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Link prediction is a fundamental research problem in network data analysis. Networks usually contain rich node-
to-node topological metrics and their effective use is crucial to solve the link prediction problem. Despite sig-
nificant advances, the existing metric-based link prediction methods usually only consider one single topological
metric and thus show some limitations in different types of networks; the existing matrix factorization-based
models mainly focus on modeling the adjacent matrix of a network, and this is hard to ensure the modeling of
those topological metrics that can play an important role in link prediction. This study develops effective ap-
proaches by fusing the adjacent matrix and some key topological metrics in a unified probability matrix fac-
torization framework. In these approaches, we consider not only the symmetric metrics but also the asymmetric
metrics which are usually not taken into consideration in the related work. In our probability matrix factor-
ization framework, we first present two fusion models by fusing two kinds of metrics respectively, and based on
the fusion models, we put forward the final fusion models which fuse the two kinds of metrics simultaneously. To
verify the performance of all the fusion models, we conduct the experiments with six directed networks and six
undirected ones, and the extensive experiments show that the proposed models provide impressive predicting
performance for link prediction.

1. Introduction

Link prediction is a fundamental and important problem in network
data analysis [1]. The solution to the problem is essential to explain the
reason of network structure generation, to help us explore the law of
network evolution [2], and to understand the mechanism of complex
systems [3,4]. Furthermore, it is also of great significance for many
applications, such as finding friends in social networks [5], re-
commending items in user-item networks [6], finding experts in aca-
demic networks [7], and discovering unknown interactions in protein-
protein networks [8].

Research on link prediction has draw increasing attention in recent
years. Many methods have been proposed by researchers from physics,
biology, sociology, and computer science [9-14], including the metric-
based methods, the classification-based methods, the probabilistic
graph model (PGM)-based methods and the matrix factorization (MF)-
based methods. As one kind of important link prediction methods, MF-
based methods solve the link prediction problem mainly through fo-
cusing on modeling the low-rank approximation of the adjacent matrix
of a network. Some existing work [15,16] has shown the advantages of
MF-based methods in solving link prediction problem such as its ro-
bustness to the networks from different domains and its scalability to
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large datasets.

Though powerful, existing MF-based methods still have some pro-
blems that could limit their applicability and prediction accuracy. The
core of MF is to get the low-rank approximation of the adjacent matrix
of a network, but compared with the network itself, the presented in-
formation of the adjacent matrix is insufficient. This is because the
adjacent matrix only present the observed links of a network, but ac-
tually a network still contains rich topological metrics like the common
neighbors between nodes and the path length between nodes. No evi-
dence indicating that the existing MF-based models can give dual at-
tention to modeling the observed network links and those topological
metrics which can play an important role in link prediction.

Based on the above considerations, we have the following motiva-
tions:

e Whether a MF-based model can be built to fuse the adjacent matrix
and the topological metrics between nodes in a network?

® Whether a MF-based model should consider both the symmetric
metrics and the asymmetric metrics between nodes in a network?

e How can we take the two factors into account in one MF-based
model if both the symmetric metrics and the asymmetric metrics are
related to the links formation in a network.

E-mail addresses: zhiq.wang@163.com (Z. Wang), ljy@sxu.edu.cn (J. Liang), liru@sxu.edu.cn (R. Li).

https://doi.org/10.1016/j.knosys.2018.06.005

Received 27 November 2017; Received in revised form 4 June 2018; Accepted 7 June 2018

0950-7051/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Wang, Z., Knowledge-Based Systems (2018), https://doi.org/10.1016/j.knosys.2018.06.005



http://www.sciencedirect.com/science/journal/09507051
https://www.elsevier.com/locate/knosys
https://doi.org/10.1016/j.knosys.2018.06.005
https://doi.org/10.1016/j.knosys.2018.06.005
mailto:zhiq.wang@163.com
mailto:ljy@sxu.edu.cn
mailto:liru@sxu.edu.cn
https://doi.org/10.1016/j.knosys.2018.06.005

Z. Wang et al.

Therefore, the objective of this study is to develop fusion models
which fuse the adjacent matrix with some topological metrics together
in one unified probability matrix factorization framework. In the fra-
mework, we first present two fusion models by fusing the symmetric
metrics and the asymmetric metrics respectively, and based on the fu-
sion models, we put forward the final fusion models which fuse the two
kinds of metrics simultaneously.

This paper makes the following contributions:

® We propose fusion models to fuse two sides of network information,
i.e. the adjacent matrix and some key topological metrics, in one
unified probabilistic matrix factorization framework.

e Our fusion models consider not only the symmetric metrics but also
the asymmetric metrics which are usually not taken into con-
sideration in the related work.

e We conduct experimental evaluations with various directed and
undirected network datasets, and our models get impressive pre-
dicting performance for link prediction.

The rest of the paper is organized as follows: Section 2 introduces
the related work; Section 3 presents the building of the fusion models in
the probabilistic matrix factorization framework, where the symmetric
metrics and asymmetric metrics are fused respectively, and a final fu-
sion model is proposed to fuse the two kinds of metrics simultaneously.
In Section 4, we conduct a series of experiments to evaluate the pro-
posed methods on various directed and undirected network datasets.
Finally we conclude our work in Section 5.

2. Related work

For link prediction, there have been several excellent surveys
[17-20] from different research perspectives. Liben-Nowell and Klein-
berg [19] provided useful information for the prediction problem,
especially some classical prediction measures based on topological in-
formation of networks. Lii and Zhou [21] summarized recent progress
about link prediction algorithms, emphasizing the contributions from
physical perspectives and approaches. Wang et al. [17] investigated the
link prediction from the perspective of computer science, and system-
atically summarized all typical work on the link prediction in social
networks. Martinez et al. [22] discussed a large number of proposed
techniques focusing on undirected and unweighed networks. In this
section, we will first give a brief summary of the related work following
the researching line of MF-based methods which are related to the
methodology of this paper, and after that we will provide a brief review
of the work done in the area of link prediction.

2.1. Matrix factorization based link prediction

Matrix factorization is a type of technique to get the low-rank ap-
proximation (LAR) and global information of the adjacent matrix of a
network. The classical matrix factorization methods such as singular
value decomposition (SVD) [23], non-negative matrix factorization
(NNMF) [24] and probabilistic matrix factorization (PMF) [25] can be
directly used for solving the link prediction problem. Liben-Nowell and
Kleinberg [19] investigated various types of link prediction methods,
and among them the LAR-based link prediction methods are im-
plemented by using SVD. Chen et al. [26] put forward a link prediction
algorithm based on NNMF. Zhu et al. [27] proposed a scalable temporal
link prediction model via NNMF. Yang et al. [28] combined link pre-
diction method by convex NNMF with block detection to predict po-
tential links using both of global and local information. In a word, the
extensive experiments showed that the classical MF-based methods
were effective in solving the link prediction problem.

In addition to the classical MF-based methods, some factorization
methods also have been designed according to the characteristics of the
link prediction problem to improve the prediction performance. Menon
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and Elkan [15] proposed a MF-based method to address the class im-
balance problem by directly optimizing for a ranking loss, which is
optimized with stochastic gradient descent and scales to large graphs.
Zhai and Zhang [16] attempted to solve the link prediction problem by
combining MF and Autoencoder (AE), and they utilized dropout to train
both the MF and AE parts and the results showed that it could sig-
nificantly prevent overfitting by acting as an adaptive regularization.
Song et al. [29] proposed a rank-one alternating direction method of
multiplier (ADMM) for nonnegative matrix factorization, and their ex-
periment results demonstrated that rank-one ADMM is more effective
than multiplicative update rule, alternating least square, and traditional
ADMM.

Despite these significant advances, current state-of-the-art MF-based
models mainly focus on modeling the adjacent matrix of a network, and
this is hard to ensure the modeling of those topological metrics that can
play an important role in link prediction. Intuitively, it is of certain
potential to improve the performance of link prediction if the MF-based
methods can give dual attention to modeling the adjacent matrix and
some key topological metrics. Therefore, this paper intends to deal with
the problem, which is the starting point of the study.

2.2. The other link prediction methods

Apart from the MF-based methods, the metric-based methods, the
classification-based methods, and the PGM-based methods are also the
mainstream methods in link prediction.

The metric-based methods address the link prediction problem by
measuring the similarity between nodes, such as the neighbors-based
metrics [30-37], path-based metrics [38-41], and random walk-based
metrics [42-46]. David Liben-Nowell and Kleinberg [19] tested several
topological metrics on social collaboration networks, and the results
showed that the Katz [41] metric and its variants performed con-
sistently well, and that some of the very simple metrics including
common neighbors and the Adamic-Adar metric [33] also performed
surprisingly well. Zhou et al. [31] compared a number of topological
metrics on disparate networks which included the protein-protein in-
teraction network, the electronic grid, the Internet, and the US airport
network. The extensive experimental results showed that the Resource
Allocation [33] metric performed best, while common neighbors and
Adamic-Adar metric [33] had the second-best performance. Also, other
topology-based metrics were proposed to solve the link-prediction
problem [38-40,42,47-49]. Despite those significant advances, the ef-
fectiveness of the metrics depends on the domain, the specific network,
and the available information.

The classification-based methods treat link prediction as a binary
classification problem. In a classification-based link prediction model,
the features are defined on each pair of nodes, and these features can be
constructed in topological or non-topological. The topological features
(such as the neighbors-based metrics and the path-based features) are
the commonly-used features in a classification-based link prediction
model [50-52]. Except for the topological features, the non-topological
features (such as users’ location, interests, and educational back-
grounds) are often selected to improve the classification-based link
prediction models [53-55]. In the classification-based methods, it is
still a challenge to predict links because the class imbalance problem
can be difficult to deal with and most models are prone to yield biased
results.

The PGM-based methods solve the link prediction problem by
building a statistical network model. The hierarchical network model
[56] models a network as a hierarchical random graph and the linking
possibility between nodes can be calculated by the probability ex-
pectation. Stochastic block models [57,58] assume that the network
nodes can be partitioned into some blocks, and that the linking prob-
ability between any two nodes depends on which block the nodes be-
long to. Latent-feature models [59-62] are kinds of probabilistic gen-
erative model, where the nodes’ latent-features and the edges in a
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network are all generated based on some distribution, and the linking
possibility can be obtained by using the model parameters which have
been estimated by a maximum likelihood estimation method. Although
the existing PGM-based modes provide a deep insight into network
structure, the algorithms usually have high complexity and are not
suitable for large networks.

3. Fusion probability matrix factorization models

In this section, we focus on building the fusion probability matrix
factorization (FPMF) models which can fuse the adjacent matrix with
some key topological metrics in a unified probability matrix factoriza-
tion framework. It should be noted that the topological metrics we aim
to fuse in our models are divided into two parts: the symmetric metrics
and the asymmetric metrics. The symmetric metrics mean that the
metrics from node u; to node u; is equal to that from node u; to node u;.
However, asymmetric metrics need to distinguish the direction between
node u; and node u;.

Since the strategies for fusing the symmetric metrics and the
asymmetric metrics are different in the probability matrix factorization
framework, we will first present two fusion models by fusing two kinds
of metrics respectively, and based on the fusion models, we put forward
the final fusion models which fuse the two kinds of metrics simulta-
neously in the upcoming sections.

For convenience, we list out the mainly-used notations of the
document in Table 1.

3.1. FPMF model by fusing symmetric metrics

The FPMF model we aim to build in this section is to fuse the ad-
jacent matrix with the symmetric metrics in a network. The adjacent
matrix is denoted as A, x ,, the symmetric metrics are denoted as a
symmetric matrix S,  », and each of the matrix element S; represents a
symmetric metric between node u; and node u;.

In an undirected network, many existing metrics (such as the
neighbor-based metrics and the path-based metrics) can be directly
used to measure the topological metric between network nodes. Here
we use the typical metrics including Common Neighbors [36], Jaccard
Coefficient [37] and Preferential Attachment [35] as the symmetric
measurements in an undirected network. However, in a directed net-
work, more variations of the measurements will appear because of the
link direction. For measuring the node-to-node relations in a directed
network, several symmetric metrics are defined by taking the existing
metrics [35,37,55] for reference.

To describe the symmetric metrics clearly, we give the following
standard notations. In an undirected network, I'(;) denotes the set of
neighbors of node u;, and |T'(y;)| denotes the number of elements of set
I'(iy). In a directed network, 't (u;) denotes the set of neighbors pointing
to node u;, I (u;) denotes the set of neighbors directed at node u;
IT*(u;)| denotes the number of elements of set I'*(u;), and [T~ (u;)| de-
notes the number of elements of set I'"(u;).

Table 1

Notations.
Symbol Explanation
neR The number of network nodes.
AeR"™" The adjacent matrix of a network.
SeRr**" The symmetric metric matrix.
CeR™™" The asymmetric metric matrix.
UeR" <t The latent-feature matrix of a network nodes.
U;eR' ™t The latent-feature vector of node u;.
g The binary relation function of A.
gs The binary relation function of S.
g The binary relation function of C.
WAeRE "L The parameter matrix of the function ga.
WCeRL*E The parameter matrix of the function gc.

Knowledge-Based Systems xxx (XXxX) XXX—XXX

Table 2
Symmetric metrics.

Number formula References

@ [T(u) NT ()| [36]

@ IT(u) NT(upl [371
IT(u) UT ()

@ [P@)| x || [35]

@ [T~ () N T~ ()l [55]

® ') N T~ ()] [37,55]
IT7(u) U T~ ()|

© [T+ () N T* ()] [55]

@ IT* ) N TH(wp)| [37,55]
[T+ () U T ()

@ 1T~ () N THw)) N (T~ () N THw))| [55]

O 10~ () n T @) 0 (T @) n T ) [37,55]
10~ () N THp) U (T~ @) N THu)))

@ 1T~ () U THu) N (T~ () U THwy))| [55]

0 10~ () U T+ @) 0 (T @) VT ) [37,55]
10~ (u) UTH(up) U (T () U THup))

@ IT~(w)| X T~ (! [35,55]

@ TH Q)| X T+ (up)| [35,55]

@ [T~ @) N THu))| X (T @) N THw))I [35,55]

@ [T~ () U THu)) | X (T () U THwy)| [35,55]

Table 2 presents 15 symmetric metrics. Among them, the metrics ()
, @) and (3) are the neighbor-based metrics for an undirected network,
and the other 12 metrics are defined for a directed network. The metrics
@, ©), ® and (0 are based on [55], and (), (7) O and [} are the
extension of four normalized metrics. As the formulas in the Table 2
show, the metrics @), (6), ®) and (0 focus on the number of different
types of common neighbors between node u; and node u;, and the me-
trics (), (7), (9) and () concentrate on the proportion of different types
of common neighbors between u; and u;. Besides, we also extend the
Preferential Attachment [35] metric into four metrics in a directed
network, i.e. {3, (3, 4 and (. By using any one of the symmetric
metrics list in Table 2, we construct a symmetric matrix S = [Sj|,xx by
computing the metrics between all of the network nodes.

Given the adjacent matrix A, » , and the symmetric matrix S,, x , of
a network, the FPMF model aims to fuse them in a unified probability
matrix factorization framework. More specifically, the FPMF model is
based on the following three assumptions:

e In a network, each node is represented as an L-dimension latent-
feature vector U;e R* *% (ie {1, ..,n}), and UeR" *Listhen X L
latent-feature matrix of the n network nodes. We suppose that U;
obeys an L-dimension Gaussian distribution with mean ' and cov-
ariance matrix o212, i.e. U ~ N(0, 02I). The probability density of
the matrix U can be denoted as

N
pWIog) = [[ N[O, 631
i=1 1)

For modeling the observed network links, i.e. the adjacent matrix A,
a binary relation function is defined as

g (U, Up) = GWAUS )

where WA e RE * ! is the parameter matrix of the relation function
ga. The reason we introduce the parameter matrix W* € R * * in the
binary relation function g4 is that UiW“‘UjT represents a generalized
measurement from node u; to node u; and need to be learned from

17
0 is a zero vector.
2 is a identity matrix.
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the specific network data. If there is a symmetry network, the
learned linking parameter matrix W* will be a symmetry parameter
matrix or vice versa. If WA = I, the binary relation function ga just
corresponds to the inner product between node u; and node u; in
Euclid space.

We assume that the value of the function g,(U; Uj) obeys a Gaussian
distribution with mean 1 and variance o3 if there is a link from node
u; to node u;. Otherwise, the value of the function g4(U; U;) obeys
the Gaussian distribution with mean 0 and variance o7 if there is not
a link from node u; to node u;. Formally, UiWAUjT ~ N (4y, o2). As
for the parameter matrix W*, we also suppose that W;* obeys the L-
dimension Gaussian distribution with and covariance matrix o é/ Al

ie. WA~N (T)) o é/ Al ) Based on these assumptions, the probability
density of the matrix W* and the value of UW*U" can be denoted as

L
p(WA O';/A) = HN(W,A 0, crvszI)
1=1 3)
p(UWAUTIA, U, W4, 03)
N N
= [T T vww o]y, o)
i=1 j=1 4)

e For the modeling of the symmetric matrix S, we introduce a sym-
metric binary relation function

& U, U) = GU] )

where the inner product UinT can be seen as the symmetric simi-
larity metric between node u; and node u;, and U UjT just corresponds
to the defined symmetric metrics (see Table 2).

Given the nodes’ latent-feature matrix U, we assume that the value
of the function gs(U; Uj) between node u; and node u; obeys the
Gaussian distribution with mean S;; and variance og. The probability
density of the value of UU" can be denoted as

N N
pWUTIS, U, o) = [T [T N@U 185 05)
i=1 j=1

(6)

Fig. 1 shows the relations among the matrices and parameters of the
FPMF model which fuse the symmetric matrix S. By utilizing the

o’ o’

2 2
0O, O,
Fig. 1. A directed probabilistic graphical model representing the relations

among the matrices and parameters in the FPMF model which fuse the sym-
metric matrix S.
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product rule of the directed probabilistic graphical model, the joint
probability density distribution over the variables U, W*, UW*U" and

UU" can be represented as

p(UWAUT, U, wA

A = p(Ulaz%)p(WA

o2.)p(UUTIS, U, o3)

2 2 -2
2 S, 00, 07 4, 055 UA)

p(UWAUTIA, U, W4, ¢3) )

The goal of the fusion model is to learn the nodes’ latent-feature
representation U and the matrix parameter W* of the adjacent matrix A
by maximizing the joint probability density distribution. The problem

can be deduced as the optimization problem argminE;s, and the objec-
U,wA
tive function Eg is denoted as

1 n n A n n
Bs = =2 2, Ay = UWAUD' + 2237 %) (85— UU)Y’
i=1 j=1 i=1 j=1
n Aoa L
+ A uy' + % WAWAT
2 i 2 1 1
i=1 =1 (©)]

2 2 2

where Ag = O—A, Ay = G—A, and 1,4 = —4, Also, the objective function
a2 g w 05'/ A

(8) can be more briefly rewritten as

2 2 2

S —uuT +@ U

Es= lHA—UWAUT 42
2 P2

F F

2
Ay A
+ X |wA

F 9

argminE;s can be solved by using gradient methods, and the Eq. (10)
UwA
shows the gradients of the function Es against variables U and W*.

9Bs _ (UWATUTUWA 4+ UWATUTUWAT
oU
— ATUWA — AUWAT)
+AsQUU'U — SU - S'U) + AyU
0Es
= UTUWAU'U — U'AU + A, aW4
awa At (10)

Intuitively, in the fusion model, the adjacent matrix A is approxi-
mated to UW*U", and the symmetric matrix S is approximated to UU".

3.2. FPMF model by fusing asymmetric metrics

In this section, we aim to build the FPMF model for fusing the ad-
jacent matrix A with the node-to-node asymmetric metrics in a unified
probability matrix factorization framework. The asymmetric metrics is
denoted as an n X n asymmetric matrix C, and each element Cj; of the
asymmetric matrix C corresponds to the asymmetric metric from node
u; to node u;.

Although many symmetric metrics have been designed to measure
the topological relations between network nodes, little attention has
been paid to accounting for measuring the asymmetric relations. Here
we define one asymmetric metric for an undirected network and four
asymmetric metrics for a directed network (as shown in Table 3).
Among them, the metric @ is defined for the undirected network, and it
represents the proportion of the common neighbors of u; and u; in the
neighbors of u;. In a directed network, the metric (2) represents the
proportion of common neighbors of u; and u; pointing to the other nodes
in the neighbors of u; pointing to the other nodes, and the metric (3)
represents the proportion of common neighbors of u; and u; directed at
the other nodes in the neighbors of u; directed at the other nodes. The
metric (4) denotes the proportion of common friends of y; and y; in the
friends of u;, and the metric (D) denotes the proportion of common
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Table 3
Asymmetric metrics.

Number formula

D) A TGl
I (up)l
107 (up) N T~ ()|
[la¢h]]
IT* @) nTH )
T+ )|
(=) N T+ @) 1 (0 @) 0 T+ )|
1T~ nTHw))|
1T @) UTH ) N (T~ ) U TH )
T~ (up) I+ (w))

CHCHCNCHC

neighbors of u; and u; in the neighbors of the u;.

Given the observed network matrix A, x , and the asymmetric ma-
trix C, x », the FPMF model aims to fuse the two kinds of information in
a unified probability matrix factorization framework. Similar to the
fusion model in Section 3.1, the first two assumptions are the same, but
the third assumption is different because it aims to fuse the asymmetric
node-to-node metrics.

e For modeling the asymmetric matrix C, we also define a binary re-
lation function

g (U, U) = Uweu] an

where WF obeys an L-dimension Gaussian distribution with mean

and covariance matrix ¢ I, i.e. WE ~N 0, 02 cI). Here we also
introduce a matrix parameter W€ e R * £, which makes the binary
function gc represents a generalized relation measurement from
node u; to node u;, and UiWCUjT corresponds to the asymmetry
matrix C.

Given the nodes’ latent-feature matrix U and matrix parameter W<,
we assume that the value of the binary function g(U;, U;) from node
u; to node u; obeys the Gaussian distribution with mean Cj; and
variance o2. Therefore, the probability density of W€ and the value
of UWCUT can be denoted as

L
p(Wc Uvzvc) = HN(WIC 0, aszCI)
=1 12)
p(UWCUT|C, U, W€, o)
N N
= [T IIvwwedficy, o
i=1 j=1 (13)

Fig. 2 shows the relations among the matrices and parameters in the
FPMF model. By utilizing the product rule of the directed probabilistic
graphical model, the joint probability density distribution over the
variables U, W*, W, UW*U" and UW°U" can be represented as

p[UWAUT, UweuT, u, wA, w¢

2 2 2
A, C, af, Uvsz’ as, GA)Z

p(Ulaé)p(WA cj,A)p(WC
p(UWAUT|A, U, W4, 03)
p(UWEUT|C, U, W€, o)

2
olc)

14)

The goal of the fusion model is to learn the nodes’ latent feature
representation U, the parameters W* of the adjacent matrix A and the
parameters W of the asymmetric matrix C by maximizing the joint
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G’ G’

Fig. 2. A directed probabilistic graphical model representing the relations
among the matrices and parameters in the FPMF model which fuse the asym-
metric matrix C.

probability density distribution. The problem can be deduced as the

optimization problem argminEc, and the objective function E¢ is de-
U,wAWC

noted as

3

2 Ac
(A4 — UWAUD" + =

i=1 j=1 i

v % T Ay - A Ay - c
+2 3 Uy, +TZWI WAT + 5 > WEWET
i=1 =1 =1

(€ - uweu)y*

™M=

[

1 j=1

(15)

o2

o2 a2 a% .
where A¢ = a—’z‘, Ay = g—*z‘, Ay = GTA, and ;¢ = 52—". Also, the objec-
¢ U A we

W
tive function (15) can be more briefly rewritten as

2 2
Ec = LA~ uwayr +k C - uweyT
2 F 2 F
2 2 2
Ay A s
+ Al +l‘wﬁ us ‘Wc
F 2 r 2 F (16)

Intuitively, the asymmetric matrix C is approximated to UWCU” in the
model. argminE can be solved by using gradient methods, and the Eq.

U,WA W
(17) shows the gradients of function E¢ against variables U, W and W€,

‘;% = (UWATUTUWA + UWATUTUWAT — ATUWA — AUWAT)
+ Ac(UWETUTUWE + UWCTUTUWCT — CTUWC — CUWCT)
+ AUU
9Ec T ATTT T A
= UTUWAU'U — UTAU + A, a W
awA W
dEc T CrT T c
e = Ac(UTUWCUTU — UTCU) + Ay cW

a7

3.3. Final FPMF model fusing both symmetric and asymmetric semantic

In the above description, we have presented the fusion models
which respectively fuse the symmetric metrics and asymmetric metrics.
In this section, we will present the final fusion model which fuse the
two kinds of metrics simultaneously.

The final fusion model is based on the two above-mentioned models.
Fig. 3 shows the relations among the matrices and parameters in the
final FPMF model. The joint probability density distribution over the
variables U, W*, WS, UWAU", UU" and UWAU" can be represented as
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o’
A @ C

c/’ c/’

Fig. 3. A directed probabilistic graphical model representing the relations
among the matrices and parameters in the FPMF model which fuse both the
symmetric matrix S and asymmetric matrix C.

0w

p[UWAUT, UuUT, UWAUT, U, W€, w4

avZVA)p(WC U‘E/C)

p(UWAUTIA, U, WA, 03)

p(UWCUTIC, U, WE, o)

p(UUTIS, U, 0) (18)

) 2 2 2
A, S, C, g, U;A, gvzvc’ 04, 05, Uc)

=p(U\05)p(W*‘

By maximizing the joint probability distribution, we can deduce the

optimization problem argminE, and the objective function E is denoted
U,wAwWC
as

L L
WATWA + 2V CTyy/C
W . > WETW,
=1 =1 (19)
a2 a2 a2 o2
A A A A
= £ = Z A= 2 c = 2
where Ag = o2 Ac g Ay = 02, Ay 7, and Ay oy

Similarly, the objective function (19) can be rewritten as
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= |lA = UWAUT|l} + s]IS — UUT|E + AclIC — UWCUTf;

+ 2 UIE + AyallWA2 + Ayc IWEIE (20)
argminE can be solved by using the gradient methods as argminEs
U,wAWC U.wA

and argminEc.
U,wAwC
% = (UWATUTUWA + UWAUTUWAT — ATUWA — AUWAT)
+5QUUTU = SU - SU)
+Ac(UWCTUTUWE + UWCUTUWCT — CTUWE — CUWCT)
+AuU
0E _ TUWAUT TA Y A
WA (U'uwAU'U — U'AU) + A aW
oF TUWCyT u c
— = (U'UWCU'U — U'CU) + A, cW
oW

21

Note that the symmetric matrix S and the asymmetric matrix C fused
in our fusion models need to be normalized to keep the two matrices
and the adjacent matrix A stay at the same magnitude so as to facilitate
adjusting the fusion model’s parameters.

3.4. Link prediction

We have presented the FPMF models which provide strategies to
fuse the adjacent matrix and some key topological metrics in a unified
probability matrix factorization framework. In the fusion models, the
basic part of the model is the approximation of the adjacent network A,
i.e. UWAU" . Suppose that we have learned any two nodes’ vectorized
latent-feature representation U; and U; and the matrix parameters W?,
then the linking possibility p; from node u; to node u; can be computed
as

2
(UiWAUjT—l)
! e 203

A\ 20’%7‘[ (22)

The pseudo code of the link prediction mechanism based on the
final fusion model is shown in Algorithm 1.

p; = p(UWAU] 14; = 1, 03) =

3.5. Computational complexity analysis

The computational overhead of the model’s learning process mainly
comes from the calculation of the gradients of function E against vari-
ables U, W* and WE. Because of the sparsity of the matrices A, S and C,

Input: The adjacent matrix A, the symmetric matrix S, and the asymmetric matrix C.

Output: AUC result of link prediction.

1: Initialize: Nodes’ L-dimension representation U, ,matrix parameters W 7., of A, and matrix parameters WLC*L of C, L =

integer < n.

2: repeat

3 ynew = Uold _ ,yg_E

4: WAnew = WAold _I;/W
5: WCnew = WCold _ ,}/W

6: until Convergence

7:for each unknown node pair <u;, u;> calculate
(U[wAuijl)z
ki
8: s — — 27
9: end for

10: Sort all node pairs <u;, u;> according to p; ;
11: Calculate AUC = # (see Equation (23))
12: Return AUC result of the fusion model.

Algorithm 1. Link prediction based on the final fusion model.
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Table 4 Table 5
Statistics of the six directed networks. Statistics of the six undirected networks.
Datasets Links Nodes Density (%) Datasets Links Nodes Density(%)
cit 13,039 1499 0.58 eroad 1417 1175 0.20
email 37,098 1349 2.04 hf 12,534 1859 0.72
gplus 52,504 1300 3.11 facebook 9626 534 6.76
weibo 102,750 1600 4.01 yeast 11,693 2375 0.41
soclive 63,102 1375 3.33 power 6593 4941 0.05
socpokec 10,752 1396 0.55 router 6258 5022 0.05
the computational complexity of multiplication of A and U is O(uaL), the receiver operating -characteristic” (AUC) to measure the

where 4 is the number of nonzero entries of A. Similarly, the compu-
tational complexity CU is O(ucL), and SU is O(ugL), where i and ps are
the number of nonzero entries of C and S, respectively. The computa-
tional complexity of the rest multiplications in the gradients is O(nL?).
Therefore, the total computational complexity of the fusion model
which fuses the symmetric matrix S in one iteration is
O(uyL + ugl + nL?), of the fusion model which fuses the asymmetric
matrix C is O(u,L + ucL + nL?), and of the final fusion model is
O(uuL + ugL + ucL + nL?). In other words, the computational com-
plexity is scale linearly as the increase of the nonzero entries in the
matrices A, S, and C.

4. Experiments
4.1. Data sets

We conduct our experiments with six directed networks and six
undirected networks. The statistic details of the network datasets are
summarized in Tables 4 and 5.

In Table 4, cit is a citation network, and if a paper i cites paper j, the
graph will contain a directed edge from i to j; email is a communication
network, and if an email address i sends at least one message to address
Jj, a directed edge between address i and address j will exist. All the rest
four datasets gplus, weibo, soclive, and socpokec are online directed social
networks. Weibo is a well-known online social network service (SNS) in
China, and its dataset in our study is from [63] which crawled the
datasets from weibo SNS platform. Based on the original weibo dataset in
[63], we further extract a subgraph for our experiments. Apart from the
weibo dataset, the other five datasets are available to download at the
platform of Stanford Network Analysis Project (SNAP)®.

Table 5 presents six undirected networks, where eroad is a road
network mostly located in Europe, and hf (hamsterster friendships) is
the friendship network of the website “hamsterster.com”. The two da-
tasets are from the project of the Koblenz Network Collection®. Face-
book is the user-user undirected network downloaded from the SNAP
platform. The rest three undirected networks power, router, and yeast
are the networks of USA power, internet route and protein interaction
respectively; the three datasets are the open datasets of the link pre-
diction group®.

4.2. Experiment setup and evaluation measure

4.2.0.1. Experiment setup. Following the general experimental protocol
for link prediction [16,21,56,64], we split the observed node-to-node
links into training data and testing data and adopt the partition 90%/
10% and carry out 10 times independently.

4.2.0.2. Evaluation measure. Like many existing link prediction studies
[21], our study adopts the most frequently-used metrics “Area under

3 http://snap.stanford.edu
4 http://konect.uni-koblenz.de
5 http://www.linkprediction.org

performance of link prediction. This metric is viewed as a robust
measure in the presence of imbalance [17]. Given the ranking of all
non-observed links in the present network, the AUC value can be seen
as the probability that a randomly chosen non-observed link which is
given a higher score than a randomly chosen non-existent link [65].
Specifically, we can use the following equation to compute the AUC
value.
AUC = r' 4+ 0.5r"

(23)
where r is the number of independent comparisons, r’ is the times for
the non-observed links which are given higher scores than non-existent
links, and r” is the times for the scores of the non-observed links which
are equal to the scores of the non-existent links. The value of r is set to
10,000 in our experiments.

4.3. Comparison methods

Before we present the comparison methods, we denote the proposed
fusion models in this paper as FPMF_S, FPMF_C, and FPMF_S_C, where
FPMF_S represents the models fusing the symmetric matrix S, FPMF_C
denotes the models fusing the asymmetric matrix C, and FPMF_S_C
refers to the models fusing both of S and C. The specific matrices S and
C fused in our fusion models will be introduced in the following ex-
periments.

4.3.1. Baseline methods

In Table 6, we list two types of link prediction methods as the
baseline methods, i.e. the metric-based methods and the MF-based
methods. They are relevant to the methodology in the paper. There are
15 symmetric metrics in Table 6, where SCN, SJ, and SP are the metric-
based methods for the undirected networks, and the other 12 symmetric
metrics SO, SI, SF, SN, SPO, SPI, SPF, SPN, SJO, SJI, SJF, and SJN are
for the directed networks. Besides, CJ, CO, CI, CF, and CN are the
asymmetric metrics, where CJ is for the undirected networks, and the
other 4 asymmetric metrics are for the directed networks. Note that the
listed metrics in Table 6 are from the labeled references or the variants
of the references.

Low-rank approximation (LRA)-based methods [19] is a common
technique to find an approximate matrix with low-rank of an original
matrix. For link prediction, LRA-based methods usually compute the
rank-k matrix A, that best approximates the network adjacent matrix A
and scores the link possibility between u; and u; via using the entry < i,
j > of the matrix A;. In our experiments, we will use the two common
LRA techniques as the comparison methods, i.e. SVD [66] and NNMF
[67]. We denote the two LRA-based methods as LRA-SVD and LRA-
NNMF respectively.

4.3.2. Popular link prediction methods
Apart from the baseline methods, we also compare our methods
with six popular link prediction methods.

1. RA (Resource Allocation) [68], which is motivated by the resource
allocation dynamics on complex networks, is mentioned as the best
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Table 6
Baseline methods.
Type Abbreviate Formula References
SCN SEN = I0(w) N T(wy)! [36]
SJ J _ Il Tl [37]
YT M) ur@u)|
sp SP=I0()| x ()] [35]
$0 S8 = Ir~(u) N T=()| [55]
SJO L L Cl [37,55]
VT IrT ) ur @)l
St Sf = IM* () n THw)) [55]
SJI o [T+ () N TH () [37,55]
VT irt ) urt )l
Symmetric metrics SF SUF = (T~ () N THw) N (T () N THw)) [55]
SJF g _ @@ 0 e) n @) nTHu))l [37,55]
VT @ @) n T @) U (T @) nTHw))|
SN S = 1(T~(u) U THw)) N (T~ () U T (W) [55]
SIN SN = 10~ @) U T+ u)) n (T~ () UTH )| [37,55]
VT T @) u T @) U T @) T @)
SPO SFO=IT~(up)| x IT~(u))| [35,55]
SPI S;I=‘F+(ui)| X |+ (wy)| [35,55]
SPF SFF=I0~(u) n THw))| X [(T~(w) 0 THw))| [35,55]
SPN SPV=I () U THw)| X (T~ (w) U TH(wy))| [35,55]
CJ cf = IT(ui) N T ()l [37,55]
VTl
co c9 = T~ @) N T~ ()l [37,55]
VTl
Asymmetric metrics CI 1 It @) Tt [37,55]
T e
CF oF = [T en ) n (@) n T )| [37,55]
v 1T~ n THup)|
CN oN _ @U@ n ) urt )l [37,55]
v T~ () uTF ()|
LRA-SVD Singular Value Decomposition [19,66]
MF-based method LRA-NNMF Non-negative Matrix Factorization [671

local similarity in literature [21].

2. AA (Adamic-Adar) [33], which refines the simple counting of
common neighbors by assigning the less-connected neighbors more
weight, is mentioned as the second best local similarity in literature
[21].

3. Katz [41], which is based on the ensemble of all paths, is a popular
link prediction method and usually performs good subject to the
AUC value [21].

4. SR (SimRank) [44] is a popular random-walk metric, which mea-
sures how soon two random walkers, respectively starting from
nodes u; and u;, are expected to meet at a certain node.

5. WIC, which considers community membership information, is vali-
dated as the best link prediction method in literature [69].

6. RA-W is validated as the second best link prediction method in lit-
erature [69].

4.4. Experimental results and analysis

To verify the performance of the proposed fusion models, we con-
duct two parts of comparison experiments. One is to compare the
proposed fusion models (FPMF_S, FPMF_C, and FPMF_S C) with the
baseline methods (see Section 4.4.1), and the other one is to compare
the final fusion models (FPMF_S_C) with six popular link prediction
methods (see Section 4.4.2). Moreover, we analyze the parameters L
and A (Ag, A¢) in Section 4.4.3.

All the experiments are conducted on an Intel E5-2660 20 Core
2.6 GHz with 96 GB memory. The underlined results denote that our
methods are superior to the compared methods.

4.4.1. Comparing with baseline methods

(1)Results of the fusion models (FPMF_S)

For the directed networks, we build two fusion models FPMF_SN
and FPMF_SJN by fusing the two symmetric metrics SN and SJN be-
cause the two metrics perform better in link prediction. Analogously,
we also build a fusion model FPMF_SCN for the undirected networks by
fusing the symmetric metric SCN.

As shown in Tables 7 and 8, the results indicate that the fusion
models FPMF_SN, FPMF_SJN and FPMF_SCN for the most parts obtain
better link prediction results than the baseline methods in the six di-
rected and the six undirected networks.

As for the 15 symmetric metric-based methods, the link prediction
problem is solved by directly using the metrics to score the link possi-
bility, and the majority of them show the unstable performance in
different networks. Instead of directly using the metrics for scoring the
link possibility, our methods provide a fusion strategy to fuse the me-
trics with the adjacent matrix in a unified probability matrix frame-
work. The results confirm that, in the fusion models, a more proper
practical correlation can be established between the network links and
the metrics, rather than the strong assumptions behind the metric-based
methods in which the link state is directly related to the size of the
metric. Therefore, the fusion models are superior to the way of pre-
dicting links directly based on a metric. Taking the gplus network as an
example, the AUC value of the SIN-based method is 0.396 (lower than
0.5), which means that SIN has a certain opposite correlation with the
forming of links. However, after fusing the metric in our model, the
fusion model FPMF_SJN obtains impressive results.

As far as the two MF-based methods (LAR-SVD and LAR-NNMF) are
concerned, the performance is better than most of the other metric-
based methods. However, they are still inferior to our fusion models.
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Table 7
Comparing with baseline methods in directed networks (mean * std-err).
cit email gplus weibo soclive socpokec

SO 0.785 + 0.009 0.905 =+ 0.003 0.697 + 0.003 0.863 =+ 0.003 0.914 + 0.004 0.778 = 0.004
SJO 0.784 = 0.010 0.876 + 0.004 0.639 + 0.003 0.811 + 0.005 0.903 + 0.004 0.772 = 0.005
SI 0.799 + 0.004 0.903 + 0.004 0.614 + 0.003 0.855 =+ 0.003 0.912 + 0.004 0.791 = 0.007
SJI 0.794 = 0.005 0.866 =+ 0.002 0.507 + 0.004 0.790 =+ 0.005 0.908 + 0.003 0.782 = 0.008
SF 0.500 + 0.000 0.870 =+ 0.005 0.695 + 0.002 0.820 =+ 0.003 0.889 + 0.003 0.698 = 0.006
SJF 0.500 + 0.000 0.850 + 0.003 0.673 + 0.003 0.814 + 0.004 0.891 + 0.005 0.695 = 0.005
SN 0.905 + 0.004 0.928 =+ 0.002 0.730 + 0.005 0.882 =+ 0.003 0.929 + 0.003 0.832 = 0.006
SIN 0.901 + 0.004 0.879 =+ 0.005 0.396 + 0.005 0.843 = 0.002 0.917 + 0.002 0.822 = 0.005
SPA 0.660 + 0.011 0.846 + 0.003 0.679 + 0.004 0.784 += 0.004 0.815 + 0.007 0.805 = 0.007
SPI 0.604 + 0.009 0.853 + 0.007 0.583 + 0.006 0.781 + 0.004 0.820 + 0.006 0.808 = 0.009
SPF 0.501 = 0.001 0.843 =+ 0.005 0.685 + 0.003 0.779 = 0.003 0.812 + 0.005 0.786 = 0.012
SPN 0.741 + 0.005 0.857 + 0.004 0.798 + 0.004 0.815 + 0.004 0.823 + 0.004 0.806 = 0.009
LAR-SVD 0.942 + 0.007 0.923 + 0.004 0.956 + 0.004 0.918 + 0.004 0.920 + 0.002 0.860 = 0.005
LRA-NNMF 0.942 = 0.005 0.932 =+ 0.003 0.952 + 0.002 0.915 =+ 0.003 0.917 + 0.003 0.876 = 0.008
FPMF_SN 0.949 + 0.006 0.932 + 0.001 0.984 + 0.002 0.920 *+ 0.001 0.923 + 0.004 0.891 + 0.007
FPMF_SJN 0.937 + 0.008 0.930 + 0.005 0.983 + 0.005 0.920 + 0.007 0.922 + 0.007 0.895 = 0.007

The MF-based methods solve the link prediction problem by using the
low-rank approximation techniques [19,66,67] and model the network
by considering the information of the observed network links (i.e. the
adjacent matrix). This is hard to ensure the modeling of those topolo-
gical metrics that can play an important role in link prediction. While
our fusion models (FPMF_SN, FPMF_SJN, and FPMF_SCN) can give dual
attention to modeling the observed network links and the metrics.
Therefore, the fusion models almost consistently outperform the MF-
based methods.

(2)Results of the fusion models (FPMF_C)

Like the fusion models mentioned above, we build two fusion
models FPMF_CN and FPMF_CI for the directed networks by fusing the
two asymmetric metrics CN and CI. Meanwhile, we also build the fusion
model FPMF_CJ for the undirected network by fusing the asymmetric
metric CJ.

The experiment results (see Tables 9 and 10) indicate that the fusion
method FPMF_CN, FPMF_CI, and FPMF_CJ compared with the baseline
methods, in most cases, get better results. The results verify that our
fusion models by fusing the asymmetric metrics are also effective for
link prediction.

(3)Results of the fusion models (FPMF_S_C)

In this section, we build the final fusion models by fusing both the
symmetric metrics and the asymmetric metrics simultaneously.
Specifically, the metrics fused in our model are constructed by the
various combination between the symmetric metrics and the asym-
metric metrics. For the directed networks, the symmetric metrics fused
are SN and SJN, and the asymmetric metrics are CN and CI. Based on
the four metrics, we construct four fusion models, and they are denoted
as FPMF_SJN_CN, FPMF_SJN_CI, FPMF_SN_CN, and FPMF_SN_CI. For
the undirected networks, we build the fusion model FPMF_SCN_CJ by
fusing the symmetric metric SCN and the asymmetric metric CJ.

As shown in Tables 11 and 12, the final fusion models (i.e.
FPMF_SJN_CN, FPMFSJN CI, FPMFSNCN, FPMFSNCI and
FPMF_SCN_CJ) almost consistently outperform the other approaches in
the directed and the undirected networks. Note that the final fusion
models are mostly superior to the version of fusion models (FPMF_SN,

FPMF_SJN, FPMF_CN, FPMF_CI, FPMF_SCN, and FPMF_CJ) which only
fuse one side of the symmetric or the asymmetric metrics. This illus-
trates that the two kinds of metrics are complementary to each other in
the final fusion models. The improvements verify that our models are
more effective by fusing both sides of the symmetric and the asym-
metric metrics.

4.4.2. Comparing with popular methods

Tables 13 and 14 show the link prediction results of the proposed
final FPMF models (FPMF_SJN_CN, FPMF_SJN_CI, FPMF _SN_CN,
FPMF_SN_CI and FPMF_SCN_CJ) compared with the popular methods in
the directed and the undirected networks respectively. In most cases,
the results show that the proposed fusion models get better AUC values
than the comparison methods.

As for the six comparison methods, the RA method gets the best
prediction results either in the directed networks or the undirected
networks, which is consistent with the validation results in literature
[21]. While the other comparison methods AA, Katz, SR, WIC, and RA-
W perform less well, and their results show instability in different da-
tasets. By contrast, our fusion methods achieve better AUC values and
can give relatively stable prediction results in different networks as
well.

To sum up, the reasons why our fusion models are superior to the
comparison methods can be elaborated from two aspects: (1) The fusion
models, in essence, are learning-based methods by fitting the adjacent
matrix, the symmetric metrics, and the asymmetric metrics. Their ad-
vantage is that they can fit the network adaptively in the learning
process, and thus they have better adaptability and robustness. (2) The
fusion models can give dual attention to modeling the observed net-
work links and some key metrics between nodes, which are superior to
the traditional MF-based methods.

4.4.3. Model parameters analysis

There are two kinds of parameters in our model, the one is di-
mension parameter L, and the other is weighting parameters (As, A¢).
The parameters are analyzed separately as follows.

Table 8
Comparing with baseline methods in undirected networks (mean * std-err).
eroad facebook yeast hf power router

SCN 0.539 * 0.009 0.967 =+ 0.003 0.914 = 0.011 0.814 + 0.008 0.625 * 0.007 0.651 *= 0.008
SJ 0.539 * 0.010 0.969 + 0.002 0.912 + 0.009 0.799 =+ 0.007 0.627 + 0.007 0.651 = 0.008
SP 0.455 + 0.028 0.766 =+ 0.013 0.863 + 0.032 0.887 =+ 0.005 0.577 + 0.012 0.955 = 0.003
LAR-SVD 0.756 = 0.041 0.942 + 0.006 0.910 + 0.031 0.897 + 0.007 0.670 = 0.027 0.829 * 0.016
LRA-NNMF 0.619 = 0.012 0.942 + 0.008 0.909 + 0.026 0.909 =+ 0.008 0.606 + 0.008 0.892 = 0.010
FPMF_SCN 0.916 + 0.013 0.961 =+ 0.016 0.963 + 0.008 0.930 + 0.017 0.683 + 0.015 0.956 + 0.011
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Table 9
Comparing with baseline methods in directed networks (mean * std-err).
cit email gplus weibo soclive socpokec
Cco 0.784 + 0.009 0.871 =+ 0.004 0.643 + 0.004 0.814 =+ 0.003 0.902 + 0.003 0.778 = 0.005
CI 0.802 + 0.005 0.858 + 0.003 0.691 + 0.005 0.841 =+ 0.003 0.911 + 0.003 0.788 = 0.007
CF 0.500 + 0.000 0.853 + 0.005 0.671 + 0.003 0.811 + 0.004 0.883 + 0.003 0.700 = 0.005
CN 0.901 + 0.004 0.889 + 0.004 0.527 + 0.005 0.840 =+ 0.002 0.903 + 0.005 0.826 + 0.006
LAR-SVD 0.942 + 0.007 0.923 =+ 0.004 0.956 + 0.004 0.918 =+ 0.004 0.920 + 0.002 0.860 = 0.005
LRA-NNMF 0.942 = 0.005 0.932 + 0.003 0.952 + 0.002 0.915 + 0.003 0.917 + 0.003 0.876 = 0.008
FPMF_CN 0.948 + 0.006 0.931 =+ 0.004 0.982 + 0.002 0.921 =+ 0.005 0.923 + 0.004 0.886 + 0.002
FPMF_CI 0.949 + 0.006 0.924 + 0.001 0.984 + 0.003 0.922 + 0.003 0.921 + 0.003 0.890 = 0.003
Table 10
Comparing with baseline methods in undirected networks (mean * std-err).
eroad facebook yeast hf power router
cJ 0.539 += 0.009 0.960 + 0.004 0.916 + 0.010 0.799 =+ 0.006 0.626 + 0.007 0.651 *= 0.007
LAR-SVD 0.756 = 0.041 0.942 + 0.006 0.910 * 0.031 0.897 =+ 0.007 0.670 + 0.027 0.829 = 0.016
LRA-NNMF 0.619 = 0.012 0.942 + 0.008 0.909 + 0.026 0.909 + 0.008 0.606 + 0.008 0.892 = 0.010
FPMF_CJ 0.917 = 0.022 0.959 =+ 0.017 0.960 + 0.043 0.937 =+ 0.020 0.684 + 0.016 0.957 = 0.011
Table 11
Comparing with baseline methods in directed networks (mean = std-err).
cit email gplus weibo soclive socpokec
SN 0.905 =+ 0.004 0.928 =+ 0.002 0.730 + 0.005 0.882 =+ 0.003 0.929 = 0.003 0.832 = 0.006
SIN 0.901 =+ 0.004 0.879 =+ 0.005 0.396 =+ 0.005 0.843 =+ 0.002 0.917 = 0.002 0.822 = 0.005
CN 0.901 + 0.004 0.889 + 0.004 0.527 + 0.005 0.840 + 0.002 0.903 = 0.005 0.826 = 0.006
CI 0.802 + 0.005 0.858 =+ 0.003 0.691 + 0.005 0.841 + 0.003 0.911 = 0.003 0.788 = 0.007
LAR-SVD 0.942 =+ 0.007 0.923 =+ 0.004 0.956 =+ 0.004 0.918 =+ 0.004 0.920 = 0.002 0.860 = 0.005
LRA-NNMF 0.942 + 0.005 0.932 + 0.003 0.952 + 0.002 0.915 = 0.003 0.917 = 0.003 0.876 = 0.008
FPMF_SN 0.949 + 0.006 0.932 + 0.001 0.984 + 0.002 0.920 + 0.001 0.923 = 0.004 0.891 = 0.007
FPMF_SJN 0.937 =+ 0.008 0.930 *= 0.005 0.983 =+ 0.005 0.920 + 0.007 0.922 = 0.007 0.895 = 0.007
FPMF_CN 0.948 =+ 0.006 0.931 =+ 0.004 0.982 =+ 0.002 0.921 =+ 0.005 0.923 = 0.004 0.886 = 0.002
FPMF_CI 0.949 =+ 0.006 0.924 *= 0.001 0.984 + 0.003 0.922 + 0.003 0.921 *= 0.003 0.890 += 0.003
FPMF_SJN_CN 0.956 =+ 0.002 0.933 =+ 0.002 0.985 + 0.001 0.924 + 0.004 0.926 = 0.005 0.944 = 0.004
FPMF_SJN_CI 0.952 =+ 0.006 0.935 + 0.003 0.985 + 0.001 0.926 + 0.003 0.923 = 0.002 0.953 + 0.004
FPMF_SN_CN 0.951 + 0.004 0.932 + 0.004 0.984 + 0.000 0.923 + 0.001 0.927 += 0.006 0.947 = 0.005
FPMF_SN_CI 0.953 =+ 0.005 0.935 + 0.003 0.984 + 0.003 0.924 + 0.002 0.925 = 0.002 0.952 = 0.002
Table 12
Comparing with baseline methods in undirected networks (mean * std-err).
eroad facebook yeast hf power router
SCN 0.539 =+ 0.009 0.967 = 0.003 0.914 + 0.011 0.814 + 0.008 0.625 =+ 0.007 0.651 = 0.008
cJ 0.539 + 0.009 0.960 + 0.004 0.916 + 0.010 0.799 + 0.006 0.626 + 0.007 0.651 = 0.007
LAR-SVD 0.756 + 0.041 0.942 + 0.006 0.910 + 0.031 0.897 + 0.007 0.670 *= 0.027 0.829 = 0.016
LRA-NNMF 0.619 =+ 0.012 0.942 + 0.008 0.909 =+ 0.026 0.909 + 0.008 0.606 =+ 0.008 0.892 = 0.010
FPMF_SCN 0.916 + 0.013 0.961 + 0.016 0.963 + 0.008 0.930 = 0.017 0.683 + 0.015 0.956 + 0.011
FPMF_CJ 0.917 + 0.022 0.959 * 0.017 0.960 + 0.043 0.937 + 0.020 0.684 + 0.016 0.957 = 0.011
FPMF_SCN_CJ 0.923 =+ 0.050 0.970 + 0.030 0.968 + 0.010 0.944 + 0.014 0.700 =+ 0.040 0.964 + 0.009
Table 13
Comparing with popular methods in directed networks (mean + std-err).
cit email gplus weibo soclive socpokec
RA 0.931 + 0.003 0.928 =+ 0.003 0.958 =+ 0.002 0.913 =+ 0.003 0.923 = 0.003 0.774 = 0.004
AA 0.777 =+ 0.010 0.525 =+ 0.006 0.427 =+ 0.005 0.310 *= 0.006 0.383 = 0.006 0.688 = 0.006
Katz 0.913 =+ 0.002 0.423 =+ 0.004 0.328 =+ 0.030 0.445 =+ 0.020 0.401 = 0.041 0.529 = 0.003
SR 0.802 =+ 0.005 0.858 + 0.003 0.581 + 0.008 0.762 += 0.006 0.911 = 0.003 0.788 = 0.007
WIC 0.631 =+ 0.007 0.646 *= 0.003 0.521 =+ 0.002 0.515 =+ 0.003 0.651 = 0.002 0.602 = 0.003
RA-W 0.624 =+ 0.002 0.632 *= 0.008 0.542 + 0.006 0.492 + 0.001 0.655 = 0.004 0.624 = 0.001
FPMF_SJN_CN 0.956 + 0.002 0.933 + 0.002 0.985 + 0.001 0.924 = 0.004 0.926 = 0.005 0.944 = 0.004
FPMF_SJN_CI 0.952 =+ 0.006 0.935 + 0.003 0.985 + 0.001 0.926 + 0.003 0.923 = 0.002 0.953 + 0.004
FPMF_SN_CN 0.951 =+ 0.004 0.932 + 0.004 0.984 =+ 0.000 0.923 + 0.001 0.927 = 0.006 0.947 = 0.005
FPMF_SN_CI 0.953 + 0.005 0.935 + 0.003 0.984 + 0.003 0.924 = 0.002 0.925 = 0.002 0.952 = 0.002

10



Z. Wang et al.

Table 14

Comparing with popular methods in undirected networks (mean + std-err).
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eroad

facebook yeast hf power router
RA 0.543 = 0.007 0.969 + 0.004 0.922 * 0.001 0.814 + 0.003 0.628 * 0.002 0.658 + 0.005
AA 0.537 + 0.002 0.961 + 0.004 0.910 * 0.010 0.820 + 0.007 0.627 * 0.002 0.660 + 0.002
Katz 0.919 = 0.011 0.356 * 0.020 0.340 * 0.060 0.388 + 0.050 0.698 * 0.020 0.710 * 0.021
SR 0.902 = 0.004 0.925 + 0.003 0.839 + 0.004 0.839 + 0.003 0.643 * 0.006 0.801 + 0.004
WIC 0.675 * 0.003 0.727 * 0.004 0.681 + 0.007 0.623 + 0.005 0.642 * 0.004 0.792 + 0.003
RA-W 0.762 * 0.004 0.675 + 0.002 0.697 * 0.002 0.652 + 0.002 0.607 * 0.004 0.695 + 0.008
FPMF_SCN_CJ 0.923 * 0.050 0.970 + 0.030 0.968 + 0.010 0.944 + 0.014 0.700 * 0.040 0.964 + 0.009

/I——l—-l—l

R ¥
. / . .
Y e g
Ed I Ed <
AN\ 7
o P FPIFSHCI FoVF SN _CI ek FOVE SN
FPMF_SIN_CI o FPMF_SIN_CI FPMF_SIN_CI
0.65(- + FPMF_SN_CN FPMF_SN_CN FP N
FPMF_SIN_CN| FPMF_SIN_CN| FPMF_SIN_CN|
10 15 20 25 0 o 10 15 20 25 30 10 15 20 25
Values of latent dimensionality L Values of latent dimensionality L Values of latent dimensionality L
. .
FPMF_SN_CI FPMF_SN_CI FPMF_SN_CI
FPMF_SN_CI FPMF_SIN_CI FPMF_SIN_CI
FPMF_SN_CN FPMF_SN_CN FPMF_SN_CN
FPMF_SIN_CN| g FPMF_SIN_CN| FPMF_SIN_CN|
Y " o
4 Yo g
2 2 2
o

10 15 0 5 0
Values of latent dimensionality L

(d) weibo

[y

10 15 £ 5
Values of latent dimensionality L

(g) eroad

AUC

N

(e w7 5]

0 1 5 0
Values of latent dimensionality L

R

4

10 15 2% 5 0
Values of latent dimensionality L

(e) socpokec

AUC

ye

[l 5 2 5
Values of latent dimensionality L

(h) facebook

AUC

/

/ [ 57 537G
Values of latent dimensionality L

(k) power

Fig. 4. Impact of Parameter L.
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4.4.3.1. Impact of the parameter L. In the fusion models, L controls the
dimension of the latent-feature matrix U of network nodes. We evaluate
the influence on the final results of link prediction by changing the
value of L. As shown in Fig. 4(a)-4(l), the improvements of results

become increasingly marginal as L increases and tend to converge to
stable results quite rapidly. Hence, we should limit the value of L so that
an acceptable compromise will be reached between the performance of
link prediction and that of time consumption.
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Fig. 5. Impact of Parameters A (As and A¢) on data soclive. The 11 figures from (a) to (k) show the performance of fusion model FPMF_SJN_CN on soclive when
parameters Ag and A¢ change. The horizontal axis of each figure represents the value of A from 0 to 1, and the vertical axis of each figure represents the auc results of
link prediction. In the figures from (a) to (k), we fix the value of A5 which corresponds to 0, 0.1, ... , 0.9, 1, while the value of A in each figure is changes within [0,1]

based on the interval of 0.1.

4.4.3.2. Impact of parameters (As, Ac). The main advantage of our
fusion models is that it can give dual attention to modeling the
observed network links and those topological metrics which can play
an important role in link prediction. In the models, parameters (As, A¢)
balance the information between the adjacent matrix and the metrics. If
As = 0 and A¢ = 0, the model only considers the information from the
adjacent matrix, and if Ag = inf or if A¢ = inf, the model only extracts
information from the symmetric metrics or the asymmetric metrics.
Take the experiments of fusion model FPMF_SJN_CN on data soclive
for example, we observe that changes in parameters, either Ag or A,
will affect the results (see Fig. 5). First, as As is fixed to 0 (see Fig. 5(a)),
and A is fixed to 0, the model only mines the adjacent matrix A, and
the corresponding AUC result is not very well. Second, from Fig. 5(a) to
Fig. 5(k), the fusion model’s performance is relatively better when
Ac€[0.2, 0.5]. Moreover, as A¢ € [0.2, 0.5], and As is separately fixed
to 0.1, 0.2, 0.3, or 0.4 (see Figs. 5(b), 5(c), 5(d) and 5(e)), the model
gets best results. The phenomenon coincides with the intuition that
overmuch usage of such information, the adjacent matrix A, the sym-
metric matrix S or the asymmetric matrix C, rather than reasonable
fusing these resources together, cannot generate best performance.

4.4.4. Relative discussions
In this section, we summarize the advantages of the FPMF models
and analyze the reasons.

e Each of the fusion models (fusing the symmetric metrics or the
asymmetric metrics, or both of them), for the most part, obtain
better link prediction results.

First, the fusion models not only consider the information of the
observed network links but also some key topological metrics.
Second, the topological metrics fused in our model do not directly
play a role in link prediction but integrate with the network links in
a probabilistic matrix factorization model. Using the model’s final
representation to solve the link prediction can avoid the inferiority
of predicting links by directly using a single metric between nodes.
The final fusion models not only consider the symmetric metrics but
also the asymmetric metrics.

Because the formation of the links in a network may be caused by
some symmetric or asymmetric semantic between nodes, the pro-
posed models (FPMF_S_C) provide a way to fuse both kinds of se-
mantic in one unified probabilistic matrix factorization framework.
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5. Conclusion and future work

Studying how to accurately infer links in networks is still a difficult
problem in network data analysis. Despite significant advances, the
existing metric-based link prediction methods usually only consider one
single topological metric and thus show some limitations in different
types of networks; the existing matrix factorization-based models
mainly focus on modeling the adjacent matrix of a network, and this is
hard to ensure the modeling of those topological metrics that can play
an important role in link prediction.

This study presents the fusion models (FPMF.S, FPMF_C, and
FPMF_S_C) to fuse the adjacent matrix and some key topological metrics
in a unified probability matrix factorization framework. The final fusion
models consider both the symmetric metrics and the asymmetric me-
trics as well. The asymmetric metrics are usually not taken into con-
sideration in the related work. To verify the performance of the FPMF
models for the link prediction, we compare our approaches with a
number of relevant link prediction methods. Experiments with 12 real-
world directed and undirected networks show that the proposed models
give impressive predicting performance for link prediction.

This work has many potential directions in the future. For example,
we can study how to conduct incremental learning on the fusion
probability matrix factorization models so that the models could be
adapted to a dynamic circumstance. Besides, it will be an interesting
topic to fuse richer metrics between nodes in a network in the prob-
ability matrix factorization framework. One case in point is to fuse the
metrics based on some non-topological information.
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