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a b s t r a c t

Extreme learning machine (ELM) as an emergent technology has shown its good performance in
classification applications. However, ELM algorithm needs to find the inversion of matrix in nature,
which will limit its application on many occasions. This paper proposes an ELM speedup algorithm based
on the analysis of ELM algorithm. By applying randomized approximation method, the proposed
algorithm can approximate the key matrix (For example, the kernel matrix in the kernel-based ELM)
with a low-rank matrix. By doing so, the complexity of the inversion can be reduced from Oðn3Þ to
Oðkn2þk3Þ (n is the size of the data set, and k is the numerical rank of the approximated matrix). On the
premise of not decreasing the accuracy too much, the training time can be cut down substantially, which
has important significance in practical application of machine learning algorithms. The experimental
results on benchmark data sets demonstrate the effectiveness of the proposed algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of machine learning theories in
recent years, various of machine learning algorithms are applied to
many practical problems, and have made great achievements. But
there is a limitation existing in most of the algorithms, that is, due
to the high computation complexity, these algorithms are infea-
sible in many practical problems. Some scholars have made many
efforts to improve the learning efficiency of algorithms, but many
machine learning algorithms are based on eigenvalue decomposi-
tion or matrix inversion, such as PCA, manifold learning, spectral
clustering, and LDA [1–4], or ensembles of these [5]. These
standard algorithms need to compute the eigenvalue decomposi-
tion of a dense n�n matrix with Oðn3Þ time, which is prohibited
on many occasions. So it is of great value to design an effective
machine learning algorithm.

ELM is originally proposed by Huang [6–8] for the single-
hidden layer feedforward neural networks and then extended to
the generalized single-hidden layer feedforward neural networks.
And there also exist many ELM versions [9–12], e.g., I-ELM, OS-
ELM, P-ELM, and C-ELM, which have been proved to be effective in
applications. There are also some algorithms combined with ELM
that are proposed. For example [13] combines SVM and ELM and
proposes the Extreme Support Vector Machine, which shows that

it has a better generalization performance than traditional SVM. In
efficiency, ELM is proved better than traditional machine learning
algorithms [6]. ELM is an eigenvalue-decomposition-based algo-
rithm in nature, and therefore is faced with the above-mentioned
problem of high computation complexity.

To solve the eigenvalue decomposition efficiently, the matrix
low-rank approximation methods can be used. If we can find a
low-rank approximation of the matrix, the eigenvalue decomposi-
tion on the low-rank matrix can be computed efficiently. Among
many matrix low-rank approximation methods, the random
approximation methods are well studied. The simplest approach
to random matrix approximation is the method of sparsification.
The goal of sparsification is to replace the matrix with fewer
nonzero entries (which are drawn independently at random from
a distribution determined from the input matrix) [14]. The second
approach to matrix approximation is based on the concept of
dimension reduction. A random linear map provides an efficient,
nonadaptive way to perform this reduction [15]. The third
approach can be called the compact matrix decomposition which
expresses A� CUR, where C and R denote small column and row
submatrices (chosen according to a random algorithm) of A and
where U is a small matrix [16].

Based on these researches, Halko et al. [17] proposed a new
randomized matrix approximation method. They use random sam-
pling to identify a subspace to capture the action of the matrix. In this
way the key matrix of the data set can be approximated by a low-rank
matrix, and then the inversion or eigenvalue decomposition of matrix
can be acquired based on it. This approximation can effectively reduce

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.02.018
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author at: School of Computer and Information Technology,
Shanxi University, Shanxi, Taiyuan 030006, China.

E-mail address: wjwang@sxu.edu.cn (W.-j. Wang).

Neurocomputing 159 (2015) 78–83

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.02.018
http://dx.doi.org/10.1016/j.neucom.2015.02.018
http://dx.doi.org/10.1016/j.neucom.2015.02.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.02.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.02.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.02.018&domain=pdf
mailto:wjwang@sxu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2015.02.018


the computation complexity from Oðn3Þ to Oðk3þkn2Þ. It is found in
practice kon can be set without any significant decrease in accuracy
of the solution.

This paper combines the ELM with the randomized approx-
imation method to accelerate the training time of ELM, which is
testified effective and reasonable by data simulation. The paper is
organized as follows: Sections 2 and 3 give a brief introduction of
ELM and the randomized approximation method. Section 4
explains the proposed algorithm in detail. Section 5 provides the
experimental results and the analysis. The last section concludes
the whole work.

2. ELM

Extreme learning machine (ELM) was originally proposed for
the single-hidden layer feedforward networks and was extended
to the generalized single-hidden layer feedforward networks
where the hidden layer need not be neuron alike [6]. The output
function of ELM for generalized SLFNs (take one output node case
as an example) is

f LðxÞ ¼
XL
i ¼ 1

βihiðxÞ ¼ hðxÞβ ð1Þ

where β¼ β1;β2;…;βL

� �T is the vector of the output weights
linking the hidden layer of L nodes to the output node, and
hðxÞ ¼ ½h1ðxÞ;…;hLðxÞ� is the output vector with respect to the
input x. hðxÞ maps the data from d-dimensional input space to L-
dimensional hidden layer feature space.

According to ELM learning theory, widespread type of feature
mapping hðxÞ can be used in ELM so that ELM can approximate
any continuous target function. That is, given any target contin-
uous function f ðxÞ, there exists a series of βi such that

lim
L-1

J f LðxÞ� f ðxÞJ ¼ lim
L-1

J
XL
i ¼ 1

βihiðxÞ� f ðxÞJ ¼ 0 ð2Þ

The classification capability of SLFN can be described by the
following theorem [6,7]:

Theorem 2.1. Given a feature mapping hðxÞ, if hðxÞβ is dense in C
(Rd), then a generalized SLFN can separate arbitrary disjoint regions
of any shape in Rd.

Since ELM can approximate any target continuous function and
the output of the ELM classifier hðxÞβ can be as close to the class
labels in the corresponding regions as possible. Here we consider
the multi-class case, where the number of output nodes of the
ELM is q (q is the number of classes). If xi belongs to class p, then
the output node is ti ¼ 0;…;0;1;0;…;0½ �T (only the pth element of
ti is one; the others are set zero). The classification problem for
ELM can be formulated as follows [6]:

Minimize : LPELM ¼ 1
2
JβJ2þC

1
2

Xn
i ¼ 1

Jξi J
2 ð3Þ

s:t: : hðxiÞβ¼ tTi �ξTi ð4Þ
where β¼ ½β1;…;βq� , ti ¼ ti1;…; tiq

� �T , ξi ¼ ξi1;…; ξiq
h iT

. ξi is the
training error vector of the q output nodes with respect to the
training sample xi. βj is the vector of the weights linking hidden
layer to the jth output node.

Based on the Karush–Kuhn–Tucker theorem, to train ELM is
equivalent to solve the following dual optimization problem:

LDELM ¼ 1
2
JβJ2þC

1
2

Xn
i ¼ 1

Jξi J
2�

Xn
i ¼ 1

Xq
j ¼ 1

αi;jðhðxiÞβj�ti;jþξi;jÞ ð5Þ

The corresponding optimality conditions are as follows:

∂LDELM
∂βj

¼ 0-βj ¼
Xn
i ¼ 1

αi;jh xið ÞT ð6Þ

∂LDELM
∂ξi

¼ 0-αi ¼ Cξi ð7Þ

∂LDELM
∂αi

¼ 0-hðxiÞβ�tTi þξTi ¼ 0 ð8Þ

where αi ¼ αi1;…;αiq
� �T , α¼ α1;…;αn½ �T .

Substituting (6) and (7) into (8), the equation can be written as
follows:

I
C
þHHT

� �
α¼ T ð9Þ

where

T ¼
tT1
⋮
tTn

264
375¼

t11 ⋯; t1q
⋮ ⋮ ⋮
tn1 ⋯; tnq

264
375 ð10Þ

And the weights matrix β is

β¼HT I
C
þHHT

� ��1

T ð11Þ

The output function of ELM classifier is

fðxÞ ¼ hðxÞβ¼ hðxÞHT I
C
þHHT

� ��1

T ð12Þ

The label of the sample x is

labelðxÞ ¼ argmax f iðxÞ ð13Þ
where fðxÞ ¼ f 1ðxÞ;…; f qðxÞ

h iT
.

If a feature mapping hðxÞ is unknown, one can apply Mercers
conditions on ELM. The kernel matrix for ELM can be written as
follows:

ΩELM ¼HHT : ΩELMi;j
¼ hðxiÞ � hðxjÞ ¼ Kðxi; xjÞ ð14Þ

and the output function is

fðxÞ ¼ hðxÞHT I
C
þHHT

� ��1

T ¼
Kðx; x1Þ

⋮
Kðx; xnÞ

264
375
T

I
C
þΩELM

� ��1

T ð15Þ

3. Randomized approximation

For the ELM algorithm, the most important step to solve the
problem is to calculate the inversion of the kernel matrix. How-
ever, it is not an easy task in most cases. If the size of the training
data set is n, the computation complexity of finding the inversion
of kernel matrix is about Oðn3Þ. It will be time consuming. So the
algorithm is infeasible in practice. Huang et al. [6] gives an
alterative solution to this problem. The output function can be
rewritten as follows:

fðxÞ ¼ hðxÞ I
C
þHTH

� ��1

HTT ð16Þ

By doing so, the size of the matrix which needs to find the
inversion is L� L (L is the number of nodes in the hidden layer,
L{n). The cost of computation can be reduced. In such cases, the
feature mapping hðxÞmust be known, and that will limit the use of
ELM algorithm on many occasions.

To handle this problem, Halko et al. [17] give a low-rank
approximation method to a given matrix. By doing so, the time
complexity of SVD on a low-rank matrix can be reduced to a large
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extent. The method can be split naturally into two stages. The first
is to construct a low-dimensional subspace that captures the
action of the matrix. The second is to restrict the matrix to the
subspace and then compute a standard factorization (QR, SVD,
etc.) of the reduced matrix. It can be expressed as follows:

Stage 1: Compute an approximate basis for the range of the
input matrix A. In other words, an orthonormal matrix Q can be
found to satisfy

A� QQTA

The basis matrix Q should contain as few columns as possible, but
it is even more important to have an accurate approximation of
the input matrix.

Stage 2: Matrix Q can be used to compute a standard factoriza-
tion (QR, SVD, etc.) of A.

The detail of the algorithm is described in Algorithm 1 [17].

Algorithm 1. The approximate SVD algorithm.

Input: Matrix Am�n.
Output: The approximate SVD decomposition of A, A�UΣVT .

1: Construct the matrix Qm�k, which makes A� QQTA.

2: Calculate the matrix Bk�n, where B¼ QTA.

3: Perform SVD on B where B¼ bUΣVT .

4: Obtain U ¼ Q bU
How to find the orthonormal matrix Q is a key problem to be

solved. Halko use random sampling to identify such matrix Q.
Suppose that to seek a basis for the range of matrix A with exact
rank k. Draw a random vectorω, and form the product y¼ Aω. For
now, the precise distribution of the random vector is unimportant;
just think of y as a random sample from the range of A. Repeat this
sampling process k times:

yðiÞ ¼ AωðiÞ; i¼ 1;2;…; k

Owing to the randomness, the set fωðiÞ : i¼ 1;2;…; kg of random
vectors is likely to be in general linear position. In particular, the
random vectors form a linearly independent set and no linear
combination falls in the null space of A. As a result, the set yðiÞ :
i¼ 1;2;…; k of sample vectors is also linearly independent, so it
spans the range of A. Therefore, to produce an orthonormal basis for
the range of A, we just need to orthonormalize the sample vectors.

The most natural way to draw a random matrix Ω can be from
the standard Gaussian distribution. That is, each entry of Ω is an
independent Gaussian random variable with mean zero and
variance one. The detail can be described in Algorithm 2.

Algorithm 2. The randomized approximate SVD algorithm.

Input: Matrix Am�n.
Output: The approximate SVD decomposition of A, A�UΣUT .

1: Generate a n� k Gaussian random matrix Ω.
2: Construct the matrix Ym�k, Y ¼ AΩ.
3: Construct a matrix Q whose columns form an orthonormal
basis for the range of Y.

4: Construct the matrix Qm�k, which makes A� QQTA.

5: Calculate the matrix Bk�n, where B¼ QTA.

6: Perform SVD on B where B¼ bUΣVT .

7: Obtain U ¼ Q bU .

The goal of Algorithm 2 is to produce an orthonormal matrix Q
with few columns that achieves

JA�QQTAJrε

To achieve the given tolerance ε, the column number of Q is usually
larger than the target rank k, which means l¼ pþk columns are
needed. p is referred to as the oversampling parameter. The size of
the oversampling parameter depends on several factors: (1) The
matrix dimensions. Very large matrices may require more over-
sampling. (2) The singular spectrum. The more rapid the decay of the
singular values, the less oversampling is needed. (3) The random
matrix. For Gaussian matrices, it is adequate to choose the over-
sampling parameter to be a small constant, such as p¼5 or p¼10.

Halko et al. [17] also give a bound on the expectation of the
error for Gaussian matrices:

Theorem 3.1. Suppose that A is a m�n matrix, target rank is k, and
an oversampling parameter is pZ2. The singular value of A is
σj
� �minðm;nÞ

j ¼ 1 . Then

EJA�QQTAJFr 1þ k
p�1

� �1=2 Xminðm;nÞ

j ¼ kþ1

σ2
j

0@ 1A1=2

ð17Þ

and

EJA�QQTAJr 1þ
ffiffiffiffiffiffiffiffiffiffiffi
k

p�1

s !
σkþ1þ

e
ffiffiffiffiffiffiffiffiffiffi
kþp

p
p

Xminðm;nÞ

j ¼ kþ1

σ2
j

0@ 1A1=2

ð18Þ

This theorem shows that the error bound is related to the singular

value of matrix A. As is known,
P

j4kσ
2
j

	 
1=2
is the minimal

Frobenius-norm error when approximating A with a rank-k matrix.
The error bound in the theorem gives similar results. When the
singular values exhibit some decay, the error of random approxima-
tion is rather small. If A has an exact rank k or even less, then

A¼ QQTA with very high probability.

4. The proposed algorithm

According to the analysis above, if we can get the random
approximation of M (For kernel-based ELM, M¼K, K is the kernel
matrix. For non-kernel based ELM, M ¼HTH.) in the form
M¼ UDUT , the inversion of matrix I=CþM can be solved easily
by using WoodBury formula:

I
C
þM

� ��1

� I
C
þ ~M

� ��1

¼ C I�G
I
C
þGTG

� ��1

GT

 !
ð19Þ

where G¼UD1=2 (In fact, ~M can be reformulated as ~M ¼ GGT , and G
is a matrix with the size n� k). It is clear that we only need to
calculate the inversion of matrix with the size k� k instead of the
inversion of a matrix with the size n� n. The total computation

complexity of calculating the inversion of matrix ð1=CÞIþ ~M
	 
�1

is

Oðkn2þk3Þ. Algorithm 3 is the proposed algorithm.

Algorithm 3. The randomized approximate ELM algorithm.

Input Training set Xn�m (n is the size of training set, and m is
the feature number of the data), k, C, other parameters(i.e.
kernel parameter) and test sample x1�m.

Output The label of the test sample x (which belongs to the set
f1;2;…; qg).
1: Construct the matrix M. (For kernel-based ELM, M¼K,
where Kij ¼ kðxi; xjÞ; xi; xjAX ¼ xk

� �n
k ¼ 1. For non-kernel

based ELM, M¼HTH.)
2: Generate a n� ðkþpÞ Gaussian random matrix Ω.
3: Form a n� ðkþpÞ matrix Y, Y ¼MΩ.
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4: Construct a matrix Q whose columns form an orthonormal
basis for the range of Y (This can be done through QR
decomposition.)

5: Form a ðkþpÞ � n matrix B, B¼ QTM.
6: Form a ðkþpÞ � ðkþpÞ matrix T, T¼BQ.

7: Perform SVD decomposition on T, T ¼ bUDbUT
.

8: Calculate the n� ðkþpÞ matrix U, U ¼Q bU ( ~M is the
random approximate of M, and ~M ¼UDUT ).

9: Obtain G¼UD1=2, ~M ¼ GGT .

10: Calculate Mþ I=C
� ��1 � C I�G I

CþGTG
	 
�1

GT
� �

.

11: Compute the output function (use kernel-based form as
an example):

fðxÞ ¼ hðxÞHT I
C
þHHT

� ��1

T¼
kðx; x1Þ

…
kðx;xNÞ

264
375
T

C I�G
I
C
þGTG

� ��1

GT

 !
T
(20)

The label of x is argmax f iðxÞ.

The computation complexity can be estimated as follows. To
simplify the discussion, we use k to replace kþp (compared with k,
p is relatively small, k� kþp). According to Algorithm 3, in steps
3 and 5, we need to calculate the matrix Y and B. The complexity is
Oðkn2Þ (the size of M is n� n, and the size of Ω is n� k, so the
complexity of matrix multiplication is Oðkn2Þ). In steps 6 and 8, the
time complexity is Oðk2nÞ. As is known, in step 7, the complexity of
SVD on a matrix sized k� k is Oðk3Þ. And in step 4, to construct
orthonormal matrix Q, we perform QR decomposition on matrix
Yn�k whose time complexity is Oðnk2Þ. In step 1, to construct the
given matrix, we need n� n operations. If the time cost of
generating the Gaussian random matrix is Tran, the total time
complexity of the proposed algorithm is Tranþc1kn

2þc2nk
2þc3k

3.
In most cases, krn and Tranokn2, so we can write it in the form
Oðkn2þk3ÞoOðn3Þ.

5. Experiments and analysis

In order to verify the proposed algorithm, we will test it on
benchmark data sets. And to evaluate this algorithm, we will
compare the randomized approximate ELM algorithm with the
traditional one [6]. The used data sets are listed in Table 1. The
data sets dna, letter and svmguide1 are from LIBSVM data sets [18]
(http://www.csie.ntu.edu.tw/�cjlin/libsvmtools/

datasets/), and the data sets optdigits, segment, waveform, usps
and shuttle are from UCI benchmark data sets.

From Table 1, there are altogether 26 classes in the letter data
set, corresponding to the 26 English letters. We select 5 classes
from it, i.e. A–E. The experiments are carried out in MATLAB 7.10.0
environment running in Dual-Core, 2.6-GHZ CPU with 2-GB RAM,
and the operating system is 32bit Win7. Thirty trials have been
conducted for each data set. The corresponding standard devia-
tions (Dev) are given in the simulation results.

Table 2 is the experiment results of comparing the standard
ELM with the Randomized Approximate ELM whose output
weight β is in the form

β¼HT I
C
þHHT

� ��1

T ð21Þ

Here the algorithm 3 is used to approximate the matrix

I=CþHHT
	 
�1

.The function of the hidden node is sigmoid, and

the number of the hidden node is 1000. The values of parameter C
are chosen ranging from 2�15 to 215. The best one is selected as the
optimal parameter. Due to the fact that the values of fai;big
(parameters in the sigmoid function) in ELM are generated
randomly and the Randomized Approximate ELM is also a random
algorithm, the values of C in the two algorithms are set differently.
To validate the speedup performance, in the Randomized Approx-
imate ELM algorithmwe choose k¼ 0:01n;0:05n;0:1n (n is the size
of training data set). Here we use the word Randomized AELM
standing for Randomized Approximate ELM.

From Table 2, it can be seen that as the k value increases, the
test rates of Randomized Approximate ELM are as good as the
standard ELM. When k¼ 0:1n, the test rates of most data sets are
almost the same as the standard ELM, and the Dev values also
become very small. Compared with the standard ELM, the training
time of Randomized Approximate ELM is reduced to a large extent.
However, as k increases, the training time of Randomized Approx-
imate ELM increases too. So there is a tradeoff between the
speedup performance and the accuracy. Another fact to be men-
tioned is that compared with the standard ELM, the performance
of Randomized Approximate ELM is more sensitive to the value C.
The reason may be that there are too much Randomness in the
algorithm.

Table 1
Data set used.

Datasets Training data Testing data Classes Features

dna 1400 1186 3 180
letter 2861 1003 5 16
optdigits 3823 1797 10 64
segment 2061 249 7 19
svmguide1 3089 4000 2 4
waveform 5000 1000 3 21
usps 7291 2007 10 256

Table 2

Comparisons between the ELM with the randomized approximate ELM with β¼HT HTHþ I
C

	 
�1
T .

Datasets Random ELM Randomized AELM

C Testing rate
(%)

Dev Training time
(s)

C k¼0.01n k¼0.05n k¼0.1n

Testing rate
(%)

Dev Training time
(s)

Testing rate
(%)

Dev Training time
(s)

Testing rate
(%)

Dev Training time
(s)

dna 2�7 93.03 0.38 2.98 2�9 84.91 1.27 1.09 89.03 1.00 1.35 92.46 0.49 1.53
optdigits 2�5 96.83 0.34 38.46 2�8 87.09 2.19 8.72 96.25 0.41 12.62 96.42 0.33 18.95
letter 2�2 98.19 0.22 17.13 2�5 68.24 4.49 4.98 97.22 0.45 6.50 97.47 0.36 8.90
segment 23 92.78 1.10 8.50 2�5 62.62 4.40 2.56 89.06 1.86 3.02 91.57 1.05 4.36
svmguide1 210 94.29 0.46 20.92 2�1 61.82 6.39 5.57 75.34 2.99 7.60 94.90 0.72 10.29
waveform 24 92.16 0.47 69.57 2�5 64.18 3.25 14.61 87.92 1.00 21.46 90.30 0.55 37.85
usps 2�1 93.66 0.23 292.85 2�8 74.57 2.08 17.15 93.52 0.44 31.08 93.44 0.20 53.87
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Tables 3 and 4 are the experiment results of kernel matrix
approximation ELM. Here the chosen kernel functions are mai-
nly linear kernel and Gaussian kernel, with the form of the latter
being kðx; yÞ ¼ expð�γ Jx�yJ2Þ [19]. Meanwhile the value of
ε¼ JK� ~K JF (Fnorm) is given in the experiments, i.e. the approximate
error of the kernel matrix. The parameter C and kernel parameter γ of
ELM also need to be chosen appropriately. For each data set, we have
used 21 different values of C and 21 different values of γ ranging from
2�15 to 215 , i.e. f2�15;2�14;…;214;215g. We choose the best
combination of fC; γg as the optimal parameters. Here it should be
noticed that when applying kernel mapping, the standard ELM is no
longer a randomized algorithm, and the Dev values in the experiments
are nearly 0.

Table 3 is the experiment results by applying the Gaussian kernel.
Different from the linear kernel, due to the non-linear mapping, we
could not know the rank of the Gaussian kernel matrix. So here we
also choose k¼ 0:01n;0:05n;0:1n to validate the speedup effective-
ness. It can also be seen from Table 3 that the larger the k, the closer
the test rate of Randomized Approximate ELM is to the standard ELM.
But the training time of the proposed method gets longer and longer.
Obviously there is also a tradeoff between the speedup performance
and the accuracy as we have concluded in Table 2. Another fact we can
draw from Table 3 is that for different data sets, to achieve desirable
speedup performance without losing too much accuracy, the k value is
different. The choice of k depends on the property of the data set. For
example, in Table 3, the usps data set needs only k¼ 0:01n to achieve
the same test rate with the standard ELM, while for the dna and
optdigits data set the k value needs to be 0:1n. How to choose k value
is an important problem which needs to be explored. During the
execution of the algorithm, most of the time cost is the matrix mul-
tiplication. If the matrix multiplication operations can be improved,
the time of the proposed algorithm can be cut down further.

Table 4 is the experiment results by applying linear kernel
when k¼minfn;mg (n is the number of samples, and m is the

number of features. Here m{n, so we choose k¼m.). To evaluate
the speedup performance, the Time Ratio is defined as Training
Time of the standard ELM/Training Time of the Randomized
Approximated ELM. When applying linear kernel, we have the
following simple fact that

rankðKÞ ¼ rankðXXT ÞrrankðXÞrminfm;ng
It can be observed that the approximate errors of kernel matrix in
most data sets are rather small, and the test rates of the proposed
algorithm are almost the same with the standard ELM.

In Theorem 3.1, the upper bound of matrix approximation error

is determined by
P

j4kσ
2
j

	 
1=2
. As mentioned above, the Frobe-

nius norm of the best rank-k approximation error is
P

j4kσ
2
j

	 
1=2
.

So according to the relation ε¼ JK� ~K JF4 minrankð ~K Þ ¼ k ¼

JK� ~K JF ¼
P

j4kσ
2
j

	 
1=2
, the smaller the Fnorm (ε¼ JK� ~K JF )

value, the better the matrix approximation. In the experiments, we
can see that the Fnorm (ε¼ JK� ~K JF ) values in both linear kernel
and Gaussian kernel are rather small. So the matrix approximation
errors are correspondingly small. This also explains the reason that
if we choose a larger k, the Fnorm value is decreased and the
matrix approximation error also decreases, and the test rates are
increased (especially for linear kernel, if we choose k¼minfm;ng,
the Fnorm values of approximation error are close to 0, so Linear
kernel ELM and Linear kernel Randomized Approximate ELM lead
to similar results).

6. Conclusion

This paper proposes an ELM speedup algorithm based on
the analysis of the ELM algorithm. By applying the randomized

Table 3
Comparison between the ELM with approximate ELM with Gaussian kernel.

Datasets Parameter Gaussian kernel ELM Gaussian kernel Randomized AELM

C γ Testing
rate (%)

Training
time (s)

k¼0.01n k¼0.05n k¼0.1n

Testing
rate (%)

Dev Training
time (s)

Fnorm Testing
rate (%)

Dev Training
time (s)

Fnorm Testing
rate (%)

Dev Training
time (s)

Fnorm

dna 2�1 2�6 92.83 1.76 88.54 0.71 0.29 33.36 91.50 0.68 0.51 21.81 93.08 0.34 0.92 12.01
letter 20 2�2 99.20 12.68 97.30 0.76 1.27 93.90 96.76 0.95 2.91 68.64 98.90 0.29 5.78 54.95
optdigits 2�1 2�6 98.33 26.18 98.07 0.31 2.21 66.14 98.11 0.57 6.34 63.34 98.21 0.06 11.97 60.50
segment 2�1 2�5 97.19 26.86 96.67 0.21 1.52 57.90 96.95 0.27 4.24 53.90 96.93 0.27 7.13 49.70
svmguide1 2�1 2�6 96.88 15.48 93.45 1.42 2.23 129.61 93.79 0.88 6.15 79.60 96.40 0.23 10.79 54.32
waveform 2�1 2�9 87.30 59.33 87.27 0.06 4.07 0.77 87.30 0 11.33 0.08 87.30 0 28.03 0.01
usps 20 21 95.07 112.24 92.20 0.19 6.42 41.44 94.82 0.10 24.05 40.46 95.03 0.03 52.24 39.27

Table 4
Comparisons between the ELM with the randomized approximate ELM with linear kernel.

Datasets C Linear kernel ELM Linear kernel randomized AELM Time ratio Fnorm

Testing rate (%) Dev Training time (s) Testing rate (%) Dev Training time (s)

dna 2�8 92.24 0 1.56 92.24 0 1.06 1.50 1.12e�9
optdigits 2�9 91.82 0 29.45 91.82 0 3.04 9.71 3.87e�7
letter 2�9 87.14 0 12.75 87.14 0 1.20 10.66 2.79e�8
segment 21 81.12 0 5.23 81.12 0 0.73 7.28 1.01e�6
svmguide1 28 76.90 0 15.44 76.90 0 1.23 12.58 8.08e�7
waveform 29 85.80 0 61.02 85.80 0 3.41 17.93 1.15e�8
usps 2�9 87.39 0 273.27 87.39 0 16.97 16.04 6.38e�8
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approximation method, the proposed algorithm approximates the
key matrix with a low-rank matrix. The data experiments verify
the effectiveness of the proposed algorithm. On the premise of not
lowering the accuracy too much, the training time can be cut
down substantially, proving the practical value of the machine
learning algorithm.

Also, it can be concluded that, when kon, i.e. Oðkn2þk3Þ the
needed training time depends on k value. Obviously, the smaller
the k value, the less the training time, and the less the accuracy. So
k value is an important parameter affecting the classification
performance of the algorithms. And how to select an appropriate
k value is worth our in-depth research. Another drawback of the
proposed algorithm is that it must store the key matrix (e.g. kernel
matrix K) in the memory. In large-scale data sets, the algorithm
may not work efficiently.
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