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a b s t r a c t

As a simple clustering method, the traditional K -Means algorithm has been widely
discussed and applied in pattern recognition and machine learning. However, the K -
Means algorithm could not guarantee unique clustering result because initial cluster
centers are chosen randomly. In this paper, the cohesion degree of the neighborhood of
an object and the coupling degree between neighborhoods of objects are defined based
on the neighborhood-based rough set model. Furthermore, a new initialization method
is proposed, and the corresponding time complexity is analyzed as well. We study the
influence of the three norms on clustering, and compare the clustering results of the K -
means with the three different initialization methods. The experimental results illustrate
the effectiveness of the proposed method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is one of the widely used knowledge discovery techniques to reveal structures in a data set that can be
extremely useful to the analyst [1]. As clustering do not make any statistical assumptions to data, it is referred to as
unsupervised learning algorithm. In general, the problemof clustering dealswith partitioning a data set consisting ofnpoints
embedded inm-dimensional space into k distinct set of clusters, such that the data points within the same cluster are more
similar to each other than to data points in other clusters. A commonmethod is to use data to learn a set of centers such that
the sumof squared errors between objects and their nearest centers is small. Clustering techniques are generally classified as
partitional clustering and hierarchical clustering, based on the properties of the generated clusters. The partitional clustering
technique usually begins with an initial set of randomly selected exemplars and iteratively refines this set so as to decrease
the sum of squared errors. Due to the simpleness, random initialization method has been widely used. However, partitional
clustering algorithms with random initialization method need to be rerun many times with different initializations in an
attempt to find a good solution. Furthermore, random initialization method works well only when the number of clusters is
small and chances are good that at least one random initialization is close to a good solution [2]. Therefore, how to choose
proper initial cluster centers is extremely important as they have a direct impact on the formation of final clusters.
TheK -Means clustering algorithm [3], developed three decades ago, is one of the best-knownandmost popular clustering

algorithms used in a variety of domains. Despite being used in a wide array of applications, the K -Means algorithm is not
exempt from drawbacks. Some of these drawbacks have been extensively reported in some literatures. The most important
are listed below [4]:
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1. As many clustering methods, the K -Means algorithm assumes that the number of clusters K is already known by the
users, which, unfortunately, usually is not true in practice.

2. As an iterative technique, the K -Means algorithm is especially sensitive to initial cluster centers.
3. The K -Means algorithm converges to a local minima.

Although there is no guarantee of achieving a global minima, at least the convergence of the K -Means algorithm is
ensured [5]. Therefore, how to choose proper initial cluster centers becomes very important for the K -Means algorithm.
The problem of initial cluster centers is not exclusive to the K -Means algorithm but shared withmany clustering algorithms
that work as a hill-climbing strategy whose deterministic behavior leads to a local minima dependent on initial cluster
centers. Several attempts have been made to solve the cluster initialization problem. A recursive method for initializing the
means by running K clustering problems is discussed by Duda and Hart [6]. Milligan [7] showed the strong dependence of
the K -Means algorithm on initial clustering and suggested that good final cluster structures can be obtained using Ward’s
hierarchicalmethod [8] to provide theK -Means algorithmwith initial clusters. Fisher [9] proposed creating the initial cluster
centers by constructing an initial hierarchical clustering based upon the work [10]. Higgs et al. [11] and Snarey et al. [12]
suggested using aMaxMin algorithm in order to select a subset of the original database as the initial centroid to establish the
initial clusters. Bradley et al. [13] used bilinear program to determine k initial clusters such that the sum of distances of each
point to the nearest center is minimized. Bradley and Fayyad [14] presented a procedure for computing a refined starting
condition from a given initial one that is based on an efficient technique for estimating themodes of a distribution. Khan and
Ahmad [15] presented an algorithm for computing initial cluster centers for K -Means algorithm. Penă et al. [4] presented a
comparative study for different initialization methods for the K -Means algorithm, the result of their experiments illustrate
that the random and Kaufman initialization method outperforms the rest of the compared methods as they make the K -
Means algorithm more effective and more independent on initial clustering and on instance order. However, there are no
universally accepted method for selecting initial cluster centers as reported by Meila and Heckerman [16].
Rough set theory introduced by Pawlak [17] is a kind of symbolic machine learning technology for categorical value

information systemswith uncertainty information [18,19]. In recent years, rough set theory has attractedmuch attention in
clustering literatures. Parmar et al. [20] proposed a newalgorithmMMR(Min-Min-Roughness) for clustering categorical data
based on rough set theory, which has the ability to handle the uncertainty in the clustering process. Clustering technology
can also be used for outlier detection [21]. By the notion of rough membership function in rough set theory, Jiang et al. [22,
23] defined the rough outlier factor for outlier detection. Chen et al. [24] presented an improved clustering algorithm based
on rough set and Shannon’s Entropy theory.
In the procedure of clustering, neighborhood is a very important concept for describing the distribution of objects.

Breuning et al. [25] introduced the concept of ‘‘Local outlier’’. The outlier rank of a data object is determined by taking
into account the clustering structure in a bounded neighborhood of the object. Lin [26] pointed out that neighborhood
spaces are more general topology space than equivalence space and introduced neighborhood relation into rough set
methodology, which has shown to be a powerful tool to deal with uncertainty. Yao [27], Wu and Zhang [28] discussed the
properties of neighborhood approximation spaces. Hu et al. [29] presented a conceptually simple and easy to implement
method to understand and construct neighborhood-based attribute reduction technique and classifiers. In this paper, based
on neighborhood-based rough set model, the cohesion degree of the neighborhood of an object and the coupling degree
between neighborhoods of objects are defined, which reflect intracluster similarity and intercluster similarity, respectively.
Furthermore, a new initialization method is proposed and the corresponding time complexity is analyzed as well. Finally,
we compare the results of the K -Means algorithm with the proposed initialization method with that of the other two
initialization methods. The experimental results show that the proposed algorithm is effective.
The outline of the rest of this paper is as follows. In Section 2, based on neighborhood-based rough set model, the

cohesion degree of the neighborhood of an object and the coupling degree between neighborhoods of objects are defined. An
initialization method for K -Means is proposed and the corresponding time complexity is analyzed in Section 3. In Section 4,
the influence of the three norms on clustering is analyzed and the clustering results of K -Means algorithm with the three
different initialization methods are compared. Then the conclusion is given in Section 5.

2. Some basic concepts

In this section, several basic concepts are reviewed, which are the neighborhood of an object, lower and upper
approximations of neighborhood-based rough setmodel. Somenovel concepts are defined, for example, the cohesion degree
of the neighborhood of an object and the coupling degree between neighborhoods of objects.

2.1. Cohesion degree of the neighborhood of an object

Aswe know, the structural data are stored in a table, where each row (tuple) represents facts about an object. A data table
is also called an information system. Data in the real world are prevalently described by numeric attributes. More formally,
a numeric information system can be defined as a quadruple IS = (U, A, V , f ), where
U—is the nonempty set of objects, called a universe;
A—is the nonempty set of attributes;
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V—the union of all attribute domains, i.e., V =
⋃
Va, where Va is the value domain of attribute a and V ⊂ R;

f : U × A→ V—a mapping called an information function such that for any x ∈ U and a ∈ A, f (x, a) ∈ Va.

Definition 1. Let IS = (U, A, V , f ) be a numeric information system and P ⊆ A. For any xi, xj ∈ U , a general metric between
xi and xj with respect to P , named Minkowski distance, is defined as

dP(xi, xj) =

(
|P|∑
m=1

(
|f (xi, am)− f (xj, am)|

)λ)1/λ
,

where am ∈ P , λ = 1, 2,∞. When λ = 1, 2,∞, dP(xi, xj) is called Manhattan distance, Euclidean distance and Chebyshev
distance, respectively. For any x1, x2, x3 ∈ U , it satisfies

1. dP(x1, x2) ≥ 0;
2. dP(x1, x2) = 0 if and only if x1 = x2;
3. dP(x1, x2) = dP(x2, x1);
4. dP(x1, x3) ≤ dP(x1, x2)+ dP(x2, x3).

Obviously, dP is a distance metric.

Definition 2. Let IS = (U, A, V , f ) be a numeric information system and P ⊆ A. Given 0 < ε ≤ 1, for any xi ∈ U , the
neighborhood δεP of xi with respect to P is defined as

δεP(xi) = {x ∈ U|dP(x, xi) ≤ ε}.

When λ = 1, 2,∞, δεP(xi) is called a rhombus region, a ball region and rectangle or square around the center object xi,
respectively.

The family of neighborhood of object {δεP(xi)|xi ∈ U} covers the universe, instead of partitioning it, so we have

1. δεP(xi) 6= ∅;
2.
⋃|U|
i=1 δ

ε
P(xi) = U;

3. xj ∈ δεP(xi)⇒ xi ∈ δ
ε
P(xj);

4. If ε1 > ε2, then |δ
ε1
P (xi)| ≥ |δ

ε2
P (xi)|.

The size of the neighborhood depends on the threshold ε. The greater ε is, the more objects fall into the neighborhood.
Here we compute ε as follows.
Since different attributes are measured on different scales, it is usual to normalize all values to lie between 0 and 1.

dP(xi, xj) is also formulated as

dP(xi, xj) =

(
|P|∑
m=1

(
|f (xi, am)− f (xj, am)|

ω

)λ)1/λ
,

where ω = max|U|i=1{f (xi, am)|xi ∈ U}. And the average distance among objects is defined as

x =
2

|U|(|U| − 1)

|U|−1∑
i=1

|U|∑
j=i+1

dP(xi, xj).

The size of x measures the distribution of objects in U . The greater x is, the looser distribution among objects is. Hence, in
the rest of the paper, we use x to denote the size of neighborhood of objects, that is ε = x.
In rough set theory [17], the upper and lower approximations are used to identify and utilize the context of each

specific object and reveal relationship between objects. The upper approximation includes all objects that possibly belong
to the concept while the lower approximation contains all objects that surely belong to the concept. The lower and upper
approximations based on numeric data are given as follows:

Definition 3. Let IS = (U, A, V , f ) be a numeric information system, P ⊆ A and X ⊆ U , the lower and upper approximations
of X in U with respect to P are defined as

PX = {xi|δεP(xi) ⊆ X, xi ∈ U},

and

PX = {xi|δεP(xi) ∩ X 6= ∅, xi ∈ U}.

PX is a set of objects whose neighborhood belongs to X with certainty, while PX is a set of objects whose neighborhood
possibly belongs to X .
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Table 1
An example data set.

Objects a b Objects a b

x1 1 4 x11 7.4 3.9
x2 1.3 3.9 x12 7.2 3.8
x3 1.2 3.8 x13 9 4
x4 3 4 x14 8.8 3.9
x5 2.8 3.9 x15 8.9 3.7
x6 2.9 3.7 x16 8 3
x7 2 3 x17 8.1 3.1
x8 1.9 3.3 x18 4.9 1.5
x9 2.2 3.2 x19 5.4 1.7
x10 8 3.2 x20 5 1.8

Pawlak [17] discussed two numerical characterizations of uncertainty of a rough set: accuracy and roughness. The
accuracy measures the degree of completeness of knowledge about the given rough set X , and is defined by the ratio of
the cardinalities of the lower and upper approximation sets of X . Similarly, the accuracy of X in a numeric information
system is formulated as

αP(X) =
|PX |

|PX |
,

where 0 ≤ αP(X) ≤ 1.

Example 1. An example data set is given by Table 1.
This is a numeric information system, where U = {x1, x2, . . . , x20} and A = {a, b}. Suppose that X = {x1, x2, x3, x4, x5,

x6, x7, x8, x9, x10, x13} and λ = 2.
By calculating, one can have

AX = {x1, x2, x3, x4, x5, x6, x7, x8, x9},

and

AX = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17}.

It is easy to see that

αA(X) =
|AX |

|AX |
=
9
17
.

αP(X)measures the uncertainty with the lower bound and the upper bound of the neighborhood of an object. Suppose
that there is an object which occurs in the neighborhood of each object, which means that the object which contains
the maximum uncertainty provides less clustering characteristics. Based on the above ideas, the cohesion degree of the
neighborhood of an object is defined as follows.

Definition 4. Let IS = (U, A, V , f ) be a numeric information system and P ⊆ A. For any xi ∈ U , the cohesion degree of
δεP(xi) is defined as

Cohesion(δεP(xi)) =
|P(δεP(xi))|

|P(δεP(xi))|
,

where 0 < Cohesion(δεP(xi)) ≤ 1.

The greater Cohesion(δεP(x)) is, the less the boundary region of neighborhood of object x is, which means that x is a better
cluster center of its neighborhood. Therefore, x is likely taken as an initial cluster center in U .

Example 2 (Continued from Example 1). According to Definition 4, the coupling degree of neighborhood of every object in
U is shown in Table 2.

From Table 2, we have that Cohesion(δεP(x6)) = Cohesion(δεP(x15)) = Cohesion(δεP(x18)) = Cohesion(δεP(x19)) =
Cohesion(δεP(x20)) = 1. However, we cannot simply take x6, x15, x18, x19, x20 as initial cluster centers. This is owing to the
reason that someof these objects possibly are very close andpossibly belong to the same cluster. If so, the number of iteration
possibly will increase and the accuracy of clustering possibly will decrease. So the coupling degree between neighborhoods
of objects is given as follows.
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Table 2
The coupling degree of neighborhood of every object in U (ε = 0.3077).

Objects Cohesion(δεP (xi)) Objects Cohesion(δεP (xi))

x1 0.2222 x11 0.3750
x2 0.5556 x12 0.5000
x3 0.5556 x13 0.1250
x4 0.1111 x14 0.3750
x5 0.5556 x15 1
x6 1 x16 0.1250
x7 0.1111 x17 0.2500
x8 0.3333 x18 1
x9 0.2222 x19 1
x10 0.3750 x20 1

2.2. Coupling degree between neighborhoods of objects

Definition 5. Let IS = (U, A, V , f ) be a numeric information system and P ⊆ A. For any xi, xj ∈ U , the coupling degree of
δεP(xi) and δ

ε
P(xj) is defined as

Coupling(δεP(xi), δ
ε
P(xj)) =

|δεP(xi) ∩ δ
ε
P(xj)|

|δεP(xi) ∪ δ
ε
P(xj)|

,

where 0 ≤ Coupling(δεP(xi), δ
ε
P(xj)) ≤ 1.

The greater Coupling(δεP(xi), δ
ε
P(xj)) is, the more possibly xi and xj belong to the same cluster. In this paper, we consider

that xi and xj belong to the same cluster, if Coupling(δεP(xi), δ
ε
P(xj)) > ε. On the contrary, xi and xj are likely taken as initial

cluster centers.
The cohesion degree and the coupling degree reflect the intracluster similarity and the intercluster similarity,

respectively. Based on the foregoing, an initialization method for K -Means is proposed in Section 3.

3. An initialization method for K -Means using neighborhood model

In this section, based on the cohesion degree of neighborhood of an object and the coupling degree between
neighborhoods of objects, an initialization method for the K -Means algorithm is described as follows:
Input: S = (U, A, V , f ) and K .
Output: Centers.
Step 1: Initialize Centers = ∅ and Tempcohesion = ∅.
Step 2: Compute ε.
Step 3: For any x ∈ U , compute Cohesion(δεA(x)). Centers = Centers

⋃
{x} and Tempcohesion = Tempcohesion

⋃
{x}, where

x satisfies Cohesion(δεA(x)) = max
|U|
i=1{Cohesion(δ

ε
A(xi))}, the first initial cluster center is selected.

Step 4: Find the next most coherent object x, where x satisfies Cohesion(δεA(x)) = max{Cohesion(δεA(xi))|xi ∈
U-Tempcohesion}.
Step 5: For any x′ ∈ Centers, if Coupling(δεA(x

′), δεA(x)) < ε, then Centers = Centers
⋃
{x}.

Step 6: Tempcohesion = Tempcohesion
⋃
{x}.

Step 7: If |Centers| < K , then goto step 4, otherwise goto step 8.
Step 8: End.
The time complexity of the proposed algorithm is analyzed as follows. In Step 2, the time complexity for computing the

size of neighborhood is O(|U|2). Computation of the neighborhood of objects will take O(|U|2) in Step 3. The operation on
obtaining the most cohering object have a time complexity of O(|U|) in Step 4. Computational cost of the rest of the steps is
O(1). Therefore, the entire time complexity of the proposed algorithm is O(|U|2).

4. Experimental results

In this section, experiment environments and an evaluation method [30] are introduced. Some standard data sets are
downloaded. We compare the clustering results of the K -Means algorithm with the three different initialization methods,
which are the proposed method, random initialization method and CCIA [15], respectively. Furthermore, the clustering
results of the proposed algorithm with the three different norms are analyzed as well. The experimental results show that
the proposed method outperforms the other two initialization methods.
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Fig. 1. Clustering result of the K -Means algorithm with the proposed initialization method on Example data (K = 3).

4.1. Experimental environments and evaluation method

The experiments are conducted on a PC with an Intel Pentium 4 processor (2.4 GHz) and 1G byte memory running the
Windows XP SP3 operating system. The K -Means algorithms with the three different initialization methods are coded in
MATLAB 7.0 programming language.
To evaluate the efficiency of clustering algorithms, three evaluation index accuracy (AC), precision (PR), and recall (RE)

are employed in the following experiments. In order to define the three kinds of evaluation indexes, the following quantities
are needed.
k—the number of classes of the data, which is known;
ai—the number of objects that are correctly assigned to the class Ci (1 ≤ i ≤ k);
bi—the number of objects that are incorrectly assigned to the class Ci;
ci—the number of objects that should be in, but are not correctly assigned to the class Ci;

The accuracy, precision and recall are defined as AC =
∑k
i=1 ai
|U| , PR =

∑k
i=1(

ai
ai+bi

)

k , RE =
∑k
i=1(

ai
ai+ci

)

k , respectively.

4.2. Evaluation on clustering effectiveness

In order to test the effectiveness of the proposedmethod, some data sets are downloaded from themachine learning data
repository, University of California at Irvine [31]. Some experiments are done on these data sets and the results are compared
with the other two initialization methods, which are random initialization and CCIA [15]. As the K -Means algorithm is
especially sensitive to initial cluster centers, we carry out 100 runs of the k-Means algorithm with random initialization
methods on these standard data sets, respectively. Therefore, we take the average of 100 times experiments as experimental
results. The comparison results of the k-Means algorithmwith three initializationmethods on Example data set and real data
sets are shown, respectively.

Example data (Table 1)
Suppose that the desired number of clusters is 3 or 7, thus the corresponding initial cluster centers {x6, x15, x18} and

{x6, x15, x18, x2, x12, x8, x17} can be obtained by the proposed algorithm. We take {x6, x15, x18} and {x6, x15, x18, x2, x12,
x8, x17} as the initial cluster centers of the K -Means algorithm, respectively. Figs. 1 and 2 show the results of the K -Means
algorithm with K = 3 or K = 7, respectively. Note that objects with black square in Figs. 1 and 2 are taken as initial cluster
centers in clustering process.
From Figs. 1 and 2, we find that the proposed algorithm can accurately discover the initial cluster centers for the K -Means

algorithm.
Furthermore, Tables 3 and 4 illustrate the influence of the three norms on clustering and the comparison results of three

initialization methods on Example data with K = 3 or K = 7, respectively.
Table 3 shows that the proposed method and CCIA outperform random initialization method. However, in Table 4, the

results of CCIA is much lower than that of the proposed method and random initialization. The reasons are listed below. In
Table 1, for attribute a and b, CCIA generates five class label, respectively. Thus, we obtain the number of the unique strings,
which is less than K = 7. Therefore, CCIA cannot be conducted correctly.

Iris data
This data set has often been used as a standard for testing clustering algorithms. This data set has three classes that

represent three different varieties of Iris flowers namely Iris setosa, Iris versicolor and Iris virginica. Fifty objects are obtained
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Fig. 2. Clustering result of the K -Means algorithm with the proposed initialization method on Example data (K = 7).

Table 3
The comparison results of the K -Means algorithm with the three initialization methods on Example data (K = 3).

The proposed method Randommethod CCIA
λ = 1 λ = 2 λ = ∞

AC 1 1 1 0.9625 1
PR 1 1 1 0.9671 1
RE 1 1 1 0.9713 1

Table 4
The comparison results of the K -Means algorithm with the three initialization methods on Example data (K = 7).

The proposed method Randommethod CCIA
λ = 1 λ = 2 λ = ∞

AC 0.8500 1 0.8500 0.8120 0.4500
PR 0.7857 1 0.7857 0.7074 0.2440
RE 1 1 1 0.9886 1

Table 5
The comparison results of the K -Means algorithm with the three initialization methods on Iris data.

The proposed method Randommethod CCIA
λ = 1 λ = 2 λ = ∞

AC 0.8867 0.6667 0.6667 0.8452 0.8867
PR 0.8868 0.7797 0.7797 0.8809 0.8979
RE 0.8867 0.8533 0.8533 0.8786 0.8867

Table 6
The comparison results of the K -Means algorithm with the three initialization methods on Wine data.

The proposed method Randommethod CCIA
λ = 1 λ = 2 λ = ∞

AC 0.9494 0.9438 0.9494 0.9442 0.9438
PR 0.9496 0.9412 0.9496 0.9440 0.9412
RE 0.9577 0.9521 0.9577 0.9547 0.9521

from each of the three classes, thus a total of 150 objects is available. Every object is described by four attributes, viz sepal
length, sepal width, petal length and petal width. The experimental results are summarized in Table 5.

Wine recognition data
This data set is the result of a chemical analysis ofwines grown in the same region in Italy but derived from three different

cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines. There are
overall 178 objects. There are 59, 71, 48 objects in class I, class II and class III respectively. The experimental results are
summarized in Table 6.

Glass data
This data set has 214 objects and 10 (including an Id#) attributes. There are 7 clusters (70 building windows, 17 vehicle

windows, 76 building windows, 0 vehicle windows, 13 containers, 9 tableware and 29 headlamps) that can be grouped in 2



F. Cao et al. / Computers and Mathematics with Applications 58 (2009) 474–483 481

Table 7
The comparison results of the K -Means algorithm with the three initialization methods on Glass data.

The proposed method Randommethod CCIA
λ = 1 λ = 2 λ = ∞

AC 0.8972 0.8972 0.8972 0.8779 0.7617
PR 0.8584 0.8584 0.8584 0.8361 0.8257
RE 0.8584 0.8584 0.8584 0.8467 0.8086

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.65

0.7

0.75

0.8

0.85

0.9

0 1

Threshold

AC
PR
RE

V
al

ue
s 

of
 In

de
xe

s

Fig. 3. Evaluation index curves varying with ε on Iris data.

bigger clusters (163Window glass, 51 Non-window glass). In this experiment, suppose that the number of clusters is 2. The
experimental results are summarized in Table 7.
From Tables 5–7, we can find that the clustering results of the K -Means algorithms with the three initialization methods

are very close on Wine data set. The proposed method with λ = 1 and CCIA are superior to random initialization method
on Iris data set. On Glass data set, the proposed method outperforms the other two initialization methods. Furthermore,
random initialization method is superior to CCIA. In addition, the clustering results on the most data sets are insensitive to
norms, except for Iris data set.

4.3. Sensitivity analysis

As the size of neighborhood has direct influence to clustering results, we conduct a series of experiments to find the
optimal parameter ε used to control the size of the neighborhood. We try ε from 0.05 to 1 with step 0.05, and present the
clustering results of the K -Means algorithmwith the proposedmethod on real data sets, respectively, where λ = 2. Figs. 3–5
present the three evaluation index curves varying with ε for different data sets: Iris, Wine and Glass.
From Fig. 3, we can find that the threshold ε is in range [0.05, 0.25] or [0.7, 1], which is optimal or near optimal on

Iris data set. In Fig. 5, it is clear that the threshold ε is in range [0.05, 0.2], which is near optimal. On Wine data set, the
clustering results are optimal, when ε is between 0.35 and 0.4. Therefore, we recommend that ε should take values in the
range [0.1, 0.2].

5. Conclusions

K -Means algorithm is widely discussed and applied, however, the K -Means algorithm suffers from initial starting
condition effects. As a computing model of information granular, neighborhood model has been successfully applied. In
this paper, the cohesion degree of the neighborhood of an object and the coupling degree between neighborhoods of objects
have been defined based on the neighborhood-based rough set model. Furthermore, a new initialization method has been
proposed, and the corresponding time complexity has been analyzed as well. We study the influence of the three norms
on clustering, and compare the proposed initialization method with the other two initialization methods. The experimental
results illustrate the effectiveness of the proposed method.
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