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Abstract—Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population

studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been

proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to

a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group

incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the

algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the

experimental results show that the algorithm is effective and efficient.

Index Terms—Dynamic data sets, incremental algorithm, feature selection, rough set theory

Ç

1 INTRODUCTION

IT has been observed in many fields that data grow with
time in size. This has led to the development of several new

analytic techniques. Among these techniques, as an effective
and efficient mechanism, incremental approach is often used
to discover knowledge from a gradually increasing data set,
which can directly carry out the computation using the
existing result from the original data set [1], [2], [3], [15], [19],
[36], [41]. In recent years, feature selection, as a common
technique for data preprocessing in pattern recognition,
machine learning, data mining, and so on, has attracted
much attention [5], [7], [16], [24]. In this paper, we are
concerned with incremental feature selection, which is an
extremely important research topic in data mining and
knowledge discovery.

On feature selection, a specific theoretical framework is
Pawlak’s rough set model [13], [31], [45], [53], [54], [55].
Feature selection based on rough set theory is also called
attribute reduction [8], [17], [39], [49], [50]. The feature
subset obtained by using an attribute reduction algorithm is
called a reduct [29], [30]. Attribute reduction is able to select
features that preserve the discernibility ability of original
ones, but do not attempt to maximize the class separability
[14], [18], [26], [40], [47]. In the last two decades, based on
rough set theory, many techniques of attribute reduction
have been developed [6], [11], [27], [33], [34], [38], [44], [52].
However, most of them can only be applicable to static data

tables. When the number of objects increases dynamically in
a database, these approaches often need to carry out an
attribute reduction algorithm repeatedly and thus consume
a huge amount of computational time and memory space.
Hence, it is very inefficient to deal with dynamic data tables
using these reduction algorithms.

To deal with a dynamically increasing data set, there
exists some research on finding reducts in an incremental
manner based on rough set theory. Several incremental
reduction algorithms have been proposed to deal with
dynamic data sets [10], [25], [28], [51]. A common character
of these algorithms is that they were only applicable when
new data are generated one by one, whereas many real data
from applications are generated in groups. When multiple
objects are generated at a time in a database, these
algorithms may be inefficient since they have to be executed
repeatedly to deal with the added group of objects. In other
words, when M (e.g., M ¼ 10;000) objects are generated at a
time, one has to execute these algorithms M times. This is
obviously very time consuming. If the size of an added
object group is very small (e.g., M ¼ 10), the existing
incremental algorithms may also be effective, of course.
However, when massive new objects are generated at a
time, this gives rise to much more waste of computational
time and space when the existing reduction incremental
algorithms are applied. With the development of data
processing tools, the speed and volume of data generation
increase dramatically. This further appeals for an efficient
group incremental attribute reduction algorithm to acquire
information timely.

It is well known that the expression of information is
usually uncertain and the uncertainties come from disorder,
vagueness, approximate expression, and so on. In rough set
theory, one of the most common uncertainty measures of
data sets is information entropy or its variants. Shannon [37]
introduced an entropy to measure the uncertainty of a
system, which was called information entropy. Liang et al.
[20] introduced a new information entropy called comple-
mentary entropy to rough set theory. The complementary
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entropy not only can measure the uncertainty, but also the
fuzziness of a rough set. In addition, Qian and Liang [34]
proposed another information entropy called combination
entropy which can also be used to measure the uncertainty
of information systems. As common measures of uncer-
tainty, these three entropies as well as their conditional ones
have been widely applied to devise feature selection
algorithms [20], [21], [38], [44]. To save the computational
time, an accelerator of feature selection was also con-
structed based on those three entropies in [34]. Although an
incremental technique based on the complementary en-
tropy was also reported in [20], it can only be used to
update core dynamically.

To fully explore the property of group increments of a
data set in feature selection, this paper mainly develops an
efficient group incremental reduction algorithm based on the
three entropies. In view of that a key step of the development
is the computation of entropy, we first introduce in this paper
three incremental mechanisms of the three entropies, which
determine an entropy by adding objects to a decision table
in groups. When a group of objects are added, instead of
recomputation on a given data set, the incremental mechan-
isms derive new entropies by integrating the changes of
conditional classes and decision classes into existing en-
tropies. With these mechanisms, a group incremental
reduction algorithm is proposed for dynamic decision tables.
After a group of objects is added to a decision table, the
proposed algorithm generates a reduct for this expanded
decision table by fully exploiting the reduct of the original
decision table. By doing so, when multiple objects are added
to a given decision table, the new reduct can be obtained by
the proposed algorithm in a much shorter time. Furthermore,
in view of that incremental reduction algorithms based on
entropies have not yet been discussed so far, this paper also
introduces an incremental reduction algorithm for adding a
single object to a decision table. Experiments have been
carried out on eight data sets downloaded from UCI. The
experimental results show that the proposed algorithm is
effective and efficient.

For the convenience of following discussion, here is a
description of the main idea in this paper. To select effective
features from a dynamically increasing data set, an efficient
group incremental feature selection algorithm is proposed
in the framework of rough set theory. In the process of
selecting useful features, this algorithm employs informa-
tion entropy to determine feature significance, and sig-
nificant features are selected as a final feature subset.
Experiments show that, compared with both the classical
heuristic feature selection algorithms based on information
entropy and existing incremental feature selection algo-
rithms, the proposed algorithm can find a feasible feature
subset in a much shorter time. The remainder of this paper
is organized as follows: Relative works are reviewed in
Section 2. Some preliminaries in rough set theory are briefly
reviewed in Section 3. Traditional heuristic reduction
algorithms based on three representative entropies are
introduced in Section 4. Section 5 introduces the incre-
mental feature selection algorithm for adding a single
object. And the incremental feature selection algorithm for
adding objects in groups is introduced in Section 6. In

Section 7, eight UCI data sets are employed to demonstrate
the effectiveness and efficiency of the proposed algorithms.
Section 8 concludes this paper.

2 RELATIVE WORKS

In this section, previous research on incremental knowledge
updating is reviewed.

Knowledge updating for dynamically increasing data
sets has attracted much attention. By integrating the
changes of discernibility-matrix, Shan and Ziarko [36]
introduced an incremental approach to obtain all maximally
generalized rules of a changed decision table. Bang and
Zeungnam [2] introduced an incremental learning algo-
rithm to find a minimal set of rules of a decision table. Tong
and An [42] constructed the concept of �-decision matrix,
and presented an algorithm for incremental learning of
rules. Zheng and Wang [56] developed an effective
incremental algorithm which was called RRIA. This algo-
rithm can learn from a domain data set incrementally. Guo
et al. [9] proposed an incremental rules extraction algorithm
based on the search tree, which is one kind of the first
heuristic search algorithms. Furthermore, under variable
precision rough-set model (VPRS), Chen et al. [4] intro-
duced a new incremental method for updating approxima-
tions of VPRS while objects in the information system
dynamically alter.

Feature selection is a common technique for data
preprocessing. For incremental feature selection, research-
ers have also proposed several approaches. Liu [25]
proposed an incremental reduction algorithm for the
minimal reduct. This algorithm can only be applied to
information systems without decision attribute. For deci-
sion tables, a reduction algorithm was presented to update
reduct in [28], but it was very time consuming. To overcome
the deficiencies of these two algorithms, Hu et al. [10]
presented an incremental reduction algorithm based on the
positive region, and pointed out that this one was more
efficient than those two algorithms. Moreover, an incre-
mental reduction algorithm based on the discernibility
matrix was proposed by Yang [51].

Rough set theory has been conceived as a powerful soft
computing tool to analyze various types of data [29], [30],
and is also a specific framework of selecting useful features.
Based on rough set theory, to select useful features, a kind
of common approaches is using information entropy to
measure the feature significance and selecting significant
features as a final feature subset [20], [21], [23], [38], [44].
Liang et al. [20], [34] proposed complementary entropy and
combination entropy, respectively. These two entropies
have been used to determine feature significance in a
feature selection algorithm [20], [34]. In [33], information
entropy is employed to determine feature significance in an
accelerated feature selection algorithm. In [22], Liang et al.
proposed an effective feature selection algorithm from a
multigranulation view. This algorithm was also designed
based on information entropy.

In this paper, to select useful features from a dynamically
increasing data set, we focus on incremental feature
selection in the framework of rough set theory. In view of
that many real data from applications are generated in
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groups, a group incremental feature selection algorithm is
proposed in the framework of rough set theory. And this
algorithm employs information entropy to measure the
feature significance.

3 PRELIMINARIES ON ROUGH SETS

In this section, several basic concepts in rough set theory are
reviewed. In rough set theory, a basic concept is data table,
which provides a convenient framework for the representa-
tion of records in terms of their attribute values. A data
table is a quadruple S ¼ ðU;A; V ; fÞ, where the universe U
is a finite nonempty set of objects (records) and A is a finite
nonempty set of attributes (features), V ¼

S
a2A Va with Va

being the domain of a, and f : U �A! V is an information
function with fðx; aÞ 2 Va for each a 2 A and x 2 U . The
table S can often be simplified as S ¼ ðU;AÞ.

Each nonempty subset B � A determines an indiscern-
ibility relation, which is RB ¼ fðx; yÞ 2 U � U j fðx; aÞ ¼
fðy; aÞ; 8a 2 Bg. The relation RB partitions U into some
equivalence classes given by U=RB ¼ f½x�B j x 2 Ug; just
U=B, where ½x�B denotes the equivalence class determined
by x with respect to B, i.e., ½x�B ¼ fy 2 U j ðx; yÞ 2 RBg.

Given an equivalence relation R on the universe U and
X � U , the lower approximation and upper approximation
of X are defined by

RX ¼
[
fx 2 U j ½x�R � Xg;

and

RX ¼
[
fx 2 U j ½x�R \X 6¼ �g;

respectively. The order pair ðRX;RXÞ is called a rough set
of X with respect to R. The positive region of X is denoted
by POSRðXÞ ¼ RX.

A partial relation � on the family fU=B j B � Ag is
defined as follows: U=P � U=Q (or U=Q � U=P ) if and only
if, for every Pi 2 U=P , there exists Qj 2 U=Q such that
Pi � Qj, where U=P ¼ fP1; P2; . . . ; Pmg and U=Q ¼ fQ1;
Q2; . . . ; Qng are partitions induced by P; Q � A, respec-
tively. Then, we say that Q is coarser than P , or P is finer
than Q. If U=P � U=Q and U=P 6¼ U=Q, we say Q is strictly
coarser than P (or P is strictly finer than Q), denoted by
U=P � U=Q (or U=Q � U=P ). It is clear that U=P � U=Q if
and only if, for every X 2 U=P , there exists Y 2 U=Q such
that X � Y , and there exist X0 2 U=P and Y0 2 U=Q such
that X0 	 Y0.

A decision table is a data table S ¼ ðU;C [DÞ with
C \D ¼ �, where an element of C is called a condition
attribute, C is called a condition attribute set, an element of
D is called a decision attribute, and D is called a decision
attribute set. Given P � C and U=D ¼ fD1; D2; . . . ; Drg, the
positive region of D with respect to the condition attribute
set P is defined by POSP ðDÞ ¼

Sr
k¼1 PDk.

For a decision table S and P � C, X 2 U=P is consistent
iff all its objects have the same decision value; otherwise, X
is inconsistent. A decision table is called a consistent
decision table iff all x 2 U are consistent; and if 9x; y 2 U
are inconsistent, then the table is called an inconsistent
decision table. One can extract certain decision rules from a
consistent decision table and uncertain decision rules from
an inconsistent decision table.

For a decision table S and P � C, when a new object x is
added to S, x is indistinguishable on B iff, 9y 2 U , 8a 2 P ,
such that fðx; aÞ ¼ fðy; aÞ; and x is distinguishable on P iff,
8y 2 U , 9a 2 P such that fðx; aÞ 6¼ fðy; aÞ.

4 ROUGH FEATURE SELECTION BASED ON

INFORMATION ENTROPY

In rough set theory, a given data table usually has multiple
reducts, whereas it has been proved that finding its minimal
is an NP-hard problem [39]. To overcome this deficiency,
researchers have proposed many heuristic reduction algo-
rithms which can generate a single reduct from a given
table [11], [12], [20], [21], [33]. Most of these algorithms are
of greedy and forward search type. Starting with a none-
mpty set, these algorithms keep adding one or several
attributes of high significance into a pool at each iteration
until the dependence no longer increases.

This section reviews the heuristic attribute reduction
algorithms based on information entropy for decision
tables. The main idea of these algorithms is to keep the
conditional entropy of target decision unchanged. This
section first reviews three representative entropies, and
then introduces the classic attribute reduction algorithm
based on information entropy.

In [20], the complementary entropy was introduced to
measure uncertainty in rough set theory. Liang and Shi [21]
also proposed the conditional complementary entropy to
measure uncertainty of a decision table. By preserving the
conditional entropy unchanged, the conditional comple-
mentary entropy was applied to construct reduction
algorithms and reduce the redundant features in a decision
table [33]. The conditional complementary entropy used in
this algorithm is defined as follows [20], [21], [33].

Definition 1. Let S ¼ ðU;C [DÞ be a decision table and

B � C. Then, one can obtain the partitions U=B ¼
fX1; X2; . . . ; Xmg and U=D ¼ fY1; Y2; . . . ; Yng. Based on

these partitions, a conditional entropy of B relative to D is

defined as

EðDjBÞ ¼
Xm
i¼1

Xn
j¼1

jXi \ Yjj
jUj

jY c
j 
Xc

i j
jU j ; ð1Þ

where Y c
i and Xc

j are complement set of Yi and Xj respectively.

Another information entropy, called combination en-
tropy, was presented in [34] to measure the uncertainty of
data tables. The conditional combination entropy was also
introduced to construct the heuristic reduction algorithms
[34]. This reduction algorithm can find a feature subset that
possesses the same number of pairs of indistinguishable
elements as that of the original decision table. The
definition of the conditional combination entropy is defined
as follows [34].

Definition 2. Let S ¼ ðU;C [DÞ be a decision table and

B � C. Then one can obtain the partitions U=B ¼ fX1;

X2; . . . ; Xmg and U=D ¼ fY1; Y2; . . . ; Yng. Based on these

partitions, a conditional entropy of B relative to D is

defined as
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CEðDjBÞ ¼
Xm
i¼1

jXij
jUj

C2
jXij

C2
jUj


Xn
j¼1

jXi \ Yjj
jU j

C2
jXi\Yjj

C2
jU j

 !
: ð2Þ

where C2
jXij denotes the number of pairs of objects which are

not distinguishable from each other in the equivalence class Xi.

Based on the classical rough set model, Shannon’s
information entropy [37] and its conditional entropy were
also introduced to find a reduct in a heuristic algorithm
[38], [44]. In [44], the reduction algorithm keeps the
conditional entropy of target decision unchanged, and the
conditional entropy is defined as follows [44].

Definition 3. Let S ¼ ðU;C [DÞ be a decision table andB � C.
Then, one can obtain the partitions U=B ¼ fX1; X2; . . . ; Xmg
and U=D ¼ fY1; Y2; . . . ; Yng. Based on these partitions, a
conditional entropy of B relative to D is defined as

HðDjBÞ ¼ 

Xm
i¼1

jXij
jUj

Xn
j¼1

jXi \ Yjj
jXij

log
jXi \ Yjj
jXij

� �
: ð3Þ

For convenience, a uniform notation MEðDjBÞ is
introduced to denote the above three entropies. For
example, if one adopts Shannon’s conditional entropy to
define the attribute significance, then MEðDjBÞ ¼ HðDjBÞ.
In [20], [33], and [44], the attribute significance is defined as
follows (see Definitions 4 and 5).

Definition 4. Let S ¼ ðU;C [DÞ be a decision table and
B � C. 8a 2 B, the significance measure (inner significance)
of a in B is defined as

Siginnerða;B;DÞ ¼MEðDjB
 fagÞ 
MEðDjBÞ: ð4Þ

Definition 5. Let S ¼ ðU;C [DÞ be a decision table and
B � C. 8a 2 C 
B, the significance measure (outer signifi-
cance) of a in B is defined as

Sigouterða;B;DÞ ¼MEðDjBÞ 
MEðDjB [ fagÞ: ð5Þ

Given a decision table S ¼ ðU;C [DÞ and a 2 C. From
the literatures [20], [21], [23], [33], [34], [44], one can get that
if Siginnerða; C;DÞ > 0, then the attribute a is indispensable,
i.e., a is a core attribute of S. Based on the core attributes, a
heuristic attribute reduction algorithm can find an attribute
reduct by gradually adding selected attributes to the core.
The definition of reduct based on information entropy is
defined as follows [20], [21], [33], [44].

Definition 6. Let S ¼ ðU;C [DÞ be a decision table and
B � C. Then, the attribute set B is a relative reduct if B
satisfies:

1. MEðDjBÞ ¼MEðDjCÞ; and
2. 8a 2 B, MEðDjBÞ 6¼MEðDjB
 fagÞ.

The first condition guarantees that the reduct has the
same distinguish power as the whole attribute set, and the
second condition guarantees that there is no redundant
attributes in the reduct. Because the heuristic searching
strategies in the three algorithms are similar to each other, a
common heuristic attribute reduction algorithm based on
information entropy for decision tables is introduced as
follows [20], [21], [33], [44].

The time complexity of CAR given in [33] is OðjUkCj2Þ.
However, this time complexity does not include the
computational time of entropies. Computing entropies is
obviously not computationally costless according to the
definitions of entropies, and is also a key step in Algorithm 1.
To analyze the exact time complexity of Algorithm 1, the time
complexity of computing entropies should be given as well.

Algorithm 1. Classic heuristic attribute reduction algorithm

based on information entropy for decision tables (CAR)

Input: A decision table S ¼ ðU;C [DÞ
Output: Reduct red

Step 1: red ;;
Step 2: forðj ¼ 1; j � jCj; jþþÞ
fIf Siginnerðaj; C;DÞ > 0, then red red [ fajg;g

Step 4: P  red, whileðMEðDjP Þ 6¼MEðDjCÞÞ do
fCompute and select sequentially

Sigouterða0; P ;DÞ ¼ maxfSigouterðai; P ;DÞ,
ai 2 C 
 Pg;
P  P [ fa0g;g

Step 5: red P , return red and end.

According to Definitions 1-3, a decision table first needs

to compute its conditional classes and decision classes, and

then computes its value of entropy. Xu et al. [48] gave a fast

algorithm for partition with time complexity being

OðjUkCjÞ. So, the time complexity of computing entropy is

OðjUkCj þ jU j þ
Pm

i¼1 jXij �
Pn

j¼1 jYjjÞ ¼ OðjU j
2Þ (the specific

introduction of m;n;Xi and Yj is shown in Definitions 1-3).

Thus, the time complexity of computing core (Steps 1 and 2)

is OðjCkU j2Þ, and the time complexity of computing reduct

according to CAR is OðjCkU j2 þ jCjðjUkCj þ jU j2ÞÞ ¼
OðjCj2jU j þ jCkU j2Þ.

5 INCREMENTAL FEATURE SELECTION ALGORITHM

FOR ADDING A SINGLE OBJECT

Given a dynamic decision table, based on those three
representative entropies, this section introduces an incre-
mental feature selection algorithm for adding a single
object. This section is divided into two parts. Section 5.1
introduces the incremental mechanisms for the three
entropies. When a new object is added to a given decision
table, instead of recomputation on the new decision table,
the incremental mechanisms aim to calculate new entropies
by integrating the changes of classes into the existing
entropies of the original decision table. Section 5.2 intro-
duces the incremental feature selection algorithm based on
information entropy for adding a single object. Similarly,
this incremental algorithm finds a new feature subset on the
available result of feature selection. The incremental
mechanisms of entropies are used in the steps of the
algorithm where entropies are computed. To make the
presentation easier to follow, some illustrative examples are
also given in this section.

5.1 Incremental Mechanism to Calculate Entropies
After Adding a Single Object

Given a dynamic decision table, with the increase of objects,
recomputing entropy is obviously time consuming. To
address this issue, this section introduces three incremental
mechanisms for computing entropies. When a single object is
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added to a decision table, Theorems 1-4 introduce the
incremental mechanisms for the three entropies respectively.

In [23], when a single object is added to a given decision
table, the incremental mechanism of complementary con-
ditional entropy (see Definition 1) has been analyzed, which
is shown in Theorem 1.

Theorem 1. Let S ¼ ðU;C [DÞ be a decision table, B � C,

U=B ¼ fX1; X2; . . . ; Xmg and U=D ¼ fY1; Y2; . . . ; Yng. The

complementary conditional entropy of D with respect to B is

EUðDjBÞ. Suppose that object x is added to the table S, x 2
X0p and x 2 Y 0q (X0p 2 U [ fxg=B and Y 0q 2 U [ fxg=D).

Then, the new complementary conditional entropy becomes

EU[fxgðDjBÞ ¼
1

ðjU j þ 1Þ2
ðjU j2EUðDjBÞ þ 2jX0p 
 Y 0q jÞ:

Proof. The proof can be found in [23]. tu

For the convenience of introducing incremental mechan-
ism of combination entropy, here gives a variant of the
definition of combination entropy (see Definition 2).
According to C2

N ¼
NðN
1Þ

2 , Definition 7 shows a variant of
combination entropy. Based on this variant, the incremental
mechanism of combination entropy is introduced in
Theorem 2.

Definition 7. Let S ¼ ðU;C [DÞ be a decision table and
B � C. One can obtain the condition partition U=B ¼
fX1; X2; . . . ; Xmg and U=D ¼ fY1; Y2; . . . ; Yng. The condi-
tional entropy of B relative to D is defined as

CEðDjBÞ ¼
Xm
i¼1

jXij2ðjXij 
 1Þ
jU j2ðjU j 
 1Þ

 


Xn
j¼1

jXi \ Yjj2ðjXi \ Yjj 
 1Þ
jU j2ðjU j 
 1Þ

!
:
ð6Þ

Theorem 2. Let S ¼ ðU;C [DÞ be a decision table, B � C,
U=B ¼ fX1; X2; . . . ; Xmg, and U=D ¼ fY1; Y2; . . . ; Yng. The
conditional combination entropy of D with respect to B is
CEUðDjBÞ. Suppose that a new object x is added to the table
S, x 2 X0p and x 2 Y 0q (X0p 2 U [ fxg=B and Y 0q 2 U [
fxg=D). Then, the new combination conditional entropy
becomes

CEU[fxgðDjBÞ ¼
1

ðjUj þ 1Þ2
ðjUjðjU j 
 1ÞCEUðDjBÞ

þ jX0p 
 Y 0q jð3jX0pj þ 3jX0p \ Y 0q j 
 5ÞÞ:

The following two theorems are the introduction of
incremental mechanism of Shannon’s information entropy
(see Definition 3).

Theorem 3. Let S ¼ ðU;C [DÞ be a decision table, B � C,
U=B ¼ fX1; X2; . . . ; Xmg and U=D ¼ fY1; Y2; . . . ; Yng. The
Shannon’s conditional entropy of D with respect to B is
HUðDjBÞ. Suppose that a new object x is added to the table S,
x 2 X0p and x 2 Y 0q (X0p 2 U [ fxg=B and Y 0q 2 U [ fxg=D ).
The new Shannon’s conditional entropy becomes

HU[fxgðDjBÞ ¼
1

ðjU j þ 1Þ ðjUjHUðDjBÞ 
�Þ;

where

� ¼
Xn
1

j¼1

jðX0p 
 fxgÞ \ Yjjlog
jX0pj 
 1

jX0pj

þ ðjX0p \ Y 0q j 
 1Þlog
ðjX0pj 
 1ÞjX0p \ Y 0q j
jX0pjðjX0p \ Y 0q j 
 1Þ

þ log
jX0p \ Y 0q j
jX0pj

:

Obviously, the � in Theorem 3 is relatively complicated,

which may give rise to much waste of computational time,

especially for large-scale data sets. Thus, Theorem 4 shows

an approximate computational formula.

Theorem 4. Let S ¼ ðU;C [DÞ be a large-scale decision table,

B � C, U=B ¼ fX1; X2; . . . ; Xmg, and U=D ¼ fY1; Y2; . . . ,

Yng. The Shannon’s conditional entropy of D with respect to B

is HUðDjBÞ. Suppose that a new object x is added to the table

S, x 2 X0p and x 2 Y 0q (X0p 2 U [ fxg=B and Y 0q 2 U [
fxg=D ). The new Shannon’s conditional entropy becomes

HU[fxgðDjBÞ 

1

ðjUj þ 1Þ jUjHUðDjBÞ 
 log
jX0p \ Y 0q j
jX0pj

 !
:

In the following, we employ an example to illustrate

above incremental mechanisms.

Example 1. Let Table 1 be a decision table. In this table,

U ¼ fx1; x2; x3; x4g is the universe, C ¼ fc1; c2; c3; c4g is

the condition attribute set and D ¼ fdg is the decision

attribute.
We have that U=C ¼ ffx1; x2g; fx3g; fx4gg and U=D ¼

ffx1; x3g; fx2; x4gg.
According to Definitions 1-3 (or 1, 3, and 7), we have

that EUðDjCÞ ¼ 1
8 , CEUðDjCÞ ¼ 1

12 , and HUðDjCÞ 
 0:15.
Suppose that new object x5 ¼ f1; 0; 1; 1; 1g is added to

Table 1. We have X0p ¼ fx5g and Y 0q ¼ fx2; x4; x5g.
Then, according to Theorem 1, we have jX0p 
 Y 0q j ¼

jfx5g 
 fx2; x4; x5gj ¼ 0 and EU[fxgðDjBÞ ¼ 1
ð4þ1Þ2 ð4

2 �
1
8þ 2� 0Þ ¼ 0:08.

According to Theorem 2, we have jX0pj ¼ 1, jX0p \
Y 0q j ¼ 1, and jX0p 
 Y 0q j ¼ 0. Thus, CEU[fxgðDjBÞ ¼ 1

ð4þ1Þ2
ð4� ð4
 1Þ � 1

12þ 0� ð3� 1þ 3� 1
 5ÞÞ ¼ 0:04.
According to Theorem 3, we have jX0pj ¼ 1 and jX0p \

Y 0q j ¼ 1. Thus, HU[fxgðDjBÞ ¼ 1
ð4þ1Þ ð4� 0:15
 0Þ ¼ 0:12.

Because the size of Table 1 employed in this example is

very small, we used Theorem 3 to compute Shannon’s

entropy. For the larger data sets employed in the section of

experiments, Theorem 4 is used to compute entropy.
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5.2 Incremental Algorithm for Adding a Single
Object

Based on incremental mechanisms of the three entropies,
this section introduces an incremental feature selection
algorithm based on information entropy in the framework
of rough set theory.

Given a decision table S ¼ ðU;C [DÞ. Suppose that B �
C is a reduct of S and x is the new incremental object. There
are three distinguishing situations about x based on the
reduct B:

1. x is distinguishable on B, and x is also distinguish-
able on C;

2. x is indistinguishable on B, and x is distinguishable
on C; and

3. x is indistinguishable on B, and x is also indis-
tinguishable on C.

For above three distinguishing situations, following
three theorems introduce the changes of the three entropies.

Theorem 5. Let S ¼ ðU;C [DÞ be a decision table and B � C.
Supposed that B is a reduct of S and x is a new incremental
object. Then, if x is distinguishable on both B and C, then
MEU[fxgðDjBÞ ¼MEU[fxgðDjCÞ.

Theorem 6. Let S ¼ ðU;C [DÞ be a decision table and B � C.
Supposed that B is a reduct of S and x is a new incremental
object. Then, if x is indistinguishable on B and is distinguish-
able on C, then MEU[fxgðDjBÞ 6¼MEU[fxgðDjCÞ.

Theorem 7. Let S ¼ ðU;C [DÞ be a decision table and B � C.
Supposed that B is a reduct of S and x is a new incremental
object. Then, if x is indistinguishable both on B and C, then
MEU[fxgðDjBÞ ¼MEU[fxgðDjCÞ.

According to Theorems 5 and 7, if the added object is
distinguishable or indistinguishable on both B and C, then
new entropies of D with respect to B and C are identical.
Hence, according to the definition of reduct (see Defini-
tion 6), it only need to delete the reductant attributes from B
for these two situations. If the added object is indistinguish-
able on the previous reduct B and is distinguishable on
conditional attribute set C, finding new reduct needs to add
new attributes. On this basis, Algorithm 3 introduces an
incremental algorithm for reduct computation.

An example is employed to illustrate Algorithm 2. For
convenience, Example 2 shows the process of computing
reduct based on complementary entropy. In the same way,
one can compute reduct based on the other two entropies
by using Algorithm 2.

Algorithm 2. An incremental algorithm for reduct

computation (IARC)

Input: A decision table S ¼ ðU;C [DÞ, reduct REDU

on U , and the new incremental object x

Output: Attribute reduct REDU[fxg on U [ fxg
Step 1 : B REDU . Find M 0

t: in U=B ¼ fM1;M2; . . . ;Mlg,
if all of the attribute values of x is identical to that

of Mt on B, then M 0
t ¼Mt [ fxg; else M 0t ¼ fxg.

Step 2 : If M 0
t ¼ fxg, then turn to Step 5; if M 0t ¼Mt [ fxg,

then turn to Step 3.

Step 3 : Find X0p: similarly, in U=C ¼ fX1; X2; . . . ; Xmg,
if X0p ¼ Xp [ fxg, then turn to Step 5; if X0p ¼ fxg,
then turn to Step 4.

Step 4 : While MEU[fxgðDjBÞ 6¼MEU[fxgðDjCÞ do
fFor each a 2 C 
B, compute SigouterU[fxgða;B;DÞ
(according to Theorems 1, 2, or 4 and

Definition 5);

Select a0 ¼ maxfSigouterU[fxgða;B;DÞg, a 2 C 
B;

B B [ fa0g.g
Step 5 : For each a 2 B do

fCompute SiginnerU[fxgða;B;DÞ;
If SiginnerU[fxgða;B;DÞ ¼ 0, then B B
 fag.g

Step 6 : REDU[fxg  B, return REDU[fxg and end.

Algorithm 3. A group incremental algorithm for reduct

computation (GIARC)

Input: A decision table S ¼ ðU;C [DÞ, reduct REDU

on U , and the new object set UX
Output: Reduct REDU[UX on U [ UX
Step 1 : B REDU . Compute U=B ¼ fXB

1 ,XB
2 ; . . . ; XB

mg,
U=C ¼ fXC

1 ; X
C
2 ; . . . ; XC

s g, UX=B ¼ fMB
1 ;M

B
2 ; . . . ,

MB
m0 g, and UX=C ¼ fMC

1 ;M
C
2 ; . . . ;MC

s0 g.
Step 2 : Compute ðU [ UXÞ=B ¼ fX0B1 ; X0B2 ; . . . , X0Bk ,

XB
kþ1; X

B
kþ2; . . . ; XB

m;M
B
kþ1;M

B
kþ2; . . . ;MB

m0 g and

ðU [ UXÞ=C ¼ fX0C1 ; X0C2 ; . . . ; X0Ck0 ; X
C
k0þ1; X

C
k0þ2; . . . ,

XC
s ;M

C
k0þ1;M

C
k0þ2; . . . , MC

s0 g.
Step 3 : If k ¼ 0 and k0 ¼ 0, turn to Step 4; else turn Step 5.

Step 4 : Compute MEUX ðDjBÞ and MEUX ðDjCÞ.
If MEUX ðDjBÞ ¼MEUX ðDjCÞ, turn to Step 7;

else turn to Step 5.

Step 5 : while MEU[UX ðDjBÞ 6¼MEU[UX ðDjCÞ do
fFor each a 2 C 
B, compute SigouterU[UX ða;B;DÞ;
Select a0 ¼ maxfSigouterU[UX ða;B;DÞ, a 2 C 
Bg;
B B [ fa0g.
g

Step 6 : For each a 2 B do

fCompute SiginnerU[UX ða;B;DÞ;
If SiginnerU[UX ða;B;DÞ ¼ 0, then B B
 fag.
g

Step 7 : REDU[UX  B, return REDU[UX and end.

Example 2 (Continued from Example 1). Computing new
reduct based on complementary entropy by using
Algorithm 2.

For Table 1, its previous reduct found by using
Algorithm 1 based on complementary entropy is fc1; c2g.
Suppose that new object x5 ¼ f1; 0; 1; 1; 1g is added to
Table 1.

According to Step 1, we have M 0
t ¼ fx1; x2; x5g.

Obviously, M 0
t 6¼ fx5g, then algorithm turns to Step 3

according to Step 2.
According to Step 3, we have X0p ¼ fx5g. Hence,

algorithm turns to Step 4 according to Step 3.
From Theorem 1, one can get EU[fxgðDjBÞ ¼ 0:16,

EU[fxgðDjCÞ ¼ 0:08, a n d EU[fxgðDjBÞ 6¼ EU[fxgðDjCÞ.
Thus, algorithm needs to add attributes from C 
B
according to Step 4.

In the first circulation, SigouterU[fxgðc3; B;DÞ ¼ 0 and

SigouterU[fxgðc4; B;DÞ ¼ 0:08. Then, we have B ¼ fc1; c2g [
fc4g ¼ fc1; c2; c4g. Now, we have EU[fxgðDjBÞ ¼ 0:16 and

EU[fxgðDjBÞ ¼ EU[fxgðDjCÞ. Algorithm here stop the

circulation in Step 4.
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According to Step 5, there is no attribute in B need to
be deleted. Thus, REDU[fxg  B and REDU[fxg ¼
fc1; c2; c4g.

The following is the time complexities of Algorithm 2.
Here are some explanations first. Based on the analysis in
Section 5.1, when x is added to the table, one can also get the
new value of entropy by using the incremental formulas.
And the time complexity of computing entropy isOðjUkCj þ
jUj þmjCj þ nþ jX0pkY 0q jÞ ¼ OðjUkCj þ jX0pkY 0q jÞ (the expla-
nations ofm;n;X0p and Y 0q are shown in Theorems 1, 2, and 4).
For convenience, we make �0 to denote the above time
complexity, i.e., �0 ¼ OðjUkCj þ jX0pkY 0q jÞ.

In the algorithm IARC, the time complexity of Steps 1
and 3 is OðjUkCjÞ. In Step 4, the time complexity of adding
attributes is OðjCj�0Þ. In Step 5, the time complexity
of deleting redundant attributes is OðjCj�0Þ. Hence, the
total time complexity of algorithm IARC is OðjUkCj þ
jCjðjUkCj þ jX0pkY 0q jÞÞ ¼ OðjUkCj

2 þ jCkX0pkY 0q jÞ. To stress
the above findings, Table 2 shows the time complexities of
computing reduct.

From Table 2, because of that jX0pkY 0q j is usually much
smaller than jU j2, we can conclude that the computational
time of new incremental algorithms are usually much
smaller than that of the classic algorithms. Note that,
sometimes, jX0pkY 0q j may be identical to jU j2, i.e., jX0pj ¼ jU j
and jY 0q j ¼ jUj. In this situation, the discernibility ability of
the attributes induced jX0pj (or jY 0q j) is very weaker, and thus
these attributes will have few contributions to select
effective feature subset. In other words, it is impossible that
these attributes can be selected as useful features. Hence,
jX0pkY 0q j is more commonly much smaller than jU j2 in the
process of selecting effective features, and the new incre-
mental algorithms can save more computation than CAR.

6 INCREMENTAL FEATURE SELECTION ALGORITHM

FOR ADDING MULTIPLE OBJECTS

In practice, the rapid development of data processing tools
has led to the high speed of dynamic data updating. Thus,
many real data in applications may be generated in groups
instead of one by one. If multiple objects are added to
databases, the feature selection algorithm proposed in the
previous section may be less efficient. In other words,
the incremental algorithm for single object needs to be
reperformed repeatedly to deal with multiple objects. This
obviously gives rise to much waste of computational time.
To overcome this deficiency, this section introduces a group
incremental feature selection algorithm, which aims to deal
with multiple objects at a time instead of repeatedly.

This section is divided into two parts to introduce the

group incremental algorithm. We assume in this paper that

the size of an added object set is smaller than that of the

original table. Section 6.1 introduces the incremental

mechanisms of three entropies for adding multiple objects.

When multiple objects are added to a given decision table,

the incremental mechanisms aim to compute new entropy

by using the previous entropy instead of recomputation on

the decision table. Section 6.2 introduces the group

incremental feature selection algorithm based on informa-

tion entropy. The incremental mechanisms of entropies are

used in the steps of the algorithm which need to compute

entropy. To make the presentation easier to follow, some

examples are also given in this section.

6.1 Incremental Mechanism to Calculate Entropies
After Adding Multiple Objects

Given a decision table, when multiple objects are added, the
incremental mechanisms introduced in Section 5.1 for
computing entropy obviously need to repeat the operation
many times. Hence, this section introduces the group
incremental mechanisms of entropies. Theorems 8-10
introduce the group incremental mechanisms of three
entropies, respectively.

For convenience, here are some explanations which will be
used in the following theorems. Given a decision table
S ¼ ðU;C [DÞ,B � C,U=B ¼ fX1; X2; . . . ; Xmg, andU=D ¼
fY1; Y2; . . . ; Yng. Suppose thatUX is the incremental object set,
UX=B ¼ fM1;M2; . . . ;Mm0 g andUX=D ¼ fZ1; Z2; . . . ; Zn0 g. In
the view of that, between U=B and UX=B, there may be some
conditional classes with the identical attribute values on B,
we might as well assume that ðU [ UXÞ=B ¼ fX01; X02; . . . ; X0k,
Xkþ1; Xkþ2; . . . ; Xm; Mkþ1; Mkþ2; . . . ; Mm0 g and ðU [ UXÞ=
D ¼ fY 01 ; Y 02 ; . . . ; Y 0l ; Ylþ1; Ylþ2; . . . ; Yn, Zlþ1; Zlþ2; . . . ; Zn0 g. In
ðU [ UXÞ=B, X0i ¼ Xi [Miði ¼ 1; 2; . . . ; kÞ denote the combi-
native conditional classes, that is, the attribute values ofXi 2
U=B and Mi 2 UX=B are identical. And Xi 2 U=Bði ¼
kþ 1; 2; . . . ;mÞ and Mj 2 UX=Bðj ¼ kþ 1; kþ 2; . . . ;m0Þ de-
note the conditional classes which cannot be combined.
Similarly, in ðU [ UXÞ=D, Y 0i ¼ Yi [ Ziði ¼ 1; 2; . . . ; lÞ denote
the combinative of decision classes with the identical
attribute values on D. And Yi 2 U=Dði ¼ lþ 1; lþ 2; . . . ; nÞ
and Zj 2 UX=Dðj ¼ lþ 1; lþ 2; . . . ; n0Þ denote the decision
classes which can not be combined.

Example 3. Let U ¼ fx1; x2; x3; x4; x5; x6; x7; x8g, U=B ¼
ffx1; x2g; fx3; x4g; fx5g; fx6; x7gg and U=D ¼ ffx1; x2;

x3g; fx4g,fx5g; fx6; x7gg. The incremental data set UX ¼
fy1; y2; y3; y4g, UX=B ¼ ffy1; y2g; fy3gg, and UX=D ¼
ffy1g; fy2; y3gg.
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It is assumed that the attribute values of fy3g is
identical to that of fx5g with respect to B, and the
decision attribute value of fy2; y3g is identical to that of
fx6; x7g. Then, one have

ðU [ UXÞ=B ¼ ffx5; y3g; fx1; x2g; fx3; x4g;
fx6; x7g; fy1; y2gg;

where, X01 ¼ fx5; y3g, X2 ¼ fx1; x2g, X3 ¼ fx3; x4g, X4 ¼
fx6; x7g, and M2 ¼ fy1; y2g.

ðU [ UXÞ=D ¼ ffx6; x7; y2; y3g; fx1; x2; x3g;
fx4g; fx5g; fy1gg;

where, Y 01 ¼ fx6; x7; y2; y3g, Y2 ¼ fx1; x2; x3g, Y3 ¼ fx4g,
Y4 ¼ fx5g, and Z2 ¼ fy1g. Obviously, m ¼ 4; n ¼ 4,
m0 ¼ 2; n0 ¼ 2; k ¼ 1, and l ¼ 1.

Given a decision table, Theorem 8 introduces the
incremental mechanism based on complementary entropy.

Theorem 8. Let S ¼ ðU;C [DÞ be a decision table, B � C,
U=B ¼ fX1; X2; . . . ; Xmg, and U=D ¼ fY1; Y2; . . . ; Yng. The
complementary conditional entropy of D with respect to B is
EUðDjBÞ. Suppose that UX is an incremental object set,
UX=B ¼ fM1; M2; . . . ;Mm0 g a n d UX=D ¼ fZ1; Z2; . . . ;
Zn0 g. We assume that ðU [ UXÞ=B ¼ fX01; X02, . . . ; X0k;
Xkþ1; Xkþ2, . . . ; Xm;Mkþ1, Mkþ2; . . . ;Mm0 g and ðU [ UXÞ=
D ¼ fY 01 ; Y 02 ; . . . ; Y 0l , Ylþ1; Ylþ2, . . . ; Yn; Zlþ1, Zlþ2; . . . ; Zn0 g.
Then, the new complementary conditional entropy becomes

EU[UX ðDjBÞ ¼
1

ðjU [ UXjÞ2
ðjU j2EUðDjBÞ

þ jUXj2EUX ðDjBÞÞ þ�;

where

� ¼
Xk
i¼1

Xl
j¼1

jXi \ YjkMi 
 Zjj þ jMi \ ZjkXi 
 Yjj
ðjU [ UXjÞ2

 

þ
Xn
j¼lþ1

jXi \ YjkMij
ðjU [ UXjÞ2

þ
Xn0
j¼lþ1

jMi \ ZjkXij
ðjU [ UXjÞ2

!
:

In what following, the group incremental mechanism
based on combination entropy is introduced in Theorem 9.

Theorem 9. Let S ¼ ðU;C [DÞ be a decision table, B � C,
U=B ¼ fX1; X2; . . . ; Xmg and U=D ¼ fY1; Y2; . . . ; Yng. The
combination conditional entropy of D with respect to B is
CEUðDjBÞ. Suppose that UX is an incremental object set,
UX=B ¼ fM1;M2; . . . ;Mm0 g andUX=D ¼ fZ1; Z2; . . . ; Zn0 g.
We assume that ðU [ UXÞ=B ¼ fX01; X02; . . . ; X0k; Xkþ1;
Xkþ2; . . . ; Xm;Mkþ1; Mkþ2; . . . ;Mm0 g and ðU [ UXÞ= D ¼
fY 01 ; Y 02 ; . . . ; Y 0l , Ylþ1; Ylþ2, . . . ; Yn; Zlþ1; Zlþ2, . . . ; Zn0 g. Then,
the new combination conditional entropy becomes

CEU[UX ðDjBÞ

¼ 1

ðjU j þ jUXjÞ2ðjUj þ jUXj 
 1Þ
ðjUj2ðjU j 
 1ÞCEUðDjBÞ

þ jUXj2ðjUXj 
 1ÞCEUX ðDjBÞÞ þ�;

where

� ¼
Xk
i¼1

jXikMijð3jXij þ 3jMij 
 2Þ
ðjU j þ jUXjÞ2ðjU j þ jUXj 
 1Þ

 



Xl
j¼1

jXi \ YjkMi \ Zjjð3jXi \ Yjj þ 3jMi \ Zjj 
 2Þ
ðjUj þ jUXjÞ2ðjU j þ jUXj 
 1Þ

!
:

Based on Shannon’s entropy, the group incremental

mechanism for adding multiple objects is introduced in

Theorem 10.

Theorem 10. Let S ¼ ðU;C [DÞ be a decision table, B � C,

U=B ¼ fX1; X2; . . . ; Xmg, and U=D ¼ fY1; Y2; . . . ; Yng. The

Shannon’s conditional entropy of D with respect to B is

HUðDjBÞ. Suppose that UX is an incremental object set,

UX=B ¼ fM1; M2; . . . ;Mm0 g a n d UX=D ¼ fZ1; Z2; . . . ,

Zn0 g. We assume that ðU [ UXÞ=B ¼ fX01; X02, . . . ; X0k,

Xkþ1; Xkþ2, . . . ; Xm;Mkþ1;Mkþ2; . . . ;Mm0 g and ðU [ UXÞ=
D ¼ fY 01 ; Y 02 ; . . . ; Y 0l , Ylþ1; Ylþ2, . . . ; Yn; Zlþ1, Zlþ2; . . . ; Zn0 g.
Then, the new Shannon’s conditional entropy becomes

HU[UX ðDjBÞ ¼
1

jU j þ jUXj
ðjUjHUðDjBÞ

þ jUXjHUX ðDjBÞÞ 
�;

where

� ¼
Xk
i¼1

 Xl
j¼1

 
jXi \ Yjj
jU j þ jUXj

log
jXikX0i \ Y 0j j
jX0ikXi \ Yjj

þ jMi \ Zjj
jUj þ jUXj

log
jMikX0i \ Y 0j j
jX0ikMi \ Zjj

!
þ
Xn
j¼lþ1

jXi \ Yjj
jUj þ jUXj

log
jXij
jX0ij

þ
Xn0
j¼lþ1

jMi \ Zjj
jU j þ jUXj

log
jMij
jX0ij

!
:

To illustrate above study clearly, here employs an

example to introduce the process of computing entropies

in a group incremental way.

Example 4. For Table 1, suppose that UX ¼ fx5; x6; x7g is the

added object set. x5 ¼ f1; 0; 1; 1; 1g, x6 ¼ f0; 1; 0; 0; 0g,
and x7 ¼ f1; 1; 0; 0; 0g.

We have that U=C ¼ ffx1; x2g; fx3g; fx4gg, U=D ¼
ffx1; x3g; fx2; x4gg, UX=C ¼ ffx5g; fx6g; fx7gg, and
UX=D ¼ ffx5g; fx6; x7gg.

Then, one can get that U [ UX=C ¼ ffx3; x7g; fx4; x6g;
fx1; x2g; fx5gg and U [ UX=D ¼ ffx1; x3; x6; x7g; fx2; x4;
x5gg.

According to Definitions 1-3, we have that EUðDjCÞ ¼
1
8 , CEUðDjCÞ ¼ 1

12 , HUðDjCÞ 
 0:15, and EU[UX ðDjCÞ ¼
CEU[UX ðDjCÞ ¼ HU[UX ðDjCÞ ¼ 0.

According to Theorem 8, we have that k ¼ 2;m ¼ 3;
m0 ¼ 3; l ¼ 2; n ¼ 2, and n0 ¼ 2. And X01 ¼ fx3; x7g,
X02 ¼ fx4; x6g, X3 ¼ fx1; x2g, and M3 ¼ fx5g. Y 01 ¼ fx1;
x3; x6; x7g and Y 02 ¼ fx2; x4; x5g. Hence, EU[UX ðDjCÞ ¼
1
72 � ð42 � 1

8þ 32 � 0Þ þ 2
72 ¼ 2

49 .
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According to Theorem 9, one can get that

CEU[UX ðDjCÞ ¼
1

72 � 6
ð42 � ð4
 1Þ � 1

12
þ 32

� ð3
 1Þ � 0Þ þ 4

49� 3
¼ 6

147
:

According to Theorem 10, one can get that
HU[UX ðDjCÞ 
 1

7� ð4� 0:6þ 3� 0Þ 
 ð
0:086Þ ¼ 0:17.

6.2 Incremental Algorithms for Adding Multiple
Objects

Based on incremental mechanisms of the three entropies,
Algorithm 3 introduces a group incremental algorithm
for reduct computation based on information entropy.

An example is employed to illustrate Algorithm 3.
Similarly, based on complementary entropy, this example
updates reduct by using Algorithm 3. And the other two
entropies can be used to compute attribute significance in
this algorithm in the same way.

Example 5 (Continued from Example 1). Computing new
redut based on complementary entropy by using
Algorithm 3.

For Table 1, its previous reduct found by using
Algorithm 1 based on complementary entropy is fc1; c2g.
Suppose that UX ¼ fx5; x6; x7g is the added object set.

According to Step 1, B ¼ fc1; c2g, U [ UX=C ¼ ffx3;
x7g; fx4; x6g; fx1; x2g; fx5gg, and U [ UX=B ¼ ffx3; x7g;
fx4; x6g; fx1; x2; x5gg.

Because of k ¼ 2 and k0 ¼ 3, example turns to Step 4.
According to Step 4, we have EU[UX ðDjBÞ ¼ 6

49 and
EU[UX ðDjCÞ ¼ 4

49 . Thus, example needs to add attributes
from C 
B.

In the first loop, SigoutterU[UX ðc3; B;DÞ ¼ 0 and SigoutterU[UX ðc4;
B;DÞ ¼ 2

49 . Thus, B ¼ B [ fc4g ¼ fc1; c2; c4g. Now, we
have EU[UX ðDjBÞ ¼ EU[UX ðDjCÞ ¼ 4

49 . Example thus
stops in Step 4.

According to Step 5, there is no attribute in B need to
be deleted and the final reduct is REDU[UX ¼ fc1; c2; c4g.

The following is the time complexity of above Algo-
rithm 3. As mentioned above, we give in this paper a
specific explanation that jUXj < jUj. When a data set is
added to the decision tables, according to Theorems 8-10,
the time complexity of computing entropy is OðjUkCj þ
jUXkCj þ jUXj2 þ jUkXjÞ, and X denotes the object set with
identical conditional attribute values in U and UX . In the
algorithm GIARC, the time complexity of Step 2 is OðjCj
ðjUkUXkCj þ jUkCj þ jUXj2 þ jUkXjÞÞ ¼ OðjCj2jUkUXjÞ. The
time complexity of Step 3 is also OðjCj2jUkUXjÞ, and the
other steps are constant. So, the total time complexity of
algorithm GIARC is OðjCj2jUkUXjÞ. When a group of
objects are added to a data table, Table 3 shows the time
complexities of computing reduct.

In Table 3, we compare the time complexities of GIARC
with that of IARC, respectively. It is easy to see that, if the
size of added object set is very small, i.e., jUXj is very
small, the computational time of IARC is almost identical
to that of GIARC. However, with the increases of jUXj,
especially jUXj is close to jU j, the computational time of
jUXkCkX0pkY 0q j is not computationally costless and should
not be neglected. Hence, when massive new objects in the
databases are generated at once, GIARC is usually more
efficient than IARC.

7 EXPERIMENTAL ANALYSIS

The objective of the following experiments is to show
effectiveness and efficiency of the proposed group incre-
mental algorithm GIARC. The data sets used in the
experiments are outlined in Table 4, which are all down-
loaded from UCI repository of machine learning databases.
All the experiments have been carried out on a personal
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computer with Windows 7, Inter(R) Core (TM) i7-2600 CPU
(2.66 GHz) and 4.00 GB memory. The software used is
Microsoft Visual Studio 2005 and the programming
language is C#. And in the data sets, Shuttle and Poker-
hand are preprocessed using the data tool Rosetta.

Eight UCI data sets are employed in the testing. The
experiments are divided into three parts, which illustrate
effectiveness, efficiency and give a comparison with
the existing incremental algorithms, respectively. In the first
part, the effectiveness of GIARC is illustrated mainly
through comparing it with the classic heuristic attribute
reduction algorithm based on information entropy (CAR). In
the second part, IARC are first compared with GIARC and
the efficiency of GIARC is then illustrated by comparing
their computational time. The third part contains the
comparison with the existing incremental algorithms. The
specific design of experiments for each part is introduced
as follows.

7.1 Effectiveness Analysis

In this section, to test the effectiveness of GIARC, four
common evaluation measures in rough set theory are
employed to evaluate the decision performance of the
reducts found by CAR and GIARC. The four evaluation
measures are approximate classified precision, approximate
classified quality, certainty measure, and consistency
measure, which are shown in Definitions 8 and 9.

In [29] and [30], Pawlak defined the approximate
classified precision (AP ) and approximate classified quality
(AQ) to describe the precision of approximate classification
in rough set theory, namely, the discernible ability of a
feature subset. If a feature subset has the same AP and AQ
with original attributes, this feature subset is considered as
has the same discernible ability with original attributes.
Hence, this section employs these two measures to estimate
the discernible ability of a generated feature subset.

Definition 8. Let S ¼ ðU;C [DÞ be a decision table and
U=D ¼ fX1; X2; . . . ; Xrg. The approximate classified preci-
sion of C with respect to D is defined as

APCðDÞ ¼
jPOSCðDÞjPr

i¼1 jCXij
;

and the approximate classified quality of C with respect to D is
defined as

AQCðDÞ ¼
jPOSCðDÞj
jUj :

In rough set theory, by adopting a reduction algorithm,
one can get reducts for a given decision table. Then, based
on one reduct, a set of decision rules can be generated from
the decision table [29], [35]. Decision rules are used to
predict decision values of new objects. Hence, the perfor-
mance of a set of decision rules may affect its predictive
ability. Pawlak [30] introduced two measures to measure
the certainty and consistency. However, these two measures
cannot give elaborate depictions of the certainty and
consistency for a rule set [35]. To evaluate the performance
of a rule set, Qian et al. [35] defined certainty measure
and consistency measure to evaluate the certainty and

consistency of a set of decision rules. And these two
measures have attracted considerable attention by many
researchers [32], [43], [46]. Hence, � and � are employed to
evaluated the decision performance of decision rules
induced by the found feature subset in this section.

Definition 9. Let S ¼ ðU;C [DÞ be a decision table, U=C ¼
fX1; X2; . . . , Xmg, U=D ¼ fY1; Y2; . . . ; Yng, and RULE ¼
fZijjZij : desðXiÞ ! desðYjÞ, Xi 2 U=C; Yj 2 U=Dg . The
certainty measure � of the decision rules on S is defined as

�ðSÞ ¼
Xm
i¼1

Xn
j¼1

jXi \ Yjj2

jUkXij
;

and the consistency measure � of the decision rules on S is
defined as

�ðSÞ ¼
Xm
i¼1

jXij
jUj 1
 4

jXij
Xn
j¼1

jXi \ Yjj2

jXij
1
 jXi \ Yjj

jXij

� �" #
:

The main objective of this section is to illustrate that
GIARC can find a feasible feature subset in a much shorter
time, rather than find a more superior one. By comparing
with CAR, if discernible ability (evaluated by AP and AQ)
and decision performance (evaluated by � and �) of the
feature subset found by GIARC are very closed or even
identical to that of CAR, then this feature subset can be
considered to be feasible. By running algorithms GIARC
and CAR on the eight employed data sets, following
experiments are to test feasibility and efficiency of GIARC.

For each data set in Table 4, 51 percent objects are taken
as the basic data set, and the remaining 49 percent objects
are taken as incremental objects. When the incremental
objects are added to the basic data set, algorithms CAR and
GIARC are employed to update reduct of each data set. The
experimental results are shows in Tables 5, 6, and 7. These
tables show the number of selected features, evaluation
results of found feature subsets and computational time of
each employed data set. For simplicity, the number of selected
features is written as NSF.

It is easy to see from Tables 5, 6, and 7 that values of the
four evaluation measures of the generated reducts after the
updating are very close, and even identical on some data
sets. But, the computational time of GIARC is much smaller
than that of CAR. In other words, the performance and
decision making of the reduct found by GIARC are very
close to that of CAR, but GIARC is more efficient. Hence,
the experimental results indicate that, compared with the
classic reduction algorithm based on entropies CAR, the
algorithm GIARC can find a feasible feature subset in a
much shorter time.

7.2 Efficiency Analysis

The experimental results in previous section has indicated
thatGIARC is much more efficient thanCAR. In this section,
we compare GIARC with IARC to further illustrate the
efficiency of algorithm GIARC. For each data set in Table 4,
let U denote its universe and 51 percent objects (0:51�jUj) are
selected as the basic data set. Then, we divide the remaining
49 percent objects into five equal parts, denoted by xi
(jxij ¼ 0:49�jUj

5 ; i ¼ 1; 2; . . . ; 5). Let Xi ¼
Si
j¼1 xiði ¼ 1; 2; . . . ; 5)
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denotes the incremental group. When each incremental

group Xi is added to the basic data set, the two incremental

reduction algorithms are used to update the reduct,

respectively. The efficiency of the two algorithms are

demonstrated by comparing their computational time.
The experimental results are shown in Figs. 1, 2, 3, 4, 5,

6, 7, and 8. In these figures, the y-coordinate pertains

to the computational time for updating reduct, and the x-

coordinate pertains to the size of incremental group, that

is, coordinate value 1, 2, 3, 4, and 5 correspond to adding

X1, X2, X3, X4, and X5 to the basic data set, respectively.

For simplicity, IARC 
 L, IARC 
 C, and IARC 
 S
denote algorithm IARC based on complementary entropy,

combination entropy and Shannon’s entropy, respectively.

Similarly, GIARC 
 L, GIARC 
 C and GIARC 
 S
denote algorithm GIARC based on the three entropies,

respectively.
Figs. 1, 2, 3, 4, 5, 6, 7, and 8 depict the computational time

for updating reduct with the two reduction algorithms

when different numbers of new objects are added. In view

of paper length, for each data set in Table 4, the results of

the three entropies are shown in one figure. The experi-

mental results indicate that, in the context of each entropy,

GIARC is more efficient than IARC when multiple objects

are added to the basic data set. Furthermore, with the

number of added objects increasing, for most employed

data sets, the efficiency of GIARC is more and more

obvious. Hence, the experimental results show that the
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group incremental reduction algorithm proposed in this
paper is very efficient.

7.3 Comparison with Other Incremental Algorithms

As mentioned in Section 1, there exist in the literature

several incremental algorithms for updating redcut.

Although an incremental reduction algorithm for finding

the minimal reduct was proposed in [25], it is only

applicable for information systems without decision attri-

bute. For decision tables, two incremental algorithms were

presented in [28] and [41], respectively, whereas both of

them are very time consuming. To improve the efficiency,

Hu et al. [10] presented an incremental reduction algorithm

based on the positive region and showed the experimental

results that the algorithm was more efficient than the two

algorithms developed in [28] and [41]. Hence, to further

illustrate effectiveness and efficiency of algorithm GIARC,

we compare in this section it with the algorithm in [10]. For

convenience, the algorithm in [10] is written as IRPR

(incremental reduction based on the positive region) in the

following. For each data set in Table 4, 51 percent of the

objects are taken as the basic data set, and the remaining

49 percent of the objects are taken as incremental groups.

Because Tables 5, 6, and 7 have shown the results of

computational time and evaluation measures of GIARC,

this section only provides in Table 8 the computational time

for updating reduct with IRPR and the decision perfor-

mance of the found reduct.

According to the experimental results in Tables 5, 6, 7,

and 8, it is easy to get that the values of the four evaluation

measures of the found reducts are very close, and even
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identical on some data sets. But, the computational time of

GIARC is much less than that of IRPR. In other words, the

performance and decision making of the reduct found by

GIARC are very close to that of IRPR, but GIARC is more

efficient. Hence, the experimental results indicate that the

algorithm GIARC can find a feasible feature subset in a

much shorter time than IRPR.

8 CONCLUSION AND FUTURE WORK

In this paper, in view of that many real data in databases are

generated in groups, an effective and efficient group

incremental feature selection algorithm has been proposed

in the framework of rough set theory. Compared with

existing incremental feature selection algorithms, this

algorithm has the following advantages:

1. Compared with classic heuristic feature selection

algorithms based on the three entropies, the

proposed algorithm can find a feasible feature

subset of a dynamically-increasing data set in a
much shorter time.

2. When multiple objects are added to a data set, the

proposed algorithm is more efficient than existing

incremental feature selection algorithms.
3. With the number of added data increasing, the

efficiency of the proposed algorithm is more and

more obvious.
4. This study provides new views and thoughts on

dealing with large-scale dynamic data sets in
applications.

Based on above results, some further investigations are
as follows:

1. The incremental mechanism of data expanding in

groups is in reality the fusion of two data tables.

Thus, by generalizing the incremental mechanism,

future work would include the information fusion of

multidata tables or multigranularity.
2. Further analysis of dynamic data tables shows that the

variation of data tables can also include the changes of

data values. For data tables with data values changing

dynamically, feature selection approaches based on

rough set model will be introduced to discover

knowledge from dynamic data tables.
3. With the variation of data sets, to predict the

decision, the rules extracted from a dynamic data

set need to be updated in time. Therefore, it is

necessary to devise rules extraction algorithms for a

dynamic decision table.
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