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Rough set theory is a relatively new mathematical tool for computer applications in
circumstances characterized by vagueness and uncertainty. In this paper, we address
uncertainty of rough sets for incomplete information systems. An axiom definition of
knowledge granulation for incomplete information systems is obtained, under which a
measure of uncertainty of a rough set is proposed. This measure has some nice prop-
erties such as equivalence, maximum and minimum. Furthermore, we prove that the
uncertainty measure is effective and suitable for measuring roughness and accuracy of
rough sets for incomplete information systems.
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1. Introduction

The entropy of a system as defined by Shannon! gives a measure of uncertainty
about its actual structure. It is a powerful mechanism for characterizing information
contents in various modes and applications in many diverse fields.

In rough set theory (see, e.g.?), data analysis is based on the conviction that
the knowledge about the world is available only up to certain granularity, and that
the granularity can be expressed mathematically by partitions and their associ-
ated equivalence relations. However, the existing uncertainty measure for rough
sets has not taken into consideration the granularity of the partition induced by
an equivalence relation. In some cases, the uncertainty of a rough set cannot be
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well characterized by the existing measure. The applications of rough sets in some
domains are hence limited. Several authors (see, e.g.>*?)
and its variants to measure uncertainty in rough set theory. A new definition for

used Shannon’s entropy

information entropy in rough set theory is presented in®. Unlike the logarithmic
behavior of Shannon entropy, the gain function considered there possesses the com-
plement nature. Wierman’ presented a well justified measure of uncertainty, the
measure of granularity, along with an axiomatic derivation. Its strong connections
to the Shannon entropy and the Hartley measure of uncertainty also lend strong
support to its correctness and applicability. Furthermore, the relationships among
information entropy, rough entropy and knowledge granulation in complete informa-
tion systems are established in®?. For rough sets in complete information systems,
measures of uncertainty and rough relation databases were addressed in'® and an
improved uncertainty measure for rough sets was given in'!', which measures uncer-
tainty of rough sets using excess entropy. However, it is difficult to generalize the
results in complete information systems to incomplete information systems.

In order to measure uncertainty of rough sets for incomplete information sys-
tems, a axiom definition of knowledge granulation is obtained in this paper, under
which the knowledge granulation in® becomes a special form. Based on knowledge
granulation for rough sets, a measure of uncertainty is proposed in this paper. This
measure overcomes the limitation of the existing uncertainty measure and hence can
be used to measure roughness and accuracy of rough sets for incomplete information
systems.

The rest of this paper is organized as follows. Section 2 gives a brief introduc-
tion to an incomplete information system. We discuss limitations of the existing
uncertainty measure for rough sets in Section 3. Knowledge granulation is studied
in Section 4. A measure of uncertainty of a rough set is proposed and a case study is
carried out to illustrate the uncertainty measure in Section 5. Finally, Experimental
results are summarized in Section 6.

2. An Incomplete Information System

An information system is a pair S = (U, A), where,

(1) U is a non-empty finite set of objects;

(2) A is a non-empty finite set of attributes; and

(3) for every a € A, there is a mapping a, a : U — V, where V, is called the
value set of a.

Each subset of attributes P C A determines a binary indistinguishable relation
IND(P) as follows:

IND(P) = {(u,v) € U x U| Va € P,a(u) = a(v)}.

It can be easily shown that TN D(P) is an equivalence relation on the set U.
For P C A, the relation IND(P) constitutes a partition of U, which is denoted
by U/IND(P).
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In an information system, it may occur that some of the attribute values for
an object are missing. For example, in a medical information systems there may
be a group of patients for which it is impossible to perform all the required tests.
These missing values can be represented by the set of all possible values for the
attribute or equivalence by the domain of the attribute. To indicate such a situation,
a distinguished value (the so-called null value) is usually assigned to those attributes.

If V, contains a null value for at least one of the attribute a € A, then S is
called an incomplete information system (see, e.g.'?13), otherwise it is a complete
information system. In the following discussions, we will denote the null value by x*.

For any given information system S = (U, A) and an attribute subset P C A,
We define a binary relation on U as follows:

SIM(P) = {(u,v) € U xU| Va € P,a(u) = a(v) or a(u)=x or a(v)=x*}.

In fact, SIM(P) is a similarity relation on U, i.e., it satisfy reflexive and symmetric
relations'?. The concept of a similarity relation has a wide variety of applications
in classifications'2. It can be easily shown that

SIM(P) = (] SIM({a}).
acP

Let Sp(u) denote the object set {v € Ul|(u,v) € SIM(P)}. Then Sp(u) is the
maximal set of objects which are possibly indistinguishable by P with u, called
similarity class about wu.

Let U/SIM (P) denote a classification, which is the family set {Sp(u)|u € U}.
The elements of U/SIM(P) constitute a covering of U, i.e., for every u € U,
Sp(u) # 0, and J,cpy Sp(u) = U. U/SIM(P) is called a knowledge in U , and
every similarity class Sp(u) is called a knowledge granule. Knowledge granulation
is the average measure of knowledge granules (similarity classes) in P.

Example 1. Consider the descriptions of several cars in Table 1.

Table 1. The information system about car'4.

Car  Price Size Engine  Max-Speed

uq high full high low
us low full * low
us3 * compact * high
m high full * high
us * full * high
U low full high *

This is an incomplete information system, where U = {u1, ua, us, uq, s, ug },
and A = {a1, a2, a3, a4} with a;=Price, ay=Size, as=Engine, ay=Max-Speed.
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It is easy to obtain that
U/SIM(A> = {SA(ul)v SA(U2)7 SA(U3)7 SA(u4>7 SA(U5)> SA(UG)}v

where Sa(uy) = {ui}, Sa(uz) = {ug,us}, Sa(us) = {us}, Sa(us) = {ua,us},
Sa(us) = {ua,us,us}, Salus) = {ue, us, ug}.

In the studies of an incomplete information system, a particular interest is given
to the discrete classification w(U) = {{z}|x € U}, and the indiscrete classification
0(U) ={U}, or just w and ¢ if there is no confusion as to the domain set involved.

For any given incomplete information system S = (U, A), P C A and X C U,
we can define a lower approximation of X in U and a upper approximation of X in

U by

PX = {z € UlSp(x) € X} = {z € X|Sp(z) C X}
and

PX = {z € UlSp(x) N X # ¢} = U{Sp(z)|z € X}.

As what in a complete information system, PX is a set of objects that belong to
X with certainty, while PX is a set of objects that possibly belong to X.

Now we define a partial order on the set of all the classifications of U. Let
P,Q C A. We say that @ is coarser than P (or P is finer that @), denoted by
P < @, if and only if Sp(u;) € Sgo(u;) for Vi € {1,2,---,|U|}. If P < Q and
P #Q,and 3j € {1,2,---,|U|} such that Sp(u;) C So(u;), then we say that Q is
strictly coarser than P (or P is strictly finer than @) and denoted by P < Q.

3. An Existing Measure for Rough Sets and Its Limitation

Pawlak? discusses two numerical characterizations of uncertainty of a rough set: ac-
curacy and roughness. The accuracy measures the degree of completeness of knowl-
edge about the given rough set X, and is defined by the ratio of the cardinalities of
the lower and upper approximation sets of X as follows:
_ |RX]|

- [RX|

The roughness represents the degree of incompleteness of knowledge about the

(1)

ar(A)

rough set, and is calculated by subtracting the accuracy from 1:
pr(A) =1—agr(A). (2)

These measures require knowledge of the number of elements in each of the ap-
proximation sets and are good metrics for uncertainty as it arises from the boundary
region, implicitly taking into account equivalence classes as they belong entirely or
partially to the set. However, accuracy and roughness measures do not necessarily
provide us with information on the uncertainty related to the granularity of the
indiscernibility relation.
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Example 2. (Continued from Example 1). Let P = {a2, a4}, then,
U/SIM(P) = {Sp(u1), Sp(uz), Sp(us), Sp(ua), Sp(us), Sp(us)},

where Sp(uy) = {u1,uz,us}, Sp(uz) = {u1,us,us}, Sp(us) = {us}, Sp(ug) =
{ua,us,ue}, Sp(us) = {ua, us,ue}, Sp(ug) = {u1, ua, us, us, ug}-
It can be easily observed that

U/SIM(A) c U/SIM(P).
Considering the set X = {u1, ua, uy, ug}, we have that
AX = PX = {uj,us} and AX = PX = {uy, ua, Uy, Us, g }.
Thus,
as(X)=ap(X)=04and psa(X) = pp(X) =0.6.

Notice that, in Example 2, an inclusion relation exists in two knowledge repre-
sentation systems U/STM(A) and U/SIM(P) , but the same accuracy or roughness
can be obtained for the rough set X. Therefore, it is necessary for us to introduce
a more accurate measure for rough sets. The problem of measuring uncertainty of
rough sets has been solved for a complete information system. However, it remains
unsolved for an incomplete information system.

4. Knowledge Granulation

In the view of granular computing, a granule is a dump of objects in the universe of
discourse, drawn together by indistinguishability, similarity, proximity, or function-
ality. In fact, knowledge granulation is the average measure of knowledge granules
on the universe and also represents the ability of classifications.

In fact, the granulation gives an easily understandable description for partition-
ing of the universe. In 1979, the problem of fuzzy information granule was introduced
by Zadeh!'®. Especially, several measures in an information system closely associ-
ated with granular computing such as granulation measure, information entropy,
rough entropy and knowledge granulation and their relationships were discussed
in®. However, there exists no unified description for knowledge granulation. In the
following, an axiom definition of knowledge granulation is given. We prove that the
above granular measure is a special form of the axiom definition.

Definition 1. For any given incomplete information system S = (U, A), let G
be a mapping from the power set of A to the set of real numbers. We say that G
is a knowledge granulation in an incomplete information system S = (U, A) if G
satisfies the following conditions:

(1) G(P) > 0 for any P C A (Non-negativity);

(2) G(P) = G(Q) for any P,Q C A if there is a bijective map-
ping f : U/SIM(P) — U/SIM(Q) such that |Sp(uw;)| = |f(Sp(u;))]
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(Vi € {1,2,---,|Ul}), where U/SIM(P) = {Sp(u1),Sp(uz2),---,Sp(ujy|)} and
U/SIM(Q) = {Sq(u1), Sq(u2), -+, Sq(w)}; and
(3) G(P) < G(Q) for any P,Q C A with P < @ (Monotonicity).

In (8), a different kind of knowledge granulation was given, which is as follows.

Definition 2%. Granulation of knowledge of A is given by
1 U
GK(A) = [GiE Z |Sa(us)l, (3)
i=1

where U/SIM(A) = {Sa(u1), Sa(uz), -+, Sa(uju))}-

Obviously, when S = (U, A) is an incomplete information system, 1/|U| <
GK(R) <1 for any subset R of A.

Proposition 1. GK in Definition 2 is a knowledge granulation under definition 1.

Proof. It suffices to show that GK meets all the conditions in Definition 1.

(1) Obviously, GK(R) is non-negative.

(2) Let P,Q C A, U/SIM(P) = {Sp(w),Sp(uz),---,Sp(ujy))} and
U/SIM(Q) = {Sq(u1),Sq(u2),---,Sq(wu))}. Suppose that there be a bijiec-
tive mapping function f : U/SIM(P) — U/SIM(Q) such that |Sp(u;)| =
|f(Sp(u:) (Vi € {1,2,---,|Ul}). Let f(Sp(u;) = S§(u;), where S§(u;) €
{Sq(u1), Sq(us2),---,Sq(ujw)}. Then, we have that

U]

GK(P) = |[}‘2 ; |SP(uz)|

Il
§>~
[*
M=

—

=l
A
s

I
Q E»—l
=
QI
I3
=

(3) Let P,Q C A satisfying P < Q. Then, for Vi € {1,2,---,|U|}, Sp(u;) C
So(us), ie., [Sp(ui)| < [Sq(us)l-
Hence,

S

GK(P) [ 1\2 |Sp(ui)]

-

S
—

IN

|U1\2 ; S (ui)
= GK(Q

Thus, GK in Definition 2 is the knowledge granulation under Definition 1.
This completes the proof. DO

~—
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5. Measure of Rough Sets Based on Knowledge Granulation

In this section, based on knowledge granulation in incomplete information systems,
a measure of uncertainty of rough sets is proposed.

Definition 3. Let S = (U, A) be an incomplete information system, § ¢ X C U,
and R C A. The roughness of X with respect to R is defined as follows:

Roughnessr(X) = pr(X)GK(R), (4)

_ 1 _ IBX]
where pr(X) =1 EX|"
Apparently, the granularity of the partition induced by the equivalence relation
R has been considered in the new definition. In the following, we show that the rede-
fined roughness measure has some meaningful properties and is valid in measuring

uncertainty of rough sets.

Property 1. (Equivalence) Let S = (U, A) be an incomplete information system,
PQCAandWCc X CU. IfU/SIM(P) =U/SIM(Q), then Roughnessp(X) =
Roughnessg(X).

Property 2. (Maximum) Let S = (U, A) be an incomplete information system,
RC Aand () Cc X CU. The mazimum roughness of X with respect to R is 1. This
value is achieved only when U/SIM(R) = 6.

Property 3. (Minimum) Let S = (U, A) be an incomplete information system,
RCAand C X CU. The minimum roughness of X with respect to R is 0. This
value is achieved only when U/SIM(R) = w.

Obciously, when S = (U, A) is an incomplete information system, 0 <
Roughnessr(X) <1 for any subset R of A.

Proposition 2. Let S = (U, A) be an incomplete information system, P,Q C A
and ) C X CU. If P X Q, then

Roughnessp(X) < Roughnessg(X).

Proof. Let P < Q. It is easy to obtain that GK(P) < GK(Q) and 0 < pr(X) <
pq(X). Then
Roughnessp(X) = pp(X)GK(P)

< pe(X)GK(Q)
= Roughnessg(X).

This completes the proof. O
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Proposition 2 states that the roughness of X with respect to R decreases as R
become finer.

Definition 4. Let S = (U, A) be an incomplete information system, § € X C U,
and R C A. The accuracy of X with respect to R is defined as follows:

Accuracyr(X) =1 - pr(X)GK(R), (5)

where pr(X)=1- %.
Property 4. (Equivalence) Let S = (U, A) be an incomplete information system,
PQCAandd Cc X CU. IfU/SIM(P) = U/SIM(Q), then Accuracyp(X) =

Accuracyg(X).

Property 5. (Maximum) Let S = (U, A) be an incomplete information system,
RCAand® C X CU. The mazimum accuracy of X with respect to R is 1. This
value is achieved only when U/SIM(R) = w.

Property 6. (Minimum) Let S = (U, A) be an incomplete information system,
RCAand® C X CU. The minimum accuracy of X with respect to R is 0. This
value is achieved only when U/SIM(R) = 6.

Obciously, when S = (U, A) is an incomplete information system, 0 <
Accuracyr(X) <1 for any subset R of A.

Proposition 3. Let S = (U, A) be an incomplete information system, P,Q C A
and ) C X CU. If P <X Q, then

Accuracyp(X) > Accuracyg(X).

Proof. Let P < Q. It is easy to obtain that Roughnessp(X) < Roughnessg(X) .
Thus
Accuracyp(X) =1— pp(X)GK(P)
= 1— Roughnessp(X)
> 1 — Roughnessg(X)
= Accuracyg(X).

This completes the proof. O

Proposition 3 states that the Accuracy of X with respect to R increases as R
become finer.

Example 3. (Continued from Example 2). Let pa(X) = pp(X) = 0.6. Then,

GK(A) 1+24+14+2+3+3)=0.333

1
_%(
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and
GK(P) = 3—16(3+3+1+3+3+5) =0.5.
Hence, the roughness of X with respect to A and P is given by
Roughness 4(X) = 0.200
and
Roughnessp(X) = 0.300,

respectively. It is clear that the roughness of X with respect to R decreases as R
becomes finer.

The accuracy of X with respect to A and P is given by
Accuracya(X) = 0.800
and
Accuracyp(X) = 0.700,

The accuracy of X with respect to R increases as R becomes finer.

6. Experiments

In this section, we will describe our main experiments results.

Using the method in the paper, we have performed on some real data. As an
example, we consider the information system about planning tennis ball (see ta-
ble 2). Where U = {uq,us,...,u24}, and A = {a1,a2,a3,a4} with a;=0utlook,
as=Temperature, as=Humidity and a,=Windy.

Let P = {as,a4}. By computing, we have GK(A) = 0.257 and GK (P) = 0.486.
It show that Granulation of knowledge of A and Granulation of knowledge of P is
different, because U/STM(A) C U/SIM(P) or A is finer than P.

By performing our experiment on some sets of objects in table 2, we can get a
number of especial data showed in table 3 and 4. These sets have same lower ap-
proximation and upper approximation according to A and P, also they have same
p(X) , but they have different Roughness(X). The reason is A and P have differ-
ent knowledge granulation. Thus, the uncertainty of X with respect to a different
equivalance relation is well characterized. The experiments data illuminated that
the method in the paper is effective.

where

Xl = {u1?u4?u67u87u97u157u173 u217u24}7

Xo = {us, ug, us, ug, u10, U11, U12, U1s, Uie, U19, U1, U22, U23 },
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Table 2. The information system about planning tennis ball.

Events  Outlook  Temperature Humidity Windy

U1 Overcast Hot High *
U2 Overcast Hot High Very
us * Hot * Medium
Ug * Hot High Not
us Sunny * High *
ug Rain Mild * Not
uy Rain * High Medium
us Rain Hot * Not
ug Rain Cool Normal *
u10 * Hot * Very
Uil * * Normal very
u12 Sunny Cool Normal *
u13 Overcast * High *
ul4 Overcast Mild * *
u15 * Cool Normal Not
u16 * Cool Normal Medium
ul7 Rain * Normal Not
u1s Rain * Normal Medium
uU1lg * Mild * Medium
u20 Overcast Mild Normal Very
u21 * Mild * Very
99 Sunny Mild High *
u23 Sunny * Normal *
u24 Rain * High *

Table 3. The lower approximation and upper approximation of some rough

sets.

X AX = PX AX =PX

X1 {ue,us,u17} {u1,uz2,...,u24}

X2 {us,u12,u22,u23} {u1,uz,...,u24}

X3 {u1,u2,u13,u14,u20} {u1,u2,...,u24}

X4 {ur,u1g} {u1,us,...,u19,u21, ..., u24}
X5 {u2,u20} {u1,...,us,ug, ..., u16, U19, ..., U24 }
X6 {uz,u4,ue, ur,us, u1s, ..., u19} {u1,u2,...,u24}

X3 = {u1,u2,U3,U4,UG,U10,U117U13,U14,U157U16,Ulg,ugo,uzl},
Xy = {U37U7,U9,U167U18,U19,U24},
X5 = {u1,u2, w10, w11, 12, U13, Y14, U20, U21 },

Xe = {U1,U3,U4,Us,%,U77U87U9,U127U13,U14,U15,u16,u17yu18,u19>

U22, U23, U24}~
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Table 4. The comparison of classical roughness measure and the
measure in the paper.

X  pa(X)=pp(X) Roughnessa(X) Roughnessp(X)

X1 0.875 0.225 0.425
Xo 0.833 0.214 0.405
X3 0.792 0.204 0.385
T4 0.909 0.234 0.442
X5 0.895 0.230 0.435
X6 0.583 0.150 0.283

7. Conclusions

In this paper, an axiom definition of knowledge granulation has been given. We

have proved that the knowledge granulation in®

is a special form of the axiom
definition. Based on knowledge granulation, a measure of uncertainty of a rough set
has been proposed. Several nice properties of this measure have been derived. We
have demonstrated that the new measure overcomes the limitation of the existing
uncertainty measure and can be used to measure with a simple and comprehensive
form the roughness and accuracy of a rough set for an incomplete information

system.
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