
Information entropy, rough entropy and knowledge
granulation in incomplete information systems

J. LIANG†‡*, Z. SHI‡, D. LI† and M. J. WIERMAN{

†Key Laboratory of Ministry of Education for Computation Intelligence and Chinese Information
Processing, School of Computer and Information Technology, Shanxi University, Taiyuan 030006,

People’s Republic of China
‡Key Laboratory of Intelligent Information Processing, Institute of Computing Technology,

The Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
{Creighton University, Omaha, NE 68005, USA

(Received 15 April 2005; in final form 19 January 2006)

Rough set theory is a relatively new mathematical tool for use in computer applications in circumstances
that are characterized by vagueness and uncertainty. Rough set theory uses a table called an information
system, and knowledge is defined as classifications of an information system. In this paper, we introduce
the concepts of information entropy, rough entropy, knowledge granulation and granularity measure in
incomplete information systems, their important properties are given, and the relationships among these
concepts are established. The relationship between the information entropy E(A) and the knowledge
granulation GK(A) of knowledge A can be expressed as E(A) þ GK(A) ¼ 1, the relationship between the
granularity measureG(A) and the rough entropy Er(A) of knowledge A can be expressed asG(A) þ Er(A)
¼ log2jUj. The conclusions in Liang and Shi (2004) are special instances in this paper. Furthermore, two
inequalities 2 log2GK(A) # G(A) and Er(A) # log2(jUj(1 2 E(A))) about the measures GK, G, E and Er

are obtained. These results will be very helpful for understanding the essence of uncertainty
measurement, the significance of an attribute, constructing the heuristic function in a heuristic reduct
algorithm and measuring the quality of a decision rule in incomplete information systems.

Keywords: Incomplete information systems; Rough sets; Information entropy; Rough entropy;
Knowledge granulation

1. Introduction

Rough set theory, introduced by Pawlak (1991) and Pawlak et al. (1995), is a relatively new

soft computing tool for the analysis of a vague description of an object. The adjective

“vague”, referring to the quality of information, means inconsistency or ambiguity which

follows from information granulation. The rough set philosophy is based on the assumption

that with every object of the universe there is associated a certain amount of information

(data, knowledge), expressed by means of some attributes used for object description.

Objects having the same description are indiscernible (similar) with respect to the available

information. The indiscernibility relation thus generated constitutes a mathematical basis of

the rough set theory; it induces a partition of the universe into blocks of indiscernible objects,
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called elementary sets, that can be used to build knowledge about a real or abstract world

(Pawlak 1991, 1995, Zhang et al. 2001, Leung and Li 2003, Mi et al. 2004). The use of the

indiscernibility relation results in information granulation.

The entropy of a system, as defined by Shannon (1948) gives a measure of uncertainty about its

actual structure. It has been a useful mechanism for characterizing the information content in

various modes and applications in many diverse fields. Several authors (Beaubouef et al. 1998,

Düntsch and Gediga 1998, Klir and Wierman 1999, Chakik et al. 2004) have used Shannon’s

entropyand its variants tomeasureuncertainty in rough set theory.Anewdefinition for information

entropy in rough set theory is presented byLiang et al. (2002). Unlike the logarithmic behaviour of

Shannon entropy, the gain function considered there possesses the complement nature. Wierman

(1999) presented a well-justifiedmeasure of uncertainty, themeasure of granularity, alongwith an

axiomatic derivation. Its strong connections to the Shannon entropy and the Hartley measure of

uncertainty also lend strong support to its correctness and applicability. Furthermore, the

relationships among information entropy, rough entropy and knowledge granulation in complete

information systems have been established by Liang and Shi (2004) and Liang and Li (2005).

In the paper, the concepts of information entropy, rough entropy, knowledge granulation and

granularity measure in incomplete information systems are introduced. The relationships among

these concepts are established. The conclusions in Liang and Shi (2004) are generalized. These

results will be very helpful for understanding the essence of uncertainty measurement, the

significance of an attribute, constructing the heuristic function in a heuristic reduct algorithm and

measuring the quality of a decision rule in incomplete information systems.

2. Incomplete information system

An information system is a pair S ¼ (U, A), where

(i) U is a non-empty finite set of objects;

(ii) A is a non-empty finite set of attributes;

(iii) for every a [ A, there is a mapping a, a: U ! Va, where Va is called the value set of a.

Each subset of attributesP #Adetermines abinary indistinguishable relation IND(P) as follows

INDðPÞ ¼ {ðu; vÞ [ U £ Uj;a [ P; aðuÞ ¼ aðvÞ}:

It can be easily shown that IND(P) is an equivalence relation on the set U.

For P # A, the relation IND(P) constitutes a partition ofU, which is denoted byU/IND(P).

It may happen that some of the attribute values for an object are missing. For example, in

medical information systems there may exist a group of patients for which it is impossible to

perform all the required tests. These missing values can be represented by the set of all

possible values for the attribute or equivalence by the domain of the attribute. To indicate such

a situation, a distinguished value, a so-called null value is usually assigned to those attributes.

If Va contains a null value for at least one attribute a [ A, then S is called an incomplete

information system (Kryszkiewicz 1998, 1999), otherwise it is complete. Further on, we will

denote the null value by *.

Let S ¼ (U, A) be an information system, P # A an attribute set. We define a binary

relation on U as follows

SIMðPÞ ¼ {ðu; vÞ [ U £ Uj;a [ P; aðuÞ ¼ aðvÞ or aðuÞ ¼ * or aðvÞ ¼ *}:
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In fact, SIM(P) is a tolerance relation on U (Kryszkiewicz 1998), the concept of a

tolerance relation has a wide variety of applications in classification (Kryszkiewicz 1998).

It can be easily shown that SIMðPÞ ¼ >a[PSIMð{a}Þ:

Let SP(u) denote the set {v [ Uj(u, v) [ SIM(P)}. SP(u) is the maximal set of objects

which are possibly indistinguishable by P with u.

Let U/SIM(P) denote the family sets {SP(u)ju [ U}, the classification induced by P.

A member SP(u) from U/SIM(P) will be called a tolerance class or a granule of information. It

should be noticed that the tolerance classes in U/SIM(P) do not constitute a partition of U in

general. They constitute a covering ofU, i.e. SP(u) – B for every u [ U, and<u[USPðuÞ ¼ U:

Let S ¼ (U, A) be an information system, X # U and P # A. PX is the lower

approximation to X, if

PX ¼ {x [ UjSPðxÞ # X} ¼ {x [ XjSPðxÞ # X}:

�PX is the upper approximation to X, if

�PX ¼ {x [ UjSPðxÞ> X – B} ¼ <{SPðxÞjx [ X}:

As in complete information systems, PX is a set of objects that belong to X with certainty,

and �PX is a set of objects that possibly belong to X.

Example 1. Consider descriptions of several cars in table 1 (Liang and Xu 2002).

This is an incomplete information system, where U ¼ {u1, u2, u3, u4, u5}, and A ¼ {a1, a2,

a3, a4} with a1-price, a2-size, a3-engine, a4-max-speed. By computing, it follows that

U/SIM(A) ¼ {SA(u1), SA(u2), SA(u3), SA(u4), SA(u5)}, where SA(u1) ¼ {u1}, SA(u2) ¼ {u2},

SA(u3) ¼ SA{u4} ¼ {u3, u4}, SA(u5) ¼ {u5}.

Now we define a partial order on the set of all classifications of U. Let S ¼ (U, A) be an

incomplete information system, P, Q # A. We say thatQ is coarser than P (or P is finer than

Q), denoted by P d Q, if and only if SP(ui) # SQ(ui) for ;i [ {1; 2; . . .; jUj}. If P d Q and

P – Q, we say that Q is strictly coarser than P (or P is strictly finer than Q) and denoted by

P a Q.

In fact, P a Q , for ;i [ {1; 2; . . .; jUj}, we have that SP(ui) # SQ(ui), and

’j [ {1; 2; . . .; jUj}, such that SP(uj) , SQ(uj).

3. Information entropy and knowledge granulation

In this section, information entropy and knowledge granulation in an incomplete information

system are introduced. The properties of these are discussed respectively, and the relationship

between them is established.

Table 1. The information system about the car.

Car Price Size Engine Max-speed

u1 Low Compact * Low
u2 Low Full Diesel High
u3 High Full Diesel Medium
u4 High * Diesel Medium
u5 Low Full Gasoline High
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Let S ¼ (U, A) be an information system. By U/SIM(A) ¼ {SA(u)ju [ U}, we denote the

classification induced by A. Of particular interest is the discrete classification

ÂðUÞ ¼ {SAðuÞ ¼ {u}ju [ U} ð1Þ

and the indiscrete classification

�AðUÞ ¼ {SAðuÞ ¼ Uju [ U} ð2Þ

or just Â and �A if there is no confusion as to the domain set involved.

Definition 1. Let S ¼ (U,A) be an incomplete information system. The information entropy

of knowledge A is defined as

EðAÞ ¼
XjUj

i¼1

1

jUj
12

jSAðuiÞj

jUj

� �
ð3Þ

where

1 2
jSAðuiÞj

jUj

represents the probability of the complement of SA(ui) within the universe U.

If U=SIMðAÞ ¼ Â, then the information entropy of knowledge A achieves the maximum

value 1 2 1/jUj.

If U=SIMðAÞ ¼ �A, then the information entropy of knowledge A achieves the minimum

value 0.

Obviously, for an incomplete information system S ¼ (U, A), we have that

0 # E(A) # 1 2 1/jUj.

Proposition 1. Let S ¼ (U, A) be a complete information system, U/IND(A) ¼ {X1,

X2,. . .,Xm}. Then the information entropy of knowledge A degenerates into

EðAÞ ¼
Xm
i¼1

jXij

jUj
12

jXij

jUj

� �
: ð4Þ

Proof. Suppose that U/SIM(A) ¼ {SA(u1), SA(u2), . . ., SA(ujUj)} and Xi ¼ {ui1; ui2; . . .; uisiÞ}

ði ¼ 1; 2; . . .;mÞ. It follows that jXij ¼ si and
Pm

i¼1 jsij ¼ jUj.

It is easy to know that Xi ¼ SAðui1Þ ¼ SAðui2Þ ¼ · · · ¼ SAðuisi Þ and jXij ¼ jSAðui1Þj ¼

jSAðui2Þj ¼ · · · ¼ jSAðuisiÞj for i ¼ 1, 2, . . ., m. Then, we have that

jXij

jUj
1 2

jXij

jUj

� �
¼

1

jUj
1 2

jSAðui1Þj

jUj

� �
þ

1

jUj
1 2

jSAðui2Þj

jUj

� �
þ · · ·

þ
1

jUj
1 2

jSAðuisiÞj

jUj

� �
:
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Hence

Xm
i¼1

jXij

jUj
1 2

jXij

jUj

� �
¼
Xm
i¼1

1

jUj
1 2

jSAðui1Þj

jUj

� �
þ

1

jUj
1 2

jSAðui2Þj

jUj

� �
þ · · ·

�

þ
1

jUj
1 2

jSAðuisiÞj

jUj

� ��

¼
1

jUj
1 2

jSAðu1Þj

jUj

� �
þ

1

jUj
1 2

jSAðu2Þj

jUj

� �
þ · · ·

�

þ
1

jUj
1 2

jSAðujUjÞj

jUj

� ��

¼
XjUj

i¼1

1

jUj
1 2

jSAðuiÞj

jUj

� �
¼ EðAÞ:

This completes the proof. A

In Liang et al. (2002), the information entropy of a complete information system S ¼ (U,A)

with U/IND(A) ¼ {X1, X2, . . . , Xm} is defined as

Xm
i¼1

jXij

jUj
1 2

jXij

jUj

� �

Proposition (1) states that the information entropy in complete information systems is a special

instance of that in incomplete information systems. It means that the definition of information

entropy of incomplete information systems is a consistent extension to that of complete

information systems.

Proposition 2. Let S ¼ (U, A) be an incomplete information system, P, Q # A. If P a Q,

then E(Q) , (E(P).

Proof. From P a Q, it follows that SP(ui) # SQ(ui) ð;i [ {1; 2; . . .; jUj}Þ, and ’j [

{1; 2; . . .; jUj} such that SP(uj) , SQ(uj). By jSP(uj)j , (jSQ(uj)j, we have that

EðQÞ ¼
XjUj

i¼1

1

jUj
12

jSQðuiÞj

jUj

� �
,
XjUj

i¼1

1

jUj
12

jSPðuiÞj

jUj

� �
¼ EðPÞ:

This completes the proof. A

Proposition (2) states that the information entropy of knowledge increases as tolerance

classes become smaller through finer classification.
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Definition 2. Let S ¼ (U, A) be an incomplete information system. The granulation of

knowledge A is defined as

GKðAÞ ¼
1

jUj
2

XjUj

i¼1

jSAðuiÞj ¼
1

jUj

XjUj

i¼1

jSAðuiÞj

jUj
ð5Þ

where jSA(ui)j/jUj represents the probability of tolerance class SA(ui) within the universe U.

If U=SIMðAÞ ¼ Â, then the granulation of knowledge A achieves the minimum value

jUj/jUj2 ¼ 1/jUj.

If U=SIMðAÞ ¼ �A, then the granulation of knowledge A achieves the maximum value

jUj2/jUj2 ¼ 1.

Obviously, for an incomplete information system S ¼ (U, A), we have that 1/jUj #

GK(A) # 1. Knowledge granulation can represent the discernibility ability of knowledge, the

smaller GK(A) is, the stronger its discernibility ability is.

Proposition 3. Let S ¼ (U, A) be a complete information system, U/IND(A) ¼ {X1, X2, . . . ,

Xm}. Then the granulation of knowledge A degenerates into

GKðAÞ ¼
1

jUj
2

Xm
i¼1

jXij
2
: ð6Þ

Proof. Suppose that U=SIMðAÞ ¼ {SAðu1Þ; SAðu2Þ; . . .; SAðujUjÞ} and Xi ¼ {ui1; ui2; . . .;

uisiÞ}. It follows that jXij ¼ si and jXij ¼ si and
Pm

i¼1 jsij ¼ jUj.

It is easy to show that Xi ¼ SAðui1Þ ¼ SAðui2Þ ¼ · · · ¼ SAðuisiÞ and jXij ¼ jSAðui1Þj ¼

jSAðui2Þj ¼ · · · ¼ jSAðuisiÞj for i ¼ 1; 2; . . .;m.

Noticing that

jXij
2
¼ S2i ¼ jSAðui1Þj þ jSAðui2Þj þ · · ·þ jSAðuisiÞj

therefore

1

jUj
2

Xm
i¼1

jXij
2
¼

1

jUj
2

Xm
i¼1

ðjSAðui1Þj þ jSAðui2Þj þ · · ·þ jSAðuisiÞjÞ

¼
1

jUj
2
ðjSAðu1Þj þ jSAðu2Þj þ · · ·þ jSAðujUjÞjÞ

¼
1

jUj
2

XjUj

i¼1

jSAðuiÞj ¼ GKðAÞ:

This completes the proof. A

In Liang and Shi (2004), the knowledge granulation in a complete information system

S ¼ (U, A) with U/IND(A) ¼ {X1, X2, . . . , Xm} is defined as

1

jUj
2

Xm
i¼1

jXij
2

Proposition (3) states that the knowledge granulation in complete information systems is a

special instance of that in incomplete information systems. It means that the definition
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of knowledge granulation in incomplete information systems is a consistent extension to that

of complete information systems.

Proposition 4. Let S ¼ (U, A) be an incomplete information system, P, Q # A. If P a Q,

then GK(P) , (GK(Q).

Proof. From P a Q, it follows that SPðuiÞ # SQðuiÞ ð;i [ {1; 2; . . .; jUj}Þ; and ’j [

{1; 2; . . .; jUj} such that SP(uj) , SQ(uj). By jSP(uj)j , (jSQ(uj)j, we have that

GKðPÞ ¼
1

jUj
2

XjUj

i¼1

jSPðuiÞj ,
1

jUj
2

XjUj

i¼1

jSQðuiÞj ¼ GKðQÞ:

This completes the proof. A

Proposition (4) states that knowledge granulation decreases as tolerance classes become

smaller through finer classification.

Proposition 5. For arbitrary incomplete information system S ¼ (U, A), we have that

EðAÞ þ GKðAÞ ¼ 1: ð7Þ

Proof. Let S ¼ (U,A) be an incomplete information system,U/SIM(A) ¼ {SA(u1), SA(u2), . . .,

SA(ujUj)}. By the definitions 1 and 2,

EðAÞ ¼
XjUj

i¼1

1

jUj
12

jSAðuiÞj

jUj

� �
¼
XjUj

i¼1

1

jUj
2
XjUj

i¼1

jSAðuiÞj

jUj
2

¼ 12 GKðAÞ:

It follows that E(A) þ GK(A) ¼ 1. This completes the proof. A

Proposition (5) shows that information entropy E(A) and knowledge granulation GK(A)

possess the same capability on depicting the uncertainty of an information system.

Example 2. For table I, U ¼ {u1, u2, u3, u4, u5}, A ¼ {price, size, engine, max-speed},

U/SIM(A) ¼ {{u1}, {u2}, {u3, u4}, {u3, u4}, {u5}}. By computing, it follows that

EðAÞ ¼
XjUj

i¼1

1

jUj
12

jSAðuiÞj

jUj

� �

¼
1

5
12

1

5

� �
þ 12

1

5

� �
þ 12

2

5

� �
þ 12

2

5

� �
þ 12

1

5

� �� �
¼

18

25

and

GKðAÞ ¼
1

jUj
2

XjUj

i¼1

jSAðuiÞj ¼
1

25
ð1þ 1þ 2þ 2þ 1Þ ¼

7

25
:

It is clear that E(A) þ GK(A) ¼ 1, i.e. the sum of the information entropy and the

granulation of knowledge A is constant 1.
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4. Granularity measure and rough entropy

In this section, the granularity measure and the rough entropy of an incomplete information

system are introduced. The properties of them are discussed respectively. The relationship

between them is established.

Definition 3. Let S ¼ (U,A) be an incomplete information system. The granulation measure

of S is defined as

GðAÞ ¼ 2
XjUj

i¼1

1

jUj
log2

jSAðuiÞj

jUj
ð8Þ

where G:R ! [0, 1) is a function from the set R of all classifications U/SIM(A) to the set of

non-negative real numbers and (jSA(ui)j)/jUj denotes the probability of tolerance class SA(ui)

within the universe U.

The granularity measure, G(A), measures the uncertainty associated with the prediction of

outcomes where elements of each class SA(ui) of U/SIM(A) are indistinguishable.

If U=SIMðAÞ ¼ Â, then the granularity measure G(A) achieves the maximum value

log2jUj.

If U=SIMðAÞ ¼ �A, then the granularity measure G(A) achieves the minimum value 0.

Obviously, for an information system S ¼ (U, A), we have that 0 # G(A) # log2jUj.

Proposition 6. Let S ¼ (U, A) be a complete information system and U/IND(A) ¼ {X1,

X2,. . .,Xm}. Then the granularity measure of S degenerates into

GðAÞ ¼ 2
Xm
i¼1

jXij

jUj
log2

jXij

jUj
: ð9Þ

Proof. Suppose that U=SIMðAÞ ¼ {SAðu1Þ; SAðu2Þ; . . .; SAðujUjÞ} and Xi ¼

{ui1; ui2; . . .; uisi} ði ¼ 1; 2; . . .;mÞ. It follows that jXij ¼ si and
Pm

i¼1 jsij ¼ jUj.

It is easy to know that Xi ¼ SAðui1Þ ¼ SAðui2Þ ¼ · · · ¼ SAðuisi Þ and jXij ¼ jSAðui1Þj ¼

jSAðui2Þj ¼ · · · ¼ jSAðuisiÞj for i ¼ 1; 2; . . .;m.

Then, we have that

jXij

jUj
log2

jXij

jUj
¼

1

jUj
log2

jSAðui1Þj

jUj
þ

1

jUj
log2

jSAðui2Þj

jUj
þ · · · þ

1

jUj
log2

jSAðuisiÞj

jUj
:

Hence

2
Xm
i¼1

jXij

jUj
log2

jXij

jUj
¼2

Xm
i¼1

1

jUj
log2

jSAðui1Þj

jUj
þ

1

jUj
log2

jSAðui2Þj

jUj
þ · · ·þ

1

jUj
log2

jSAðuisiÞj

jUj

� �

¼2
1

jUj
log2

jSAðu1Þj

jUj
þ

1

jUj
log2

jSAðu2Þj

jUj
þ · · ·þ

1

jUj
log2

jSAðujUjÞj

jUj

� �

¼2
XjUj

i¼1

1

jUj
log2

jSAðuiÞj

jUj
¼ GðAÞ:

This completes the proof. A
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In Chakik et al. (2004) and Wierman (1999), the granularity measure of a complete

information system S ¼ (U, A) with U/IND(A) ¼ {X1, X2, . . ., Xm} is defined as

2
Pm

i¼1
jXij
jUj

log2
jXij
jUj

. Proposition (6) states that the granularity measure of complete

information systems is a special instance of incomplete information systems. It means that

the definition of the granularity measure of incomplete information systems is a consistent

extension to that of complete information systems.

Proposition 7. Let S ¼ (U, A) be an incomplete information system, P, Q # A. If P a Q,

then G(Q) , (G(P).

Proof. From P a Q, it follows that SPðuiÞ # SQðuiÞ ð;i [ {1; 2; . . .; jUj}Þ, and ’j [

{1; 2; . . .; jUj} such that SP(uj) , SQ(uj). By jSP(uj)j , (jSQ(uj)j, we have that

GðQÞ ¼ 2
XjUj

i¼1

1

jUj
log2

jSQðuiÞj

jUj
, 2

XjUj

i¼1

1

jUj
log2

jSPðuiÞj

jUj
¼ GðPÞ:

This completes the proof. A

Proposition (7) states that the granularity measure increases as tolerance classes become

smaller through finer classification.

The concept of rough entropy has been introduced in rough sets, rough relational databases

and information systems (Beaubouef et al. 1998, Liang and Shi 2004). Now we introduce a

definition of rough entropy of knowledge in incomplete information systems.

Definition 4. Let S ¼ (U, A) be an incomplete information system, the rough entropy of

knowledge A is defined as

ErðAÞ ¼ 2
XjUj

i¼1

1

jUj
log2

1

jSAðuiÞj
ð10Þ

where 1/(jSA(ui)j) represents the probability of an element within the tolerance class SA(ui).

If U=SIMðAÞ ¼ Â, then the rough entropy of knowledge A achieves the minimum value 0.

If U=SIMðAÞ ¼ �A, then the rough entropy of knowledge A achieves the maximum value

log2jUj.

Obviously, for an information system S ¼ (U, A), we have that 0 # Er(A) # log2jUj.

Proposition 8. Let S ¼ (U, A) be a complete information system and U/IND(A) ¼ {X1, X2,

. . ., Xm}. Then the rough entropy of knowledge A degenerates into

ErðAÞ ¼ 2
Xm
i¼1

jXij

jUj
log2

1

jXij
: ð11Þ

Proof. Suppose that U=SIMðAÞ ¼ {SAðu1Þ; SAðu2Þ; . . .; SAðujUjÞ} and Xi ¼ {ui1; ui2; . . .;

uisi} (i ¼ 1, 2, . . ., m). It follows that jXij ¼ si and
Pm

i¼1 jsij ¼ jUj.

It is easy to know that Xi ¼ SAðui1Þ ¼ SAðui2Þ ¼ · · · ¼ SAðuisi Þ and jXij ¼ jSAðui1Þj ¼

jSAðui2Þj ¼ · · · ¼ jSAðuisiÞj for i ¼ 1, 2, . . ., m.
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Then, we have that

jXij

jUj
log2

1

jXij
¼

1

jUj
log2

1

jSAðui1Þj
þ

1

jUj
log2

1

jSAðui2Þj
þ · · · þ

1

jUj
log2

1

jSAðuisiÞj
:

Hence

2
Xm
i¼1

jXij

jUj
log2

1

jXij
¼2

Xm
i¼1

1

jUj
log2

1

jSAðui1Þj
þ

1

jUj
log2

1

jSAðui2Þj
þ · · ·þ

1

jUj
log2

1

jSAðuisi Þj

� �

¼2
1

jUj
log2

1

jSAðu1Þj
þ

1

jUj
log2

1

jSAðu2Þj
þ · · ·þ

1

jUj
log2

1

jSAðujUjÞj

� �

¼2
XjUj

i¼1

1

jUj
log2

1

jSAðuiÞj

¼ ErðAÞ:

This completes the proof. A

In Liang and Shi (2004), the rough entropy of knowledge in a complete information

system S ¼ (U, A) with U/IND(A) ¼ {X1, X2, . . ., Xm} is defined as

2
Xm
i¼1

jXij

jUj
log2

1

jXij

Proposition (8) states that the rough entropy in complete information systems is a special

instance of that in incomplete information systems. It means that the definition of the rough

entropy in incomplete information systems is a consistent extension to that in complete

information systems.

Proposition 9. Let S ¼ (U, A) be an incomplete information system, P, Q # A. If P a Q,

then Er(P) a Er(Q).

Proof. From P a Q, it follows that SPðuiÞ # SQðuiÞ ð;i [ {1; 2; . . .; jUj}Þ, and ’j [

{1; 2; . . .; jUj} such that SP(uj) , SQ(uj). By jSP(uj)j a jSQ(uj)j, we have that

ErðPÞ ¼ 2
XjUj

i¼1

1

jUj
log2

1

jSPðuiÞj

, 2
XjUj

i¼1

1

jUj
log2

1

jSQðuiÞj

¼ ErðQÞ

This completes the proof. A

Proposition (9) states that the rough entropy of knowledge decreases as tolerance classes

become smaller through finer classification.

Proposition 10. For arbitrary incomplete information system S ¼ (U, A), we have that

GðAÞ þ ErðAÞ ¼ log2jUj: ð12Þ
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Proof. Let S ¼ (U,A) be an incomplete information system,U/SIM(A) ¼ {SA(u1), SA(u2), . . .,

SA(ujUj)}. By the definitions 3 and 4

GðAÞ ¼ 2
XjUj

i¼1

1

jUj
log2

jSAðuiÞj

jUj

¼ 2
XjUj

i¼1

1

jUj
ðlog2jSAðuiÞj2 log2jUjÞ

¼ 2 2
XjUj

i¼1

1

jUj
log2

1

jSAðuiÞj

 !
þ log2jUj

XjUj

i¼1

1

jUj

¼ 2ErðAÞ þ log2jUj:

i.e.

GðAÞ þ ErðAÞ ¼ log2jUj:

This completes the proof. A

Example 3. Continued from example 2, by computing, it follows that

GðAÞ ¼ 2
XjUj

i¼1

1

jUj
log2

jSAðuiÞj

jUj

¼ 2
1

5
log2

1

5
þ log2

1

5
þ log2

2

5
þ log2

2

5
þ log2

1

5

� �

¼ log25 2
2

5
:

and

ErðAÞ ¼ 2
XjUj

i¼1

1

jUj
log2

1

jSAðuiÞj

¼ 2
1

5
log2

1

1
þ log2

1

1
þ log2

1

2
þ log2

1

2
þ log2

1

1

� �

¼
2

5
:

It is clear that G(A) þ Er(A) ¼ log25 ¼ log2jUj, i.e. the sum of the granulation and the

rough entropy of knowledge A is the constant log2jUj.

5. Two inequalities about the measures GK, G, E and Er

By using Jensen’s inequality two important inequalities about knowledge granulation GK,

granularity measure G, rough entropy Er and information entropy E are established in this

section.
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Proposition 11. For arbitrary incomplete information system S ¼ (U, A), we have the

following inequalities

2log2GKðAÞ # GðAÞ ð13Þ

ErðAÞ # log2ðjUjð12 EðAÞÞÞ: ð14Þ

Proof. Since f(x) ¼ 2 log2(x) is twice differentiable with

f 00ðxÞ ¼
k

x2

f(x) is a convex function as k ¼ log2e s 0. By Definitions 2 and 3 and Jensen’s inequality we

have that

2log2GKðAÞ ¼ 2log2

1

jUj
2

XjUj

i¼1

jSAðuiÞj

 !

¼ 2log2

XjUj

i¼1

1

jUj

jSAðuiÞj

jUj

 !

#
XjUj

i¼1

1

jUj
2log2

jSAðuiÞj

jUj

� �

¼ 2
XjUj

i¼1

1

jUj
log2

jSAðuiÞj

jUj

� �

¼ GðAÞ:

Therefore, equation (13) holds.

By using the equalities GK(A) þ E(A) ¼ 1 and G(A) þ Er(A) ¼ log2jUj, the formula (14)

can be easily obtained. This completes the proof. A

Remark. It should be noted that the formulae (13) and (14) also hold for arbitrary complete

information system.

Example 4. Continued from examples 2 and 3. We have that E(A) ¼ 8/25, GK(A) ¼ 7/25,

GðAÞ ¼ log252
2

5

and

ErðAÞ ¼
2

5
:

From (7/5)5 $ 4, it is easy to conclude that

2log2

7

25
# log25 2

2

5

i.e. 2 log2GK(A) # G(A).
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From

ErðAÞ ¼
2

5
# log2

17

5
¼ log25 12

8

25

� �
¼ log2ðjUjð12 EðAÞÞÞ

it follows that Er(A) # log2(jUj(1-E(A))).

6. Conclusions

In this paper, the concepts of information entropy, rough entropy and knowledge granulation

in incomplete information systems are introduced, their important properties are given, the

relationships among those concepts are established. The relationship between the

information entropy E(A) and the knowledge granulation GK(A) of knowledge A can be

expressed as E(A) þ GK(A) ¼ 1, the relationship between the granularity measure G(A) and

the rough entropy Er(A) of knowledge A can be expressed as G(A) þ Er(A) ¼ log2jUj.

Furthermore, two inequalities 2log2GKðAÞ # GðAÞ and ErðAÞ # log2ðjUjð12 EðAÞÞÞ about

the measures GK, G, E and Er are obtained. Information entropy, rough entropy and

knowledge granulation characterize the significance of knowledge in different ways, and

make more profound explanation. These results have a wide variety of applications, such as

measuring the significance of attributes, constructing decision trees and measuring

uncertainties of rules, etc. They will play a significant role in further researches in incomplete

information systems.
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