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Abstract

Fuzzy rough set method provides an effective approach to data mining and knowledge discovery from hybrid data including 
categorical values and numerical values. However, its time-consumption is very intolerable to analyze data sets with large scale 
and high dimensionality. Many heuristic fuzzy-rough feature selection algorithms have been developed however, quite often, these 
methods are still computationally time-consuming. For further improvement, we propose an accelerator, called forward approxi-
mation, which combines sample reduction and dimensionality reduction together. The strategy can be used to accelerate a heuristic 
process of fuzzy-rough feature selection. Based on the proposed accelerator, an improved algorithm is designed. Through the use of 
the accelerator, three representative heuristic fuzzy-rough feature selection algorithms have been enhanced. Experiments show that 
these modified algorithms are much faster than their original counterparts. It is worth noting that the performance of the modified 
algorithms becomes more visible when dealing with larger data sets.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

There are many factors that motivate the inclusion of a feature selection step in a variety of fields, such as data 
mining, machine learning and pattern recognition, which addresses the problem of selecting those input features that 
are most predictive of a given outcome [30,33,34,41]. Databases expand quickly not only in the rows (objects) but 
also in the columns (features) nowadays [3]. In recent several years, big data analysis has become a new hot topic. 
For a task of data analysis, a given data set is called big data if it cannot be efficiently processed via existing methods. 
In some tasks of data analysis, some of features are irrelevant to the learning or problem solving. It is likely that the 
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omission of some features will not seriously increase the error probability. In such cases, the loss of optimality may 
not only be tolerable but even desirable relative to the costs involved.

In the framework of rough set theory, feature selection is also called attribute reduction [8,43,44], which preserves 
the original meaning of the features after reduction [45]. The classical rough set model, proposed by Pawlak [22,
23], is based on crisp equivalence relations and crisp equivalence classes. It is only applicable to categorical attribute 
reduction and knowledge discovery. In order to deal with numerical and categorical data (or a mixture of both) in 
data sets, fuzzy rough set model was first proposed by Dübois and Prade [5], which combines rough set and fuzzy 
set together. The lower/upper approximation in these fuzzy rough set models tries to give a membership function 
of each object to a set. As Dübois and Prade defined, if a fuzzy set is approached by a family of crisp sets in the 
same universe, then the corresponding lower/upper approximation pair is called a rough fuzzy set; and if a crisp/fuzzy 
set is approached by a family of fuzzy sets in the same universe, then the corresponding lower/upper approximation 
pair is called a fuzzy rough set. To widely apply the fuzzy rough set method, many extended versions and relative 
applications have been developed, cf. [11,12,14,20,21,24,25,31,35,36,39,40,42,46–48]. In particular, to keep the same 
form as classical rough set by Pawlak, Hu et al. [11] proposed a novel fuzzy rough model with a crisp lower/upper 
approximation. In fact, in the new model, the lower approximation and the upper approximation can be seen as the 
1-cut/strong 0-cut of original counterparts in Dübois’s model, respectively. Taking the same idea into account, Wang et 
al. [36] developed a generalized fuzzy rough model in which a β-cut is used to define its lower/upper approximation. 
These two methods have a consistent form with Pawlak’s rough set, and their lower/upper approximations induced by 
a given cut are crisp approximations rather than fuzzy approximations. According to Dübois and Prade’s definition, 
each of these rough set models is a fuzzy rough set.

Attribute reduction using fuzzy rough sets is often called fuzzy-rough feature selection. To support efficient feature 
selection, many heuristic algorithms have been developed in fuzzy rough set theory, cf. [2,4,10,11,13,15–17,36]. Each 
of these feature selection methods can extract a single reduct from a given decision table. For convenience, from 
the viewpoint of heuristic functions, we classify these feature selection methods into two categories: fuzzy positive 
region reduction and fuzzy information entropy reduction. Hence, we only review two kinds of representative heuristic 
fuzzy-rough feature selection methods.

(1) Fuzzy positive region reduction

The concept of positive region was proposed by Pawlak in [22], which is used to measure the significance of 
a condition attribute in a decision table. Then, Hu and Cercone [9] proposed a heuristic attribute reduction method, 
called positive region reduction, which remains the positive region of target decision unchanged. Under Dübois’s fuzzy 
rough set model, Jensen and Shen [15–17] developed a series of heuristic fuzzy-rough feature selection algorithms 
based on fuzzy positive region. Bhatt and Gopal [2] proposed a modified version to improve computational efficiency. 
Under Hu’s fuzzy rough set model and Wang’s fuzzy rough set model, Hu et al. [11] extended the method from the 
literature [9] to select a feature subset from hybrid data. Owing to the consistency of ideas and strategies of these 
methods, we regard the method from [11] as their representative.

(2) Fuzzy information entropy reduction

The entropy reducts have first been introduced in 1993/1994 by Skowron in his lectures at Warsaw University. Wang 
et al. [37] used conditional entropy of Shannon’s entropy to calculate the relative attribute reduction of a decision 
information system. Hu et al. extended the entropy to measure the information quantity in fuzzy sets and applied 
its conditional entropy to feature selection from hybrid data [13]. This reduction method remains the conditional 
entropy of a target decision unchanged. The fuzzy information entropy is an important approach to characterizing the 
uncertainty of a fuzzy binary relation, which can be used to select a feature subset from a given big data set [13,14].

Each of these above methods preserves a particular property of a given decision table. However, these above 
methods are still computationally very expensive, which are intolerable for dealing with large-scale data sets with 
high dimensions. So, this kind of attribute reduction problems can be regarded as data analysis of big data. The 
objective of this study is to focus on how to improve the time efficiency of a heuristic fuzzy-rough feature selection 
algorithm.
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In a recent published paper in Artificial Intelligence, to overcome the shortcoming of computationally time-
consuming of all heuristic attribute reduction algorithms, Qian et al. [27] proposed an accelerator for attribute 
reduction in rough set theory, which is based on a theoretic framework called positive approximation. Using the 
experience of the method for reference, in this paper, we wish to develop an extended version of the accelerator for 
accelerating fuzzy-rough feature selection. Its motivation is mainly caused by the three issues: (1) a fuzzy rough set 
including fuzzy-rough feature selection is a kind of very important models in rough set theory; (2) the accelerator 
proposed by Qian et al. cannot be used to accelerate feature selection for hybrid data but that for symbolic data; 
and (3) heuristic functions in fuzzy-rough feature selection are constructed by the membership of each object, which 
brings different methods of feature selection. Taking these three issues into account, one needs to develop an extended 
version of the accelerator for accelerating fuzzy-rough feature selection algorithms. The main advantage of this ap-
proach stems from the fact that the new accelerator can improve the time efficiency of a heuristic fuzzy-rough feature 
selection, which provides a vehicle of making algorithms of fuzzy-rough set based feature selection techniques faster. 
By incorporating the new accelerator into each of the above two kinds of representative heuristic attribute reduction 
methods, we construct their modified versions. Numerical experiments show that each of the modified methods can 
greatly reduce computing time while obtaining an attribute reduct. We would like to stress that the improvement 
becomes more profoundly visible when the data sets under discussion get larger.

The study is organized as follows. Several fuzzy rough set models are briefly reviewed in Section 2. In Section 3, 
we establish the forward approximation framework and investigate some of its main properties. In Section 4, we 
develop a modified attribute reduction algorithm based on the forward approximation. Experiments on six public data 
sets show that these modified algorithms are much faster than their original counterparts in terms of computational 
time. Finally, Section 5 concludes this paper by bringing some remarks and discussions.

2. Review on fuzzy rough set models

In this section, we review three representative fuzzy-rough set models and some related concepts.
Given a nonempty finite set U , R̃ is a fuzzy binary relation over U , denoted by a matrix

M(R̃) =
⎛⎜⎝

r11 r12 · · · r1n

r21 r22 · · · r2n

· · · · · · · · · · · ·
rn1 rn2 · · · rnn

⎞⎟⎠ , (1)

where rij ∈ [0, 1] is the relation value between xi and xj . Some operations of relation matrices are defined as

1) R̃1 = R̃2 ⇔ R̃1(x, y) = R̃2(x, y);
2) R̃ = R̃1 ∪ R̃2 ⇔ R̃ = max{R̃1(x, y), R̃2(x, y)};
3) R̃ = R̃1 ∩ R̃2 ⇔ R̃ = min{R̃1(x, y), R̃2(x, y)};
4) R̃1 ⊆ R̃2 ⇔ R̃1(x, y) ≤ R̃2(x, y).

If using the terms of granular computing, we denote the coarseness/fineness relationship between any two fuzzy 
binary relations by R̃1 	 R̃2, which is equivalent to R̃1 ⊆ R̃2 and R̃1(x, y) ≤ R̃2(x, y) for any x and y. It can be said 
that the fuzzy binary relation R̃1 is much finer than the fuzzy binary relation R̃2. Symmetrically, it also can be written 
as R̃2 
 R̃1.

The granular structure of the universe generated by a fuzzy binary relation R̃ is defined as

〈U, R̃〉 = ([x1]R̃, [x2]R̃, · · · , [xn]R̃
)
, (2)

where [xi]R̃ = ri1/x1 + ri2/x2 + · · · + rin/xn. [xi]R̃ is the fuzzy neighborhood of xi and rij is the degree of xi

equivalent to xj . Here, “+” means the union of elements. The cardinality of [xi]R̃ can be calculated with

∣∣[xi]R̃
∣∣ =

n∑
j=1

rij , (3)

which appears to be a natural generalization of the cardinality of a crisp set.
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In this case, [xi]R̃ is a fuzzy set and the family of [xi]R̃ forms a fuzzy concept system of the universe. This system 
will be used to approximate the object subset of the universe.

Let X̃ be a fuzzy set. Then, it can be represented as

X̃ = μX̃(x1)/x1 + μX̃(x2)/x2 + · · · + μX̃(xn)/xn, (4)

where μX̃(xj ) denotes the membership degree of the object xj in X̃.
It is well known that, a categorical attribute can induce a crisp equivalence relation on the universe and generate a 

family of crisp information granules, whereas a numerical attribute will give a fuzzy binary relation and form a set of 
fuzzy information granules [13]. As crisp information granules are a special case of fuzzy ones, we will consider all 
of them as fuzzy ones in the following. Given an information system S = (U, C ∪ D), B, B1, B2 ⊆ C. We mean R̃B

as the fuzzy binary relation induced by the attribute subset B . Then we have

1) R̃B = ⋂
a∈B R̃a ;

2) R̃B1∪B2 = R̃B1 ∩ R̃B2 .

The first fuzzy rough set model was introduced by Dübois and Prade [5]. By their definition, a universe of objects 
U = {x1, x2, . . . , xn} is described by a fuzzy binary relation R̃. Given X ⊆ U a crisp subset of objects, the member-

ships of an object xi in a fuzzy rough set (R̃(X), R̃(X)) of fuzzy sets on U are described as⎧⎪⎨⎪⎩
μR̃(X)(xi) = inf

xj ∈U
max

{
1 − R̃(xi, xj ),μX(xj )

}
,

μ
R̃(X)

(xi) = sup
xj ∈U

min
{
R̃(xi, xj ),μX(xj )

}
,

where U is a nonempty universe and R is a fuzzy binary relation on U .
To keep the same form as classical rough set model, Wang et al. [36] proposed a new fuzzy rough set model 

(for simplification, called Wang’s fuzzy rough set), which is explicitly expressed as follows.
Let 〈U, R̃〉 be a fuzzy approximation space, and X ⊆ U a crisp subset of objects. Wang’s fuzzy lower and upper 

approximation of X can be defined as⎧⎨⎩ R̃β(X) = {
xi ∈ X

∣∣ R̃(xi, xj ) ≤ 1 − β, ∀xj ∈ U − X
}
,

R̃β(X) = {
xi ∈ U

∣∣ ∃xj ∈ X, such that R̃(xi, xj ) ≥ β
}
,

where R̃(xi, xj ) is the similarity degree between xi and xj with respect to R̃. The order pair 〈R̃βX̃, R̃βX̃〉 is called a 
β-fuzzy rough set, in which a β-cut is used to define its lower/upper approximation.

In a recent paper, Hu et al. [13] gave another definition of a fuzzy rough set in the context of hybrid data (for sim-
plification, called Hu’s fuzzy rough set), which is shown as follows.

Let 〈U, R̃〉 be a fuzzy approximation space and X̃ a fuzzy subset of U . The lower approximation R̃X̃ and upper 
approximation R̃X̃ are defined as [11]⎧⎨⎩ R̃X̃ = {

xi

∣∣ [xi]R̃ ⊆ X̃, xi ∈ U
}
,

R̃X̃ = {
xi

∣∣ [xi]R̃ ∩ X̃ �= Ø, xi ∈ U
}
,

where [xi]R̃ ⊆ X̃ means μ[xi ]R̃ (xi) ≤ μX̃(xi), and [xi]R̃ ∩ X̃ �= Ø implies that min{μ[xi ]R̃ (xi),μX̃(xi)} �= 0, Ø =
{ 0
x1

+ 0
x2

+ · · · + 0
xn

}. The order pair 〈R̃X̃, R̃X̃〉 is called a fuzzy rough set. In fact, in the new model, the lower 
approximation and the upper approximation can be seen as the 1-cut/strong 0-cut of original counterparts in Dübois’s 
model, respectively.

It is easy to see that given a lower approximation in Dübois’s fuzz rough set model, one easily obtains the cor-
responding crisp lower approximation with an α-cut, and given an upper approximation in Dübois’s fuzzy rough set 
model, one also easily gets its crisp upper approximation with a β-cut. Hence, one can obtain crisp approximation of 
an object set according to a user’s requirement. Without loss of generality, we will select Hu’s fuzzy rough model as 
their representative in this study.
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A decision table is an information system S = (U, C ∪ D), where C is called a condition attribute set and D is 
called a decision attribute set [11]. In practical decision-making issues, in general, the decision attribute set D can 
induce an equivalence partition, i.e., a crisp classification. In this paper, we only focus on this kind of decision tables. 
Assume the objects are partitioned into r mutually exclusive crisp subsets {Y1, Y2, · · · , Yr} by the decision attribute D. 
Given a decision table S = (U, C ∪ D) and a subset B ⊆ C, and R̃B the fuzzy similarity relation induced by B , one
can define the lower and upper approximations of the decision attribute D as⎧⎨⎩ R̃BD = {

R̃BY1, R̃BY2, · · · , R̃BYr

}
,

R̃BD = {
R̃BY1, R̃BY2, · · · , R̃BYr

}
.

Denoted by POSB(D) = ⋃r
i=1 R̃BYi , it is called the positive region of D with respect to the condition attribute set B . 

The crisp positive region in traditional rough set theory is defined as the union of the lower approximations. In the 
original fuzzy rough set, the membership of an object belonging to the fuzzy positive region can be defined by

μPOSB(D)(x) = sup
X∈U/D

μB(X)(x),

where μB(X)(x) = infxj ∈U max{1 − B̃(x, xj ), μX(xj )}.
In the above three fuzzy rough set models, many efficient fuzzy-rough feature selection algorithms have been devel-

oped [2,10,11,13,15–17,36]. However, these algorithms are still computationally very expensive, which is intolerable 
for dealing with large-scale data sets with high dimensions. The objective of this study is to focus on how to improve 
the time efficiency of a heuristic fuzzy-rough feature selection algorithm. In a recent published paper in Artificial 
Intelligence, to overcome the shortcoming of computationally time-consuming of all heuristic attribute reduction al-
gorithms, Qian et al. [27] proposed an accelerator for attribute reduction in rough set theory, which is performed on 
a gradually reduced universe. Using the experience of the method for reference, in this paper, we wish to develop 
an extended version of the accelerator for accelerating fuzzy-rough feature selection. From the point of view, in next 
study, we decide to use three representative fuzzy-rough feature selection algorithms for explaining and verifying the 
mechanism and efficiency of the extended accelerator.

3. Forward approximation (FA): an accelerator to fuzzy-rough feature selection

In this section, we introduce a new set-approximation approach called forward approximation and investigate some 
of its important properties, in which a given set (also called a target concept in rough set theory) is approximated by 
a forward granulation world [28]. Given a decision table S = (U, C ∪ D), U/D = {Y1, Y2, · · · , Yr } is called a target 
decision, in which each equivalence class Yi (i ≤ r) can be regarded as a target concept. These concepts and properties 
will be helpful to understand the notion of a granulation order and set approximation under a granulation order.

Definition 1. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 
 R̃2 
 · · · 
 R̃n, and X a crisp 
set. Given Pi = {R̃1, R̃2, · · · , R̃i}, we define Pi -lower approximation Pi(X) and Pi -upper approximation Pi(X) of 
Pi -positive approximation of X as⎧⎪⎪⎨⎪⎪⎩

Pi(X) =
i⋃

k=1

R̃kXk,

Pi(X) = R̃iX,

where X1 = X and Xk = X − ⋃k−1
j=1 R̃jXj , k = 2, 3, · · · , n, i = 1, 2, · · · , n.

Correspondingly, the boundary of X is given as

BNPi
(X) = Pi(X) − Pi(X).

Theorem 1. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 
 R̃2 
 · · · 
 R̃n, and X a crisp 
set. Given Pi = {R̃1, R̃2, · · · , R̃i}, then ∀Pi (i = 1, 2, · · · , n), we have
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Pi(X) ⊆ X ⊆ Pi(X),

P1(X) ⊆ P2(X) ⊆ · · · ⊆ Pi(X).

Theorem 2. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 
 R̃2 
 · · · 
 R̃n, and X a crisp 
set. Given Pi = {R̃1, R̃2, · · · , R̃i}, then ∀Pi (i = 1, 2, · · · , n), we have

αP1(X) ≤ αP2(X) ≤ · · · ≤ αPi
(X),

where αPi
(X) = |Pi(X)|

|Pi(X)| is the approximation measure of X with respect to Pi .

Definition 2. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 
 R̃2 
 · · · 
 R̃n and U/D =
{Y1, Y2, · · · , Yr }. Lower approximation and upper approximation of D with respect to Pi are defined as{

PiD = {
Pi(Y1),Pi(Y2), · · · ,Pi(Yr)

}
,

PiD = {
Pi(Y1),Pi(Y2), · · · ,Pi(Yr)

}
.

PiD is also called the positive region of D with respect to the granulation order Pi , denoted by POSU
Pi

(D) =⋃r
k=1 PiYk .

Theorem 3 (Recursive expression principle). Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with 
R̃1 
 R̃2 
 · · · 
 R̃n and U/D = {Y1, Y2, · · · , Yr }. Given Pi = {R̃1, R̃2, · · · , R̃i}, we have

POSU
Pi+1

(D) = POSU
Pi

(D) ∪ POSUi+1

R̃i+1
(D),

where U1 = U and Ui+1 = U − POSU
Pi

(D).

The dependency function is used to characterize the dependency degree of an attribute subset with respect to a 
given decision [7,8,26,29]. Given a decision table S = (U, C ∪ D), the dependency function of condition attribute set 
C with respect to the decision attribute set D is formally defined as γC(D) = |POSU

C (D)|/|U |. Using this notation, 
we give the definition of dependency function of a granulation order P with respect to D in the following.

Definition 3. A dependency function involving a granulation order P and D is defined as

γP (D) = |POSU
P (D)|

|U | ,

where | · | denotes the cardinality of a set and 0 ≤ γP (D) ≤ 1.

The dependency function reflects the granulation order P ’s power to dynamically approximate D. This dependency 
function can be used to measure the significance of attributes relative to the decision and construct a heuristic function 
for designing an attribute reduction algorithm.

4. Fuzzy-rough feature selection based on forward approximation

4.1. Fuzzy-rough feature selection algorithms

In fuzzy-rough feature selection, to support efficient attribute reduction, many heuristic attribute reduction methods 
have been developed, in which a forward greedy search strategy is usually employed, cf. [2,10,11,13,15–17,36]. In 
this kind of attribute reduction approach, important measures of attributes are used for heuristic functions, which can 
be used in a forward feature selection. It is deserved to point out that each kind of attribute reduction tries to preserve 
a particular property of a given decision table.

In each forward greedy attribute reduction approach, we take the attribute with the maximal significance into the 
attribute subset in each loop until this feature subset satisfies the stopping criterion, and then we can get an attribute 
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Fig. 1. The process of forward greedy attribute reduction algorithm.

reduct. In this algorithm framework, we denote the evaluation function (stop criterion) by EFU(B, D) = EFU(C, D). 
For example, if one adopts Shannon’s conditional entropy, then the evaluation function is HU(B, D) = HU(C, D). 
That is to say, if EFU(B, D) = EFU(C, D), then B is said to be an attribute reduct. Formally, a forward greedy 
attribute reduction algorithm can be written as follows.

Algorithm 1 A general forward greedy attribute reduction algorithm.
Input: Decision table S = (U, C ∪ D);
Output: One reduct red.
Step 1: red ← Ø; //red is the pool to conserve the selected attributes
Step 2: While EF(red, D) �= EF(C, D) Do //This provides a stopping criterion.
{

B ← C − red,
Select a0 ∈ B which satisfies Sig(a0, red, D, U) = max{Sig(ak, red, D, U), ak ∈ B},
If Sig(a0, red, D, U) > 0, then red ← red ∪ {a0}

};
Step 3: Return red and end.

This algorithm can obtain an attribute reduct from a given decision table. Fig. 1 displays the process of attribute 
reduction based on the forward greedy attribute reduction algorithm in rough set theory, which is helpful for more 
clearly understanding of the mechanism of the algorithm.

4.2. Three representative significance measures of attributes

For efficient attribute reduction, many heuristic attribute reduction methods have been developed in fuzzy rough 
set theory, see [2,10,11,13,15–17,36]. For convenience, as was pointed out in the introduction part of this paper, we 
only focus on the three representative fuzzy-rough feature selection methods here.

Given a decision table S = (U, C ∪ D), one can obtain 〈U, R̃C〉 = ([x1]R̃C
, [x2]R̃C

, · · · , [xn]R̃C
) and the decision 

U/D = {Y1, Y2, · · · , Yn}. Through these notations, in what follows we review three representative significance mea-
sures of attributes.

For attribute reduction, Hu and Cercone [9] proposed a heuristic attribute reduction method, called positive region 
reduction (PR), which remains the positive region of target decision unchanged. Hu, Xie and Yu [11] extended this 
method to fuzzy-rough feature selection, called fuzzy positive region reduction (FPR). In this method, the significance 
measures of attributes are defined as follows.

Definition 4. Let S = (U, C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B . The significance measure of a in B is 
defined as

Sig1(a,B,D,U) = γB∪{a}(D) − γB(D),

where γB(D) = |POSU
B (D)|

|U | = | ⋃r
i=1 R̃BYi |
|U | .

Shannon’s information entropy [32] was introduced to search reducts in classical rough set model. In fact, several 
authors also have used variants of Shannon’s entropy to measure uncertainty in rough set theory and construct heuris-
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tic algorithm of attribute reduction [1,6,18,19,31,38]. Wang et al. used its conditional entropy to calculate the relative 
attribute reduction of a decision information system [37]. Hu, Xie and Yu [13] proposed a so-called fuzzy information 
entropy to fuzzy rough set model and used its fuzzy conditional entropy to design a heuristic feature selection algo-
rithm. This reduction method remains the fuzzy conditional entropy of target decision unchanged, denoted by FSCE, 
in which the fuzzy conditional entropy reads as

H(D|B) = − 1

|U |
|U |∑
i=1

log
|[xi]R̃B

∩ [xi]R̃D
|

|[xi]R̃B
| .

Using the fuzzy conditional entropy, the definitions of the significance measures are expressed in the following way.

Definition 5. Let S = (U, C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B . The significance measure of a in B is 
defined as

Sig2(a,B,D,U) = H(D|B) − H
(
D|B ∪ {a}).

In the original fuzzy rough set, Jensen and Shen [16] extended this method to fuzzy-rough feature selection. In this 
method, the significance measures of attributes can be formally written as follows.

Definition 6. Let S = (U, C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B . The significance measure of a in B is 
defined as

Sig3(a,B,D,U) = γB∪{a}(D) − γB(D),

where γB(D) = |POSU
B̃

(D)|
|U | =

∑
x∈U μ

POSU
B

(D)
(x)

|U | .

In a heuristic fuzzy-rough feature selection algorithm, based on the above definitions, one can find an attribute 
reduct by gradually adding selected attributes.

4.3. Rank preservation principle

As mentioned above, each of significance measures of attributes provides some heuristics to guide the mechanism 
of forward searching a feature subset. Unlike the discernibility matrix, the computational time of the heuristic algo-
rithms has been largely reduced when only one attribute reduct is needed. Nevertheless, these algorithms still could 
be very time consuming. To introduce an improved strategy of heuristic attribute reductions, we concentrate on the 
rank preservation of the four significance measures of attributes based on the positive approximation encountered in a 
decision table.

Firstly, we investigate the rank preservation of significance measures of attributes based on the dependency mea-
sure. For more clear representation, we denote the significance measure of an attribute by Sigouter

Δ (a, B, D, U)

(Δ = {1, 2, 3, 4}), which denotes the value of the significance measure on the universe U . One can prove the fol-
lowing theorem of rank preservation.

Theorem 4. Let S = (U, C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a, b ∈ C − B , if 

Sig1(a, B, D, U) ≥ Sig1(b, B, D, U), then Sig1(a, B, D, U ′) ≥ Sig1(b, B, D, U ′).

Secondly, we research the rank preservation of significance measures of attributes based on the Shannon’s condi-
tional entropy. The following theorem elaborates on the rank preservation of this measure.

Theorem 5. Let S = (U, C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a, b ∈ C − B , if 

Sig2(a, B, D, U) ≥ Sig2(b, B, D, U), then Sig2(a, B, D, U ′) ≥ Sig2(b, B, D, U ′).

Finally, we research the rank preservation of significance measures of attributes based on the original fuzzy positive 
region defined by Jensen and Shen [16]. The following theorem elaborates on the rank preservation of this measure.
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Theorem 6. Let S = (U, C ∪ D) be a decision table, B ⊆ C and U ′ = U − {x|μPOSU
B (D)(x) = 1, x ∈ U}. For ∀a, b ∈

C − B , if Sig3(a, B, D, U) ≥ Sig3(b, B, D, U), then Sig3(a, B, D, U ′) ≥ Sig3(b, B, D, U ′).

From these theorems, one can see that the rank of attributes in the process of attribute reduction will remain 
unchanged after reducing the lower approximation of positive approximation. This mechanism can be used to improve 
the computational performance of a heuristic attribute reduction algorithm, while retaining the same selected feature 
subset.

4.4. Accelerated versions

The objective of rough set-based feature selection is to find a subset of attributes which retains some particular 
properties as the original data and without redundancy. In fact, there may be multiple reducts for a given decision 
table. It has been proven that finding the minimal reduct of a decision table is an NP hard problem. When only 
one attribute reduct is needed, based on the significance measures of attributes, some heuristic algorithms have been 
proposed, most of which are greedy and forward search algorithms. These search algorithms start with a nonempty 
set, and keep adding one or several attributes of high significance into a pool each time until the dependence has not 
been increased.

From the discussion in the previous subsection, we can construct an improved forward search algorithm based on 
the forward approximation, which is formulated as follows.

Algorithm Q3 An improved feature selection algorithm based on the forward approximation (FA).
Input: Decision table S = (U, C ∪ D);
Output: One feature subset red.
Step 1: red ← Ø, i ← 1, R1 ← red, P1 ← {R1} and U1 ← U ; //red is the pool to conserve the selected attributes
Step 2: While EF(red, D) �= EF(C, D) Do //This provides a stopping criterion.
{

Compute the positive region of forward approximation POSU
Pi

(D),

Ui+1 ← U − POSU
Pi

(D),
i ← i + 1,
B ← C − red,
Select a0 ∈ B which satisfies Sig(a0, red, D, Ui) = max{Sig(ak, red, D, Ui), ak ∈ B},
If Sig(a0, red, D, Ui) > 0, then red ← red ∪ {a0},
Ri ← Ri ∪ {a0},
Pi ← {R1, R2, · · · , Ri };

}
Step 3: Return red and end.

It deserves to point out that the feature subset obtained by Algorithm Q3 from a given data set may not be a reduct 
as commonly used in rough set literature. The result of Algorithm Q3 may still contain some superfluous attributes.

Computing the significance measure of an attribute Siginner(ak, C, D, U) is one of the key steps in FA, whose time 
complexity is O(|C||U |2). In Step 2, we begin with the empty set and add an attribute with the maximal signifi-
cance into the set in each stage until finding a reduct. This process is called a forward reduction algorithm whose 
time complexity is O(

∑|C|
i=1(|C| − i + 1)|Ui |2). However, the time complexity of the original heuristic algorithm is 

O(
∑|C|

i=1(|C| − i +1)|U |2). Obviously, the time complexity of FA is much lower than that of each of classical heuristic 
attribute reduction algorithms. Hence, one can draw a conclusion that the modified feature selection algorithm based 
on the forward approximation (FA) may significantly reduce the computational time for fuzzy-rough feature selection.

To support the substantial contribution of the improved attribute reduction algorithm based on the forward approx-
imation, we summarize two factors of speedup of this accelerator as follows.

(1) One only reserves a much smaller similarity matrix in each iterative loop via gradually decreasing the size of data 
set. This is an important factor of the improved algorithm.

(2) Computational time of significance measures of attributes is significantly reduced, which is because that it is only 
considered on the gradually reduced universe. It is the other factor of the accelerated algorithm.
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Table 1
Data sets description

Data sets Samples Features Classes

1 Image Segmentation 2310 19 7
2 Sonar, mines vs. rocks 208 60 2
3 Wisconsin diagnostic breast cancer (Cancer1) 569 30 2
4 Ionosphere 351 34 2
5 Wisconsin prognostic breast cancer (Cancer2) 198 33 2
6 Wine recognition 178 13 3

Based on the above two speedup factors, we draw such a conclusion that: the modified algorithm can significantly 
reduce the computational time of each existing attribute reduction algorithm.

4.5. Time efficiency analysis of algorithms

Some heuristic attribute reduction methods have been developed for hybrid data, cf. [2,10,11,13,15–17,36]. The 
three heuristic algorithms mentioned in Section 4.2 are very representative. The objective of the following experiments 
is to show the performance of time reduction of the proposed framework for selecting a feature subset. The data used 
in the experiments are outlined in Table 1, which were all downloaded from UCI Repository of machine learning 
databases.

For numeric data, we normalize the numerical attribute a into the interval [0, 1] with

a′ = a − amin

amax − amin
.

The value of the fuzzy similarity degree rij between objects xi and xj with respect to numerical attribute a is computed 
as

rij =
{

1 − 4 × |xi − xj |, |xi − xj | ≤ 0.25,

0, otherwise.

As rij = rji and rii = 1, 0 ≤ rij ≤ 1, the matrix M = (rij )n×n is a fuzzy similarity relation.
From the definition of attribute reduction based on fuzzy rough sets, we know that each modified attribute reduction 

algorithm must select an attribute reduct from original attributes. Therefore, in the following experiments, we only 
consider attribute reducts obtained and computational time.

In what follows, we apply each of the original algorithms along with its modified version for searching attribute 
reducts. To distinguish the computational times, we divide each of these nine data sets into twenty parts of equal 
size. The first part is regarded as the 1st data set, the combination of the first part and the second part is viewed 
as the 2nd data set, the combination of the 2nd data set and the third part is regarded as the 3rd data set, · · ·, the 
combination of all twenty parts is viewed as the 20th data set. These data sets can be used to calculate time used 
by each of the original attribute reduction algorithms and the corresponding modifications and show it vis-a-vis the 
size of universe. These algorithms are run on a personal computer with Windows XP and Inter(R) Core(TM)2 Quad 
CPU Q9400, 2.66 GHz and 3.37 GB memory. The software being used is Microsoft Visual Studio 2005 and Vi-
sual C#.

4.5.1. FPR and FA-FPR
In the sequence of experiments, we compare FPR with FA-FPR on the six real world data sets shown in Table 1. 

The experimental results of these six data sets are shown in Table 2 and Fig. 2. In each of these sub-figures, the 
x-coordinate pertains to the size of the data set (the 20 data sets starting from the smallest one), while the y-coordinate 
concerns the computing time. Table 2 shows the comparisons of selected features and computational time with original 
algorithm FPR and the accelerated algorithm FA-FPR on six data sets. While Fig. 2 displays more detailed change 
trend of each of two algorithms with size of data set becoming increasing.
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Fig. 2. Times of FPR and FA-FPR versus the size of data.
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Table 2
The time and attribute reduction of the algorithms FPR and FA-FPR.

Data sets Original features FPR algorithm FA-FPR algorithm

Selected features Time (s) Selected features Time (s)

Image Segmentation 19 15 1499.2031 15 962.3594
Sonar, mines vs. rocks 60 20 135.4218 20 46.7187
Cancer1 30 22 313.7968 22 200.1875
Ionosphere 34 24 213.2187 24 47.1250
Cancer2 33 24 43.3281 24 21.8906
Wine recognition 13 13 2.8906 13 1.7968

Table 3
The time and attribute reduction of the algorithms FSCE and FA-FSCE.

Data sets Original features FSCE algorithm FA-FSCE algorithm

Selected features Time (s) Selected features Time (s)

Image Segmentation 19 17 1258.0468 17 900.5781
Sonar, mines vs. rocks 60 41 300.5625 41 50.0000
Cancer1 30 27 228.9218 27 171.8750
Ionosphere 34 24 137.0468 24 43.9218
Cancer2 33 29 44.6562 29 26.8593
Wine recognition 13 13 2.8906 13 2.0937

It is easy to note from Table 2 and Fig. 2 that the computing time of each of these two algorithms increases with the 
increase of the size of data. As one of the important advantages of the FA, as shown in Table 2 and Fig. 2, we see that 
the modified algorithms are much more faster than their original counterparts on the basis of obtaining an attribute 
reduct. Sometimes, the effect of this reduction can reduce over two thirds of the computational time. For example, the 
reduced time achieves 88.7032 seconds on the data set (Sonar, mines vs. rock), while the reduced time is 166.0938 
seconds on the data set (Ionosphere). Furthermore the differences are profoundly larger when the size of the data set 
increases.

4.5.2. FSCE and FA-FSCE
It is well known that, the attribute reduct induced by fuzzy information entropy keeps the fuzzy condition entropy 

of original data set, which is based on a more strict definition of attribute reduct. Hence, the attribute reduct obtained 
by this approach is often much longer than the one induced by the fuzzy positive region reduction.

In what follows, we compare FSCE with FA-FSCE on those six real world data sets shown in Table 1 from com-
putational time and selected feature subsets. Table 3 presents the comparisons of selected features and computational 
time with original algorithm FSCE and the accelerated algorithm FA-FSCE on six data sets, while Fig. 3 gives more 
detailed change trendline of each of two algorithms with size of data set becoming increasing.

From Table 3 and Fig. 3, it is easy to see that the modified algorithms are consistently faster than their orig-
inal counterparts. Sometimes, the reduced time can almost achieve five-fifths of the original computational time. 
For example, the reduced time achieves 250.5625 seconds on the data set (Sonar, mines vs. rocks), and the re-
duced time achieves 93.1250 seconds on the data set (Ionosphere). Furthermore the differences are profoundly larger 
when the size of the data set increases. Hence, attribute reduction based on the accelerator should be a good solu-
tion.

In addition, the fuzzy-rough feature selection algorithm induced by the original fuzzy rough set also can be cor-
respondingly modified. Similar to Sections 4.5.1 and 4.5.2, its improved version is also much faster than the original 
one. Hence, we omit its relative experimental analysis.

Remark. In rough set literature, there are three main control structures for constructing an attribute reduct with a 
heuristic strategy [40]. They include addition, deletion, and addition+deletion. The proposed method in this study is 
successful for the addition strategy only. In fact, how to accelerate those feature selection algorithms with deletion 
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Fig. 3. Times of FSCE and FA-FSCE versus the size of data.
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strategy and addition+deletion strategy are also very interesting issues. However, these are beyond the scope of this 
study. We will address them in future work.

5. Conclusions

In this study, a theoretic framework based on rough set theory has been proposed, called the forward approximation, 
which can be used to accelerate algorithms of heuristic attribute reduction. Based on this framework, an improved 
heuristic feature selection algorithm (FSPA) has been presented. Several representative heuristic attribute reduction 
algorithms encountered in rough set theory have been revised and modified. Experimental studies pertaining to six UCI 
data sets show that the modified algorithms can significantly reduce computing time of attribute reduction. The results 
show that the attribute reduction based on the forward approximation is an effective accelerator and can efficiently 
obtain an attribute reduct.

In the conclusion section, we summarize the advantages of the accelerator-forward approximation for attribute 
reduction and offer some explanatory comments. Based on the theoretical analysis and experimental evidence, we can 
affirm that:

• From the stop criterion of the algorithm, it follows that one must obtain an attribute reduct of the decision table. 
This provides a restriction of keeping the approximation ability of the decision.

From the definition of each of attribute reduction using fuzzy rough sets and the stop criterion of the algorithm, 
one can know that one must obtain an attribute reduct of a given decision table when the algorithm is stopped. Hence, 
each of the accelerated algorithms does not affect the approximation ability of the attribute reduct induced by the 
corresponding method.

• Each of the accelerated algorithms usually comes with a substantially reduced computing time when compared 
with amount of time used by the corresponding original algorithm.

Through using the accelerator-forward approximation, the size of data set could be reduced in each loop of each of 
modified algorithms. Therefore, the computational time for determining similarity matrix and significance measures 
of attributes in the reduced data set would be much smaller than that encountered for the entire data set. Evidently, 
these modified algorithms are much faster than the previous methods for the time consumption.

• The performance of these modified algorithms is getting better in presence of larger data sets; the larger the data 
set, the more profound computing savings.

The stopping criterion of attribute reduction will be stricter when the data set becomes larger, and the number of 
attributes in the reduct induced by a heuristic attribute reduction algorithm usually is much bigger. In this situation, 
each of the modified algorithms can delete much more objects from the data set in all loops, and hence can take far 
less time for attribute reduction. The greater the size of the data set is, the larger the number of attributes selected, 
and the better the performance of these modified algorithms becomes when it comes to computing time. Hence, these 
accelerated algorithms are particularly suitable for dealing with attribute reduction in large-scale data sets with high 
dimensions.
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Appendix A. Related proof

Theorem 4. Let S = (U, C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a, b ∈ C − B , if 

Sig1(a, B, D, U) ≥ Sig1(b, B, D, U), then Sig1(a, B, D, U ′) ≥ Sig1(b, B, D, U ′).

Proof. From the definition of Sig1(a, B, D, U) = γB∪{a}(D) − γB(D), we know that its value only depends on 
the dependency function γB(D) = |POSB(D)|

|U | . Since U ′ = U − POSU
B (D), one can know POSU ′

B (D) = Ø and 

POSU ′
B∪{a}(D) = POSU

B∪{a}(D) − POSU
B (D). Therefore, we have

Sig1(a,B,D,U)

Sig1(a,B,D,U ′)
= γ U

B∪{a}(D) − γ U
B (D)

γ U ′
B∪{a}(D) − γ U ′

B (D)

= |U ′|
|U |

|POSU
B∪{a}(D)| − |POSU

B (D)|
|POSU ′

B∪{a}(D)| − |POSU ′
B (D)|

= |U ′|
|U |

|POSU
B∪{a}(D)| − |POSU

B (D)|
|POSU

B∪{a}(D)| − |POSU
B (D)|

= |U ′|
|U | .

Because |U ′|
|U | ≥ 0 and if Sig1(a, B, D, U) ≥ Sig1(b, B, D, U), then Sig1(a, B, D, U ′) ≥ Sig1(b, B, D, U ′). This 

completes the proof. �
Theorem 5. Let S = (U, C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU

B (D). For ∀a, b ∈ C − B , if 
Sig2(a, B, D, U) ≥ Sig2(b, B, D, U), then Sig2(a, B, D, U ′) ≥ Sig2(b, B, D, U ′).

Proof. Without any of generality, we suppose that POSU
B (D) = {x1, x2, · · · , xp} and U ′ = U − POSU

B (D) =
{xp+1, xp+2, · · · , x|U |}. From the definition of positive region, one has rB

ij ≤ rD
ij when xi ∈ POSU

B (D), ∀j ≤ n. In 

addition, it follows from the definition of similarity matrix that rB
ij = rB

ji and rD
ij = rD

ji . Hence, we have that

HU(D|B) = − 1

|U |
|U |∑
i=1

log
|[xi]R̃B

∩ [xi]R̃D
|

|[xi]R̃B
|

= − 1

|U |

(
p∑

i=1

log
|[xi]R̃B

∩ [xi]R̃D
|

|[xi]R̃B
| +

|U |∑
i=p+1

log
|[xi]R̃B

∩ [xi]R̃D
|

|[xi]R̃B
|

)

= − 1

|U |

(
p∑

i=1

log
|[xi]R̃B

|
|[xi]R̃B

| +
|U |∑

i=p+1

log
|[xi]R̃B

∩ [xi]R̃D
|

|[xi]R̃B
|

)

= − 1

|U |
|U |∑

i=p+1

log
|[xi]R̃B

∩ [xi]R̃D
|

|[xi]R̃B
|

= −|U ′|
|U |

1

|U ′|
|U ′|∑
i=1

log
|[xi]R̃B

∩ [xi]R̃D
|

|[xi]R̃B
|

= |U ′|
|U | HU ′

(D|B).

Hence, Sig2(a,B,D,U)

Sig2(a,B,D,U ′) = |U ′|
|U | . Therefore, one has that ∀a, b ∈ C − B , if Sig2(a, B, D, U) ≥ Sig2(b, B, D, U), then 

Sig2(a, B, D, U ′) ≥ Sig2(b, B, D, U ′). This completes the proof. �
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Theorem 6. Let S = (U, C ∪ D) be a decision table, B ⊆ C and U ′ = U − {x|μPOSU
B (D)(x) = 1, x ∈ U}. For ∀a, b ∈

C − B , if Sig3(a, B, D, U) ≥ Sig3(b, B, D, U), then Sig3(a, B, D, U ′) ≥ Sig3(b, B, D, U ′).

Proof. From the definition of μPOSU
B (D)(x), we have that

μPOSU
B∪{a}(D)(x) = 1, ∀x ∈ U

⇒ ∃X ∈ U/D, s.t., μU
B∪{a}(X)(x) = 1

⇒ ∃X ∈ U/D, s.t., inf
xj ∈U

max
{
1 − R̃B∪{a}(x, xj ), μX(xj )

} = 1

⇒ ∃X ∈ U/D, s.t., inf
xj ∈U

max
{
1 − max

{
R̃B(x, xj ), R̃{a}(x, xj )

}
, μX(xj )

} = 1

⇒ ∃X ∈ U/D, s.t., ∀xj ∈ U,max
{
1 − max

{
R̃B(x, xj ), R̃{a}(x, xj )

}
, μX(xj )

} = 1

⇒ ∃X ∈ U/D, s.t., ∀xj ∈ U,max
{
1 − R̃B(x, xj ), μX(xj )

} = 1

⇒ ∃X ∈ U/D, s.t., inf
xj ∈U

max
{
1 − R̃B(x, xj ), μX(xj )

} = 1

⇒ ∃X ∈ U/D, s.t., μU
B(X)(x) = 1

⇒ ∃X ∈ U/D, s.t., μPOSU
B (D)(x) = 1, ∀x ∈ U.

From the definition of Sig3(a, B, D, U) = γB∪{a}(D) − γB(D), we know that

Sig3(a,B,D,U)

Sig3(a,B,D,U ′)

=
γ U
B∪{a}(D) − γ U

B
(D)

γ U ′
B∪{a}(D) − γ U ′

B
(D)

= |U ′|
|U |

∑
x∈U μPOSU

B∪{a}(D)
(x) − ∑

x∈U μPOSU
B (D)

(x)∑
x∈U μ

POSU ′
B∪{a}(D)

(x) − ∑
x∈U μ

POSU ′
B (D)

(x)

= |U ′|
|U |

∑
x∈U ′ μPOSU

B∪{a}(D)
(x) + ∑

x∈U−U ′ μPOSU
B∪{a}(D)

(x) − ∑
x∈U ′ μPOSU

B (D)
(x) − ∑

x∈U−U ′ μPOSU
B (D)

(x)∑
x∈U μ

POSU ′
B∪{a}(D)

(x) − ∑
x∈U μ

POSU ′
B (D)

(x)

= |U ′|
|U |

[∑x∈U ′ μPOSU
B∪{a}(D)

(x) − ∑
x∈U ′ μPOSU

B (D)
(x)] + [∑x∈U−U ′ μPOSU

B∪{a}(D)
(x) − ∑

x∈U−U ′ μPOSU
B (D)

(x)]∑
x∈U μ

POSU ′
B∪{a}(D)

(x) − ∑
x∈U μ

POSU ′
B (D)

(x)

= |U ′|
|U |

[∑x∈U ′ μPOSU
B∪{a}(D)

(x) − ∑
x∈U ′ μPOSU

B (D)
(x)] + [|U − U ′| − |U − U ′|]∑

x∈U μ
POSU ′

B∪{a}(D)
(x) − ∑

x∈U μ
POSU ′

B (D)
(x)

= |U ′|
|U | .

Because |U ′|
|U | ≥ 0 and if Sig3(a, B, D, U) ≥ Sig3(b, B, D, U), then Sig3(a, B, D, U ′) ≥ Sig3(b, B, D, U ′). This 

completes the proof. �
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