improve efficiency of selecting useful features in
ynamic data sets in the future:

Developing group updating mechanisms of entropies and relative feature selection algorithms.
Discernibility matrix is one of key concepts in rough set. Future work may  include analyzing discernibility matrix for data sets with
dynamically varying data values.
Designing efficient feature selection algorithms based on generalized rough set models such as incomplete rough set model, dominance
rough set model and multi-granulation rough set model.
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