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A Reinforcement Learning Method for
Constraint-Satisfied Services Composition

Lifang Ren, Wenjian Wang, Hang Xu

Abstract— With increasing adoption and presence of Web services, service composition becomes an effective way to construct software
applications. Composite services need to satisfy both the functional and the non-functional requirements. Traditional methods usually
assume that the quality of service (QoS) and the behaviors of services are deterministic, and they execute the composite service after
all the component services are selected. It is difficult to guarantee the satisfaction of user constraints and the successful execution
of the composite service. This paper models the constraint-satisfied service composition (CSSC) problem as a Markov decision
process (MDP), namely CSSC-MDP, and designs a Q-learning algorithm to solve the model. CSSC-MDP takes the uncertainty of
QoS and service behavior into account, and selects a component service after the execution of previous services. Thus, CSSC-MDP
can select the globally optimal service based on the constraints which need the following services to satisfy. In the case of selected
service failure, CSSC-MDP can timely provide the optimal alternative service. Simulation experiments show that the proposed method
can successfully solve the CSSC problem of different sizes. Comparing with three representative methods, CSSC-MDP has obvious
advantages, especially in terms of the success rate of service composition.

Index Terms—Web service composition, constraint-satisfied, uncertainty of service behaviors, undetermined QoS, Markov decision
process (MDP), Q-learning algorithm.
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1 INTRODUCTION

W ITH the rapid development of cloud computing, ser-
vices are emerging as a powerful vehicle for orga-

nizations to deliver their applications over the Internet. As
the number of services increases, software applications are
no longer built from scratch, but rather through integration
of available services distributed in the web, which leads to
the service composition. In this way, component services can
be integrated into more capable composite services to fulfill
more and more complex demands of users. Therefore, it is
an inevitable trend to integrate the available services to meet
various requirements from users [1], [2].

It is expected that there will be an increasing number of
services with the same functionality and different quality of
service (QoS), such as response time, availability, reliability,
throughput, price, success rate, and so on. Nevertheless, the
Internet environment is dynamic and the service evolutions
take place erratically, which leads to the uncertain QoS and
service behavior. Such as, the increase in network traffic will
bring a prolonged response time, and sometimes a service
is temporarily unavailable due to the upgrade evolution.
All these make service composition a complex task. Along
with the fact that users tend to propose different constraints
on the QoS of the composite service. For example, users
may expect the response time of a composite service to be
less than a certain threshold while the execution cost of
the composite service must fall within a budget. However,
in general there is a tradeoff between cost and response
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time (or other QoS attributes) for a composite service. The
constraints from user further increase the difficulties of
service composition. Given the above consideration, it is
important and challenging to design a constraint-satisfied
service composition (CSSC) method adaptive to the uncer-
tainty QoS and service behavior [3].

So far, many research efforts have been devoted to
solving the CSSC problem [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. All these methods regard the QoS values as
being determined, and they divide service composition into
component services selection stage and composite service
execution stage, which means that the composite service
are executed after all the component services are selected.
However, as the supporting environment, the Internet is
highly dynamic, and service evolutions take place casually,
thus the QoS values of the same service invoked by the
same user at different times can be very different. Due to
the uncertainty of QoS and service behavior, it is difficult
to guarantee that the optimal component service in the
selection stage is still optimal during the execution stage.
Even worse, the selected optimal component service may
become unavailable during the execution of composite ser-
vice. Thus, the optimization process has to be performed
again, however, the re-optimization cannot guarantee the
successful execution of the new optimal composite service.

The goal of CSSC is to find and execute the most appro-
priate service for each task in the business workflow, so far
as to satisfy the functional requirements and QoS constraints
as possible as it can be. Taken into account, service behavior
can be uncertain. Consequently, this implies variable QoS
values and results to difficulties in attempting to satisfy user
constraints optimally and robustly. The CSSC process can be
considered as an optimization problem of multi-stage de-
cisions within an uncertain decision-making environment.
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The Markov decision process (MDP), as a model of the
reinforcement learning, is a theoretical tool for studying the
optimization problem of the multi-stage decision process in
stochastic environment [15], so it is especially suitable for
solving the CSSC problem. Accordingly, this paper models
the CSSC problem as an MDP, namely CSSC-MDP, and de-
signs a Q-learning algorithm to solve the model. By this way,
CSSC-MDP integrates the advantages of global optimization
approaches and local optimization approaches. The main
benefits of CSSC-MDP are as follows:

• CSSC-MDP selects component services during the
composite service execution, thus it avoids the failure
of whole composite service caused by a component
service failure. Therefore, CSSC-MDP is robust.
• CSSC-MDP selects the optimal candidate service
for a task based on the constraints which need to
be satisfied by the following services. Hence, CSSC-
MDP is self-adaptive to the uncertain QoS values.
• The selection strategy of CSSC-MDP aims at max-
imizing the expected cumulative reward which is
on behalf of the satisfaction degree of the user con-
straints. So, CSSC-MDP is globally optimized.

The remainder of this paper is organized as follows.
Section 2 gives the details of our CSSC-MDP approach. In
section 3, an illustrative example is presented to explain
concretely the process of CSSC-MDP method. Section 4
reports and analyzes our experimental results. Section 5
overviews the related work. Finally, conclusions are given
in section 6.

2 THE CSSC-MDP
In this section, the CSSC problem is formally described
at first; secondly, the approach of this paper is presented;
thirdly, some relevant definitions are formalized; next, the
CSSC is modeled as an MDP; then, the decision criterion of
CSSC-MDP is presented; finally, the Q-learning algorithm to
solve the CSSC-MDP is proposed.

2.1 Problem Description
The aim of CSSC is to find the appropriate component
services which can be integrated as an optimal compos-
ite service, so as to best meet the user’s functional and
nonfunctional requirements. In this paper, the functional
requirements are described as a workflow. Generally, the
workflow can be sequential, conditional, parallel and itera-
tive constructs, or more generically, the combination of these
structures. However, in fact, service compositions which in-
volve loops, branches or parallel structures can be converted
into sequence structures [16]. Moreover, many studies have
been done to compute the QoS of composite service in differ-
ent structures [12], [13]. Therefore, this paper focuses on the
CSSC problem with sequential workflow model. Hence, the
process of service composition is to select the component
services most suitable for each task in the workflow to
form the optimal composite service, meanwhile, all the QoS
constraints should be satisfied.

Fig. 1 is the schematic of CSSC. At first, the request for
service composition from the user is submitted, it includes
the functional requirements and QoS constraints. According

to functional requirements, a workflow is built, which is the
abstract representation of the composite service. For exam-
ple, in Fig. 1 the workflow is formed with three sequentially
executed abstract tasks (denoted as t1, t2 and t3). In the
Internet, there exist many service providers, each of them
provides some different services. In Fig. 1, a cloud represents
a service provider, different shapes within it represent dif-
ferent services it can provide; and the same shape indicates
the same functionality. After service discovery, services with
the same functionality are gathered into a candidate service
set, such as A(1), A(2), and A(3) in Fig. 1. Thus, each A(i)
is the alternative services collection for the abstract task ti.
Then, according to the QoS constraints and the historical
execution QoS records of candidate services, one service is
selected from each A(i) to form the composite service which
can satisfy both the functional and the QoS requirements.

Fig. 1: The schematic of CSSC.

Our work in this paper is to find the appropriate service
for each task in the workflow ( which meets the user’s func-
tional requirements) to form an optimal composite service,
which satisfies the user’s QoS constraints as well as possible.
The main difficulties lie in:

• There are contradictions among QoS attributes.
Such as a service with shorter response time may
have a higher price, and a lower price may as a result
of a lower reliability.
• Because the Internet is dynamic, the QoS values of
service are undetermined, which leads to the uncer-
tainty of QoS constraints satisfaction.
• There exists the possibility that a component ser-
vice fails during the execution of composite service.
The failure of component service results in the failure
of service composition.

This paper studies how these challenges are dealt with.

2.2 Approach Overview
The approach of CSSC-MDP can be described as Algorithm
1. At first, according to user’s functional requirements,
the workflow template that represents the abstract service
composition are built. Then, the available services for each
abstract task in the workflow are discovered and collected.
Next, the historical execution QoS records for all candidate
services are gathered. There are many works studying the
construction of workflow [17] [18] and service discovery
[19] [20], so this paper does not discuss the implement
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Algorithm 1 The CSSC-MDP
Input:

The function requirements from the user;
The QoS constraints from the user;

Output:
The execution of composite service and QoS records;
Or the negotiation failure information;

1: Build the workflow template;
2: Discover the available services for each abstract task and

gather the historical execution QoS records for them.
3: Evaluate the rationality of user constraints.
4: if the constraints are not rational then
5: Negotiate with the user.
6: if No mutually approved constraints then
7: Output: Inappropriate QoS constraints, and Exit.
8: end if
9: end if

10: Build the service composition CSSC-MDP model;
11: Use the Q leaning algorithm to solve the CSSC-MDP

model;
12: Send the observed QoS values to the historical records.

of these two steps. And after that, the rationality of user
constraints will be evaluated; the evaluation in this paper
is based on the 3σ principle; for details, please see Section
3.1. If the constraints are rational, continue to the next step;
otherwise, negotiate with the user. If the mutually approved
constraints are obtained, proceed to the next step; otherwise,
abort. After the mutually approved constraints have been
obtained, build the service composition CSSC-MDP model;
for details see Section 2.4. Then, the Q-learning algorithm
are used to solve the CSSC-MDP; for details, see Section 2.6.
Based on the learning result, i.e. matrix Q, the component
services are selected and executed until all the tasks in the
workflow have been completed; Finally, the observed QoS
values are sent to the historical records.

In so doing, some benefits include:

• CSSC-MDP avoids the blind service composition
where the rationality of user constraints is not taken
into account;
• CSSC-MDP can self-adaptive to the variable QoS
and undetermined service behaviors;
• It is effective and efficient to solve CSSC-MDP with
the Q-learning.

2.3 Definitions Formalization
In this section, we will give the formal description of some
definitions relevant to CSSC-MDP.
Definition 1. (Service) A service is a functionally

complete and self-governed resource that can
be published, located, and visited through the
Web. A service can be formalized as a 4-tuple
( ID, FunC, QoSE, QoSR ), where:
ID is the identifier of a service. A service can be uniquely
determined by its ID.
FunC represents the functional class of a service, and it
is a triple (F, I,O), where F is the functional description
of the service, I represents the input items of service and
O represents the output items of the service.

QoSE is the expected QoS values offered by the service
provider in service description, and it can be formalized
as a vector (v(1), v(2), · · · , v(d)), where d is the number
of QoS attributes which we are concerned with.
QoSR is a container of the historical execution QoS
records of the service. It is formalized as a d × l
matrix, where l is the historical execution number of
the service. The kth row of matrix QoSR is a vec-
tor ( v

(k)
1 , v

(k)
2 , . . . , v

(k)
l

) that contains l historical
recorded values of the kth QoS attribute. The hth col-
umn of QoSR is a vector ( v

(1)
h , v

(2)
h , . . . , v

(d)
h

)
that contains all the d QoS attributes’ values of the hth
execution of the service.
For simplicity, in this paper, we give special focus to two
commonly used QoS attributes, the response time and
the price, but our approach is equally valid for other
QoS attributes.

Definition 2. (Candidate service set) The candidate service
set is a collection of alternative services which provide
the same functionality but differ in QoS. In other words,
services in such a set have the same FunC but differ in
QoS. A candidate service set can be formalized as a set
{ws1, ws2, . . . , wsm}, where m is the number of services
with the desired FunC, and wsis (i=1, 2, . . . , m) are the
IDs of candidate services.

Definition 3. (Workflow) Workflow is an abstract description
of the business rules. A sequential execution workflow
can be formalized as a sequence (t1, t2, . . . , tn), where
ti(i = 1, 2, . . . , n) is the ith abstract task, and n is the
total number of tasks.

The power of the services lies in that it can be dynam-
ically integrated to execute a new and more complex task.
This process is known as service composition.

Definition 4. (Composite service) In order to meet some
complex functional requirements, according to certain
business logic, services with different functions are inte-
grated into a scalable, loosely coupled, value-added ap-
plication, namely composite service. A composite service
can be formalized as a sequence (ws1, ws2, . . . , wsn),
where wsis (i = 1, 2, . . . , n) are sequently the IDs of
services which compose the composite service and n
is the number of services that compose the composite
service.

Definition 5. (Constraint) The constraint is usually a QoS
requirement about the composite service from the user,
such as maximum total price, minimum overall through-
put, average response time, etc. A constraint can be
expressed in terms of the upper or lower bound of the
composite service QoS attribute. Hence, a constraint can
be expressed as a triple ( att opr bnd ), where att
is one of the QoS attributes of the user’s concern; opr
represents relational operators such as >,<,≥,≤, etc.;
and bnd is the bound. For example, (price < 1000) rep-
resents the user requires the total cost of the composite
service is less than 1000 monetary unit. In general, user
may impose more than one constraint to the composite
service, thus the constraints form a constraint set.
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2.4 CSSC-MDP Model

Suppose the QoS constraints from user are considered to
be rational; then, based on the MDP model, the constraint-
satisfied service composition model CSSC-MDP can be for-
malized as a 5-tuple ( t, S, A, T, R ), where:

t is the stage of decision-making; that is, it is the numeric
sequence of the task which is being executed. Hence, its
possible values are from 1 to the total number of tasks n.

S is the execution state set of the composition service.
Consulting literature [21] about the service classifications,
we set the four-level-state denoted as S = {1, 2, 3, 4}. Level
1 represents the user’s requirements are excellently satisfied;
level 2 means that the composite service can satisfy the
user’s requirements well; level 3 means that the composite
service can basically meet the user’s requirements; level 4
indicates the failure of service execution or the violation of
user constraints. The number of levels may be determined
according to the actual requirements, the details of state
division in this paper is given in Section 3.2.

For each concerning attribute, we need to determine
the state of composite service. In order to obtain a better
performance, we use the worst state of all the QoS attributes
as the integrated state, i.e., si = max{s(1)i , s

(2)
i , . . . , s

(d)
i },

where si is the state of the service composition after task ti
is finished.

A =
⋃n

i=1A(ti) is the set of all the candidate services
in the model, where A(ti) = {wsi1, wsi2, . . . , wsiki} is the
candidate service set for task ti, and ki is the total number of
services in ti’s candidate set. A is the union of all the A(ti)s;
in other words, A contains all the services that may be used
in the composite service.

T (s, ws, s′) = Pr(st+1 = s′|st = s, ati = ws) is the
probability that the execution of service ws at state s for
task t will lead to state s′. This can be calculated according
to the historical execution QoS records for service ws.

R(s′, s, ws) is the reward function. it is a real-valued
function, and r = R(s′, s, ws) is the immediate reward
received from a state transition from s to s′ after ws is
executed. We can say that it is used to quantify the benefit
of executing service ws, which leads to the state transi-
tion. When r > 0, it indicates rewards; when r < 0, it
indicates penalties. After the execution of ws, the greater
the difference of s − s′, the higher the value of r, and
vice versa. The goal of service composition is to select the
optimal services to compose the composite service with the
highest cumulative reward. The reward function can be
defined according to the actual situation, the definition of
R(s′, s, ws) in this paper can be found in Section 3.3.

In contrast with existing methods, CSSC-MDP considers
the state of constraints been satisfied after each service
execution. In case of the violation of QoS constraints or
the service failure, the stage t remains its value and CSSC-
MDP will redo the selection and execution. Otherwise, let
t = t + 1, and select the service which can lead to an
optimal composite service and execute it for the next task.
The process of decision-making is described in detail in the
following section.

2.5 Decision-Making of CSSC-MDP

The core problem of an MDP is to determine the optimal
policy π∗ that will maximize the cumulative function of the
rewards. The function π(s) specifies the action that the agent
will choose in state s. For the CSSC-MDP model, the optimal
service of a task is selected based on the constraints state and
the historical execution QoS records of candidate services.

Fig. 2 shows the decision-making process in CSSC-MDP.
At the initial state s0, according to the historical execution
QoS recorded inH1 for services inA(1), for task t1 the agent
selects and executes the optimal service denoted as ws1, the
constraints state transfers to a new state, denoted as s1, and
the execution QoS data are then appended to the historical
records for ws1 in H1. Based on the new constraints state
s1, the immediate rewards r1 can be calculated. According
to the historical execution QoS recorded inH2 for services in
A(2), for task t2 the agent selects and executes the optimal
service at state s2, and so forth, until all the tasks in the
business workflow have been done.

Fig. 2: The decision-making process in CSSC-MDP.

The strategy of CSSC-MDP is a mapping from state space
to service space. To determine the optimal strategy that
leads to the optimal composite service, we need to define the
value function Vt(s) to calculate the expected cumulative
rewards of the service execution for task t at state s. The
value function Vt(s) is defined by the recursion formula
Vt(s) =

∑
s′ T (s, ws, s′)

(
R(s, s′, ws) + γVt+1(s′)

)
, where

s′ is one of the possible constraint states after the execution
of the service ws; T (s, ws, s′) is the transition probability
from state s to s′ caused by service ws; R(s, s′, ws) is the
immediate reward of the execution of service ws; and γ is
the discount factor for future rewards. Consequently, Vt(s)
is the cumulative reward resulting from the execution of
service ws at task t in state s.

The strategy that leads to the highest value of Vt(s) is
the optimal strategy, which can be expressed as Πt(s) =
arg maxws∈A(t) Vt(s).

Under the guidance of the optimal strategy, the decision-
making process of CSSC-MDP maximizes the exceptional
cumulative rewards.

CSSC-MDP select a service for a task after the previous
task is completed, hence it can update the state according
to the observed QoS values of services which have been
completed. That is to say, CSSC-MDP can more realistically
reflect the QoS constraints which need the following service
to satisfy, and can provide a reliable guarantee for the next
service selection to meet the user’s constraints. This process
continues until all the tasks have been accomplished in turn.



1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2727050, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. V, NO. N, M Y 5

In theory, after modeling the CSSC problem as an MDP,
the model can select the optimal strategy dynamically, so
the service composition satisfies the user with real-time
globally optimal results. However, the computational time
complexity of the exact solution of an MDP problem has
been proved to be completely P [22]. Hence, what follows is
a Q-learning algorithm to solve the CSSC-MDP model.

2.6 CSSC-MDP Solving

In practice, the existing exact methods to solve the MDP
can only accurately solve small problems [15]. Q-learning
is a model-free reinforcement learning method that uses
rewards to reinforce actions which lead the model to a better
state; hence, it can help to learn the optimal policy in a
stochastic environment [16]. Therefore, we use Q-learning
to solve the CSSC-MDP model. In Q-learning, the transition
probabilities are generally obtained through many simula-
tions. However, because services are mostly commercial, it is
unlikely to invoke services to test their performance. Hence,
in this paper we learn the transition probabilities of service
from their historical execution records. Algorithm 2 is the
Q-learning algorithm for CSSC-MDP.

As shown in Algorithm 2, we first initializeQ as a matrix
with 3 × n rows and m columns whose elements are all
zeros, where n is the total number of sequential tasks, and
m is the maximal size of the candidate service sets. For every
service, we need to consider its performance at a different
state; hence, each row of matrix Q represents the scores of a
candidate service at one state. For example, the 5th row of
matrix Q represents the scores of the candidate services of
task t2 at state 2. Because state 4 represents service failure or
constraint violation, that is, the service composition cannot
proceed from state level 4, in the matrix Q, we only consider
the performance scores of services in the first 3 states.

Next, an iteration process is performed to learn the ma-
trix Q. At the first iteration, we initialize the task sequence
number t to 1, set the initial state s0 to 1 (we assume
that service compositions always start from the best state),
and use the original constraints C0 to initialize the current
constraints C . Then for each task from the first to the last,
we use an ε-greed strategy to select one service ws from
its candidate service set A(t), i.e. when the random number
is smaller than ε, the greed strategy is adopted, otherwise,
randomly selects a service. On the one hand the ε-greed
can prevent the algorithm from premature convergence, on
the other hand it gives chances to the newcomer in service
selection. For the selected service ws, if it has been invoked,
we randomly choose one piece of the QoS record h from
the execution historical records of service ws and consider
h as the currently executing QoS. We don’t choose the best
one, the worst one, the average one or the latest one, but
choose the random one piece of QoS record is to simulate
the various possible behaviors of service. This is because
we want to learn the most likely performance of service
from all random behaviors of services. Otherwise if ws has
no QoS record, we take the expected QoS ws.QoSE given
by service provider as its QoS record h. Based on the QoS
information of historical record h and the current constraints
C, we calculate the constraint-satisfied state s as described
in detail in the section 3.2. According to the new state s

Algorithm 2 Q-learning algorithm for CSSC-MDP
Input:

The total number of sequential tasks n;
The maximal size of the candidate service sets m;
The user constraints C0;
The historical execution QoS records for all services H ;

Output:
The results of Q-learning, i.e., matrix Q;

1: Initial Q← zeros(3× n,m);
2: while Q is not convergent do
3: Initial variables: t← 1, s0 ← 1, C ← C0;
4: while t ≤ n do
5: Use the ε-greed policy to choose ws ∈ A(t) based

on s0;
6: if ws.QoSR 6= Φ then
7: Randomly choose an execution historical QoS

record h of service ws;
8: else
9: h = ws.QoSE

10: end if
11: Based on h and the current constraints C, calculate

the state s;
12: Based on s and s0, calculate the immediate rewards

r;
13: if s < 4 then
14: Q(3(t−1)+s0, ws)← (1−α)Q(3(t−1)+s0, ws)+

α[r + γmaxws′∈A(t+1)Q(3t+ s0, ws
′)];

15: According to h, update C;
16: t← t+ 1; s0 ← s;
17: else
18: Q(3(t−1)+s0, ws)← (1−α)Q(3(t−1)+s0, ws)+

αr;
19: t← 1; s0 ← 1; C ← C0;
20: end if
21: end while
22: end while
23: return Q;

and the old state s0, we calculate the immediate rewards
r. Details of the method can also be found in the Section
2.4. If the selected service ws executes successfully and the
user constraints are not violated, we update the element of
Q at the tth row and the wsth column, where we use α
(0 ≤ α ≤ 1) as the learning rate; that is, the new Q(t, ws) is
composed of (1 − α) original Q(t, ws) and α new rewards.
The new rewards include the immediate reward and the
expected rewards in the future. The γ in the formula is
the discount factor, means that the rewards in the future
are not necessarily as important as the immediate rewards,
and γ ∈ [0, 1] can be inferred. Then, we update the current
constraints based on the QoS values of the selected QoS
record h. For example, the response time constraint will be
reduced by the response time of h. After all these steps, we
update the task sequence number t and use the current state
s to update the original state s0. In the circumstances, either
service failure or constraint violation, i.e., at the state s = 4,
the immediate reward turns into a penalty. And because
the composition is interrupted, the expected rewards in the
future are not included in the Q(t, ws). Also for the same
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reason, t, s0, and C are returned to their initial values. The
iteration does not terminate until matrix Q is convergent.

Q-learning algorithm learns the ability to satisfy the
constraints for every service at every state. Every element
of matrix Q is the score of this ability. Based on the matrix
Q and the user constraints, service composition can be
implemented. The main benefits of Q-learning include:

• The Q-learning algorithm can learn the ability of
services to satisfy the constraints from the historical
QoS records, without redundant service execution;

• It doesn’t need to define transaction function, which
can be implied by the Q-learning process automati-
cally;

• The ε-greedy selection strategy in the Q-learning not
only makes the algorithm more efficient but also
guarantees every service has the opportunity to be
executed.

3 AN ILLUSTRATIVE EXAMPLE

This section illustrates the approach of CSSC-MDP through
an example. Consider the following CSSC scenario: a user
captured a set of multi-angle photos of an object in motion,
and he wants to use this set of images to reconstruct the
3D model of the object. Due to limited local resources, the
user wants to complete the task by means of Web services
provided over the Internet. moreover, he also expects that
the total response time is less than 2000 seconds and the total
price is less than 300 yuan. To meet the user’s requirements,
we composite the available Web services. Since the images
for this moving object are blurred, we first need the image
restoration service to restore the blurred 2D images. Then
we utilize the computing power provided by Web services
to run the 3D reconstruction algorithm to obtain the 3D
model of the object. Finally, we store the 3D model in the
cloud space for the user. Meanwhile, we should ensure that
the user’s QoS constraints are best satisfied. Fig. 3 shows the
process of service composition in this scenario.

Obviously, the user’s functional requirements can be
decomposed into three sequential tasks: image restoration
task t1, the 3D reconstruct task t2 and the cloud storage task
t3. And the composite service should satisfy the following
constraints:

(ResponseT ime ≤ 2000) and (Price ≤ 300). (1)

It is a CSSC problem. We need to discover services for each
task at first. In the service computing environment, a service
provider can provide services with different functions and
services with the same function can be provided by different
providers. Suppose, after service discovery, as shown in Fig.
3, there are 4 candidate services for the first task t1 denoted
as A(1) = {ws11, ws12, ws13, ws14}, 3 candidate services for
the second task t2 denoted as A(2) = {ws21, ws22, ws23},
and 4 candidate services for the third task t3 denoted
as A(3) = {ws31, ws32, ws33, ws34}. And let’s suppose the
prices of each service in A(1) are (82, 90, 70, 85), in A(2) are
(140, 230, 180), and in A(3) are (20, 30, 25, 22). The historical
response time records for each service in A(1) are stored in
the following matrix. Values in the kth row of the matrix
represent the response time of service ws1k for different

Fig. 3: The process of CSSC-MDP.

execution histories, where −1 means service failure and
NaN represents the absence of record. 417 −1 429 416 421 −1 414 430 −1 421

320 289 307 322 286 295 313 317 321 296
390 362 371 380 310 373 367 −1 NaN NaN
434 405 421 −1 400 403 413 NaN NaN NaN


The historical response time records for each service inA(2)
are stored in the following matrix. 1417 1249 −1 1641 1521 −1 NaN NaN NaN NaN

1201 1277 1307 1021 1086 1395 1313 1417 1121 996
1450 1242 1431 −1 1240 1433 1627 −1 NaN NaN


The historical response time records for each service inA(3)
are stored in the following matrix. 173 133 121 146 −1 −1 119 128 −1 NaN

90 109 97 112 86 95 113 107 111 106
112 132 101 130 −1 122 109 113 NaN NaN
174 153 124 −1 140 133 113 NaN NaN NaN


After service discovery, our approach can be implemented.

3.1 Constraint Rationality Evaluation

First of all, we will evaluate the rationality of user con-
straints. Based on the historical records, the means and
standard variances of both price and response time for
each task can be calculated. In the above example, µ(c) =

(81.75, 216.67, 24.25) and σ(c) = (8.50, 70.95, 4.35) are means
and standard variances of price for each task. µ(r) =

(368.10, 1319.30, 120.76) and σ(r) = (51.30, 181.60, 21.61) are
means and standard variances of response time for each
task. Hence, the mean of price for the composite service
is µ(c)

cs =
∑3
i=1 µ

(c)
i = 322.67 , and the standard variances of

price for the composite service is σ
(c)
cs =

√∑3
i=1(σ

(c)
i )2 =

71.59, the mean of response time for the composite service
is µ

(r)
cs =

∑3
i=1 µ

(r)
i = 1808.16, and the standard vari-

ances of response time for the composite service is σ
(r)
cs =
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i=1(σ

(r)
i )2 = 189.94. Since µ

(c)
cs −2σ(c)

cs < 300 < µ
(c)
cs +2σ

(c)
cs

and µ
(r)
cs − 2σ

(r)
cs < 2000 < µ

(r)
cs + 2σ

(r)
cs , according to the

3σ principle of normal distribution, the constraints can be
satisfied with a probability of 0.9544. Hence, we have reason
to believe that the user constraints are rational.

3.2 State Level Division

To set the levels for services, at first, we determine the
median QoS attribution value of every service based on
its execution historical QoS records (not include the failure
records). Such as, for task t1, the response time medians
of candidate service are v

(r)
1 = (421, 307, 371, 408), and

the mean response time of task ti can be calculated by
µ
(r)
i = 1

m

∑m
j=1 v

(r)
i (j). Where m is the total number of

candidate services for task i. In this way, we can calculate
the mean response time for tasks t1, t2 and t3, µ(r)

1 = 376.75,
µ
(r)
2 = 1380 and µ

(r)
3 = 121.625.

Then we can decompose the user’s response time con-

straints for each task by C
(r)
i = C(r) µ

(r)
i∑n

i=1 µ
(r)
i

, where C(r)

represents the user’s total constraints on the response time
and n is the total number of tasks. Therefore, C(r)

i is the
excepted value of the response time constraint for task ti.
The excepted value of the price constraint for task ti, i.e.
C

(c)
i , can be calculated in the same way. Note that the

decomposition of constraints is only for service level setting,
and during the selection of component service we take the
constraints of composite service as a whole.

Here, taking the response time constraint as an example,
we formulate the four state levels as formula (2), where v(r)ij
is the response time of service wsij . If v(r)ij is less than or
equal to 0.85C

(r)
i , then the state level is 1; if v(r)ij is more than

0.85C
(r)
i and less than or equal to C

(r)
i , then the state level

is 2; if v(r)ij is more than C
(r)
i and less than or equal to the

user’s total constraints vector C(r), then the state level is 3;
otherwise, if v(r)ij is more than C(r) or the service fails, then
the state level is 4. This can be denoted as

s
(r)
i =


1 v

(r)
ij ≤ 0.85C

(r)
i

2 0.85C
(r)
i < v

(r)
ij ≤ C

(k)
i

3 C
(k)
i < v

(k)
ij ≤ C

(k)

4 v
(k)
ij > C(k) or service failure

, (2)

where 0.85 is a parameter to tune the levels. In this paper
the four state levels for price are set in the same way. In fact,
the number of levels and the scope of each level can be set
up according to the actual situation.

3.3 Solution

The Q-learning algorithm is used to study the perfor-
mances of each candidate service from the historical exe-
cution records. In this paper, we set the reward function as
r = 10(s−s′)+10. This means that the reward is determined
by the difference between s and s′. That is, the more the new
state s′ is superior to the old state s, the greater the reward
is, and vice versa. If the new state s′ is the same as the old
state s, then the running service can obtain a basic reward.
When the new state s′ is much worse, i.e. s′ is larger than s
by 2 or more levels, then the reward is a negative value; in
this case, the reward becomes a penalty.

Executing Algorithm 2 for the above example, the results
of Q-learning are shown in the following matrix:

Q =



4.0219 1.1104 12.3300 −0.0280
0 0 0 0
0 0 0 0

1.2607 3.2561 6.7946 0
11.3940 −7.0000 2.3327 0
15.5230 3.0000 25.3450 0
4.0790 12.8200 8.2120 8.4224

17.0120 19.1020 18.6990 21.5350
3.2118 14.6410 14.8750 9.6686


.

The matrix Q indicates the performance scores of each
service in different sustainable states (each task has three
sustainable states, i.e. s=1, 2 or 3) in terms of the services’
adaptability to different constraint situations. For example,
the 5th row of matrix Q shows the performance scores of
services in A(2) at state s = 2. From the data in this row,
we can infer that service ws21 is the best choice for task t2
at state s = 2. It is reasonable to suppose that the service
composition always begins from a good start, so the initial
state is always s = 1; thus, the elements of rows 2 and 3 in
matrix Q are always zeros. Furthermore, because task t2 has
3 candidate services, the elements of the 4th column at rows
4, 5, and 6 are all zeros. During service composition, matrix
Q is the basis of service selection under different constraint
satisfaction states.

After Q-learning, service composition can be carried out
based on the matrix Q. Table 1 shows an execution of the
service composition, from Table 1 we can see the selected
service for each task, its actual QoS values in the execution,
and the new constraints state after the execution. Due to
the fact that service compositions always start from a good
state, the service with the highest score in the 1st row of the
matrix Q, i.e. ws13, is selected for task t1. Executing service
ws13, the state becomes s = 2. Hence, for task t2, the best
service is sought in state s = 2; that is, the service with the
highest score in the 5th row, i.e. ws21, is selected. After the
execution of service ws21, the state is still s = 2. So, based
on the data of the 8th rows in matrix Q, service ws34 is
selected and executed, and the state becomes s = 1. At this
point, the service composition for the example is executed
successfully. It is important to note that the QoS data should
be recorded in the historical execution QoS records after the
execution of each service.

TABLE 1: An execution of the service composition.

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 380 70 2
2 ws21 1249 140 2
3 ws34 174 22 1

As can be seen from Table 1, CSSC-MDP always looks
for the best service in the current state of the matrix Q to
execute. However, because of the dynamic nature of the In-
ternet environment, the performance of service is uncertain.
The following sections show the adaptivity of CSSC-MDP
to uncertain service behaviors.



1939-1374 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2727050, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. V, NO. N, M Y 8

3.4 Adaptivity to Variable QoS

Dynamic environment leads to variable QoS values. Com-
paring Table 1 and Table 2. In the running of Table 2, service
ws21 takes a much longer response time in Table 2 than in
Table 1, and the state becomes s = 3. Therefore, based on
the last row of the matrix Q, service ws33 are selected and
executed.

TABLE 2: Service composition when QoS changes.

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 310 70 2
2 ws21 1521 140 3
3 ws33 101 25 1

From the historical execution records we will find the
service ws33 usually has a shorter response time and a bit
higher price. The results show the self-adaptivity of the
CSSC-MDP to the variable QoS.

3.5 Adaptivity to Uncertain Service Behaviors

Because of network fault or service evolution, sometimes
service failures may occur. Such as the running of the service
composition in Table 3, service ws13, the best candidate
service for task t1, encounters problems. Based on the matrix
Q, service ws11 is the next-best service in the candidate
service set A(1); therefore, service ws11 is selected as the
alternative to service ws13. After the execution of service
ws11, the state becomes s = 2. The best candidate service
for t2 in this state, with the maximum value in the 6th
row of matrix Q, i.e. ws23, is selected and executed, and
the service composition can proceed. It shows when service
failure occurrence CSSC-MDP can find a suitable alternative
and compliment the service composition.

TABLE 3: Service composition when service fails.

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 -1 70 4
1 ws11 417 82 3
2 ws23 1240 180 3
3 ws33 109 25 2

If the selected alternative service has not fulfilled task t1
yet, the situation is as shown in Table 4. When service ws13,
following ws11, also encounters failure, service ws12 is the
best choice in the current situation. Therefore, service ws12
is executed to fulfill task t1, and the service composition is
able to continue.

TABLE 4: Service composition when continues services fail.

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 -1 20 4
1 ws11 -1 20 4
1 ws12 289 95 3
2 ws23 1240 180 3
3 ws33 130 25 3

In fact, as long as there exist qualified services for each
task, service composition can be successfully completed.
This shows the robustness of the CSSC-MDP.

3.6 Adaptivity to Different Constraints
Different users have different QoS constraints on the same
functional requirement. Suppose, in this example the con-
straints are changed to

(responsetime ≤ 1830) and (price ≤ 330). (3)

Compared with the QoS constraints (1), the constraint on
price is looser and the constraint on response time is tighter.
In this case, the results of Q-learning are shown in the
following matrix Q1.

Q1 =



−4.1436 −7 11.941 2.9984
0 0 0 0
0 0 0 0

−6.0003 −7 −13.654 0
6.1325 21.39 5.3209 0
19.652 22.403 20.629 0

0 0 0 0
16.943 22.996 17.753 12.674
9.8305 13.53 28.287 9.5256


.

Comparing the 5th row of matrix Q1 and matrix Q, we
can see that service ws22 is the worst service for task t2 in
state s = 2 in Q, but in Q1 service ws22 is the best service
for task t2 in the same state. This shows that service ws22
is more adaptive in circumstance of shorter response time
and higher price. This is in accordance with the fact that
service ws22 always has a lower mean response time and a
higher price, which can be seen from the historical execution
records. Based on matrix Q1, the best composite service
(ws13, ws22, ws33) for the user constraints is performed
successfully, as shown in Table 5.

TABLE 5: Service composition with constraint (3).

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 380 70 2
2 ws22 1021 230 3
3 ws33 132 25 2

If the QoS constraints of the composite service are
changed to

(responsetime ≤ 2700) and (price ≤ 255). (4)

Compared with the constraints (1) and (3), the constraint
on price is tighter and the constraint on response time is
looser. In this case, the results of Q-learning are shown in
the following matrix Q2.

Q2 =



−10.2390 −6.9993 2.7579 −10.8440
0 0 0 0
0 0 0 0
0 0 0 0

19.8790 −6.9322 11.5320 0
14.6440 2.9951 2.9988 0

0 0 0 0
20.1350 7.8807 11.448 7.8207
2.8271 2.7529 2.2797 1.5300


.

Focusing on task t3 in the state s = 3, the best service is
service ws33 in Q; however, in Q2 service ws31 is the best.
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Fig. 4: Efficiency of Q-learning with different learning rates.

This is because service ws31 is commonly lower in price
and higher in response time than service ws33 is, so ws31 is
more adaptive to this circumstance. Hence, the running of
composite service in this case is as shown in Table 6.

TABLE 6: Service composition with constraint (4).

Task No. Selected service Response time(s) Price(yuan) State

1 ws13 373 70 3
2 ws21 1641 140 3
3 ws31 146 20 1

The results in Table 5 and Table 6 show the adaptivity of
CSSC-MDP to different user constraints.

4 EXPERIMENTAL RESULTS AND DISCUSSION

To test the performance of CSSC-MDP on a larger scale, the
following experiments simulates sequential service compo-
sitions which contain 20 tasks, and 50 candidate services per
task. For each service, 100 historical response time records
and a price data was artificially synthesized. The data set
was constructed as follows: randomly generate a 1 × 20
vector tpm whose elements are between [100, 1000]; and
randomly generate a 1× 20 vector tpv whose elements are
between [10, 30]; take tpmi as the mean and tpvi as the vari-
ance, randomly generate a 50 × 1 normal distribution data
spi; sp = (sp1, sp2, · · · , sp20) are 50× 20 price data for the
20 tasks’ 50 candidate services; let trm = [0.25× tpm]×10
are the mean response time of each task, the function is
set to guarantee that for different tasks the longer aver-
age response time the higher price; randomly generate a
1 × 20 vector trv,whose elements are between [100, 1000];
take trmi as the mean and trvi as the variance, randomly
generate 50× 1 normal distribution data srmi as the mean
response time of 50 candidate services for task ti; sort the
elements in srmi, let a higher price corresponds to a shorter
mean response time, it is in line with the actual situation that
for the same task the shorter response time the higher price;
randomly generate a 50×20 vector srv whose elements are
between [50, 400]; take srmij as the mean and srvij as the
variance, randomly generate a 100 × 1 normal distribution
data srrij , srr are 100×50×20 historical recorded response
time data for the 20 tasks’ 50 candidate services 100 records.

The simulations were conducted by using MATLAB
R2013a. The experimental platform runs Windows 10 with
an Intel Core Quad CPU at a clock speed of 2.67 GHz with
4 GB RAM.

We assume that the service composition system has no
knowledge of the QoS performance of all the candidate
services. Based on the historical execution QoS records, we
let the Q-learning algorithm guide the service composition
to reach the optimal policy gradually. In the following
experiments, the parameters of Q-learning are determined
first; then, the efficiency of Q-learning is studied; finally,
comparison experiments with three existing methods are
conducted.

4.1 Parameter Tuning
The learning rate and the greedy rate are two important
parameters in the Q-learning algorithm. The following ex-
periments show the determination of the two parameters.

4.1.1 Learning Rate
To obtain a faster learning speed and a better learning result,
it is necessary to set a proper learning rate. We fix the
number of tasks to 5 and the number of candidate services
of each task to 10, and vary the learning rate α. Fig. 4
shows the learning efficiency of Q-learning with learning
rate α = 0.1, 0.3, 0.5. The learning speed here refers to the
number of iterations after which the cumulative rewards
achieves the maximum. From Fig. 4 we can see, when
α = 0.1, the cumulative rewards still have an increasing
trend after about 100,000 iterations (see Fig. 4 (a)), which
indicates the learning speed is low. As demonstrated in
Fig. 4 (b) and (c), when α = 0.3, the cumulative rewards
reach the maximum before 100,000 iterations; when α = 0.5,
the cumulative rewards reach the maximum before 40,000
iterations; the cumulative rewards reach quickly to a higher
value indicates the learning speeds are higher. However, we
can also see from Fig. 4 the cumulative rewards fluctuate
more and more severely.

It is reasonable that the smaller the learning rate, the
slower the learning speed, whereas a higher learning rate
results in a severe fluctuation range. Hence, we take a dy-
namic learning rate, initially set α = 0.5, and consider that
every iteration has an α = α− 0.000007 decay. Fig. 5 shows
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learning efficiency with this dynamic learning rate. From 5,
we can see cumulative rewards reach to a higher value after
20,000 iterations, and the fluctuations of cumulative rewards
are gradually mild. Hence, we use this dynamic learning
rate in the following experiments.

0 1 2 3 4 5

x 10
4

100

200

300

400

500

600

700

800

900

Number of Iteration

C
um

ul
at

iv
e 

R
ew

ar
ds

Fig. 5: Q-learning efficiency of a dynamic learning rate.

4.1.2 Greedy Rate
To study the influence of the greedy rate on Q-learning, we
vary the parameter ε of ε-greedy algorithm from 0.1 to 0.9.
Fig. 6 shows the convergent cumulative rewards and the
number of iterations with different ε values.
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Fig. 6: Q-learning efficiency of different greedy rates.

As demonstrated in Fig. 6, the iteration number in Q-
learning is a minimum when the ε-greedy rate is ε = 0.6,
and in this case the cumulative reward convergence is near-
optimal. Hence, we set the ε-greedy rate of ε = 0.6 in the
following experiments.

4.2 Performance Study
In the experiments shown in Fig. 7, we study the perfor-
mance with respect to the number of tasks and the number
of candidate services. The number of tasks varies from 5
to 20, while the number of candidate services of each task
varies from 5 to 20. We take moderate constraints for each
case in order to ensure that all the 3 different states can be
reached in every case. In each case, repeat the experiments
100 times, and record the average learning time.

Fig. 7 illustrates that the time of Q-learning increases
obviously with the number of tasks. It is easy to understand,
because one more task in the work-flow brings one more
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Fig. 7: Performance of Q-learning.

step in each iteration of the Q-learning. Fig. 7 also illustrates
that it is not obvious the time of Q-learning increases with
the number of candidate service, this is because the time cost
of Q-learning depends not only on the number of candidate
services but also on the diversity of candidate services.

4.3 Comparison Experiments
For the purpose of performance evaluation, we compare
the method proposed in this paper with a classic global
optimization method WS-IP [5], a local optimization method
Hybrid proposed in [13] and a MDP-based method [23], for
the sake of convenience, we name it RQASC.

WS-IP. The purpose of this method is to select the candi-
date service for each task that satisfies the user’s constraint
and maximizes a defined utility function. In this method, the
CSSC problem is modeled as a 0-1 integer programming (IP)
problem and the well-known lpx-intopt algorithm is used to
find the optimal solution. In [13] and [5], WS-IP is regarded
as the optimal solution to be compared.

Hybrid. This is a method based on the decomposition
of constraints. This method firstly uses a mixed-integer
program (MIP) to find the optimal decomposition of the
global constraints, and then find the best services that satisfy
the local constraints. The purpose of decomposition is to
improve the optimization efficiency.

RQASC. Being aware of the undetermined QoS, this
method measures the QoS by the mean and variance of
random variables, and model the service composition as an
MDP. RQASC only selects the optimal composite service,
and it care nothing about user’s QoS constrains.

To simulate the uncertain environments, 2,326 service
failure records were randomly inserted into the response
time record data. That is, in our artificially synthesized
database, the service failure rate was 0.02326 and we set
the constraints as (Price ≤ 7500) and (ResponseT ime ≤
20000).

Without loss of generality, suppose that the response
time and the price are of equal importance; hence, in the WS-
IP and hybrid methods, the weight of both response time
and price are set to 0.5. In RQASC method, the price and the
response time are alternately optimized to obtain the highest
success rate. For each method mentioned above, we conduct
service composition 100 times. The average success rate of
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WS-IP is 54%, the average success rate of Hybrid is 31%,
the average success rate of RQASC is 72%, and the average
success rate of CSSC-MDP is 100%. From the result we can
see the poor adaptivity of WS-IP and Hybrid to dynamic
environments. Once one of the selected optimal candidate
services fails, the service composition inevitably faces fail-
ure. The success rate of RQASC is a little higher. This is
because it can guarantee the success of service composition
but the QoS constrains are ignored by RQASC. In contrast,
CSSC-MDP can perceive the state of service composition
and always selects the service best suited to the situation.
Moreover, in the case of component service failure, CSSC-
MDP can select another qualified candidate service to fulfill
the task. Therefore, even if the environment is dynamic,
as long as there are qualified candidate services, CSSC-
MDP can manage to complement the service composition
successfully.

Table 7 shows the response time and the price records
recorded from one successful running of the 4 methods.
From Table 7, we can see each method has the best per-
formance for response time or price. On the whole, WS-IP
is superior in response time, but the price of composition
service by WS-IP is the most expensive. While CSSC-MDP
performs the best in terms of price, and from the perspective
of response time, CSSC-MDP performs the best for 3 tasks
and approximates the optimal values for other tasks. This
shows that CSSC-MDP can obtain the best tradeoff between
the response time and the price.

TABLE 7: Response time and price of a successful execution.
Task
No.

Response Time (s) Price (Yuan)
WS-IP Hybrid RQASC CSSC-MDP WS-IP Hybrid RQASC CSSC-MDP

1 498.94 512.02 545.68 537.40 215.75 178.33 163.44 163.44
2 716.22 735.90 746.12 746.48 271.80 257.33 231.34 231.34
3 283.61 313.18 275.60 315.29 134.59 106.19 145.52 92.33
4 463.90 476.26 465.49 465.36 178.68 157.43 220.64 157.43
5 919.64 942.00 936.69 927.12 342.36 339.46 317.70 317.70
6 1518.34 1554.24 1438.85 1503.03 579.77 575.31 661.16 589.92
7 566.48 632.37 585.25 645.41 255.89 223.95 268.44 202.44
8 421.91 423.92 423.20 418.20 149.72 137.05 187.65 137.17
9 1164.50 1228.97 1237.91 1171.89 503.66 459.36 440.37 493.72
10 389.11 374.05 374.53 370.64 113.65 125.53 107.02 118.96
11 2004.08 1981.03 1939.09 2019.56 772.18 766.89 862.04 781.65
12 1735.82 1765.65 1739.19 1703.49 643.36 648.06 626.83 643.17
13 468.03 507.36 510.17 510.25 200.81 175.97 157.24 163.95
14 584.97 583.46 492.46 564.53 213.48 204.85 267.93 191.69
15 648.18 653.73 674.88 685.28 239.27 229.67 207.72 219.46
16 1636.47 1624.78 1518.87 1611.44 626.32 604.97 717.74 633.16
17 813.01 839.17 758.23 838.11 313.01 301.80 363.65 277.11
18 773.12 830.81 803.65 815.80 325.43 276.48 276.48 276.48
19 940.74 981.64 1043.04 1005.90 418.65 349.34 314.89 337.41
20 1916.04 1990.62 1982.29 1959.30 757.84 684.12 684.12 690.02

Total 18463.11 18951.16 18491.23 18814.48 7256.22 6802.09 7108.14 6718.55

To compare the degree of satisfaction to user constraints,
Fig. 8 shows the cumulative rewards of the successful ex-
ecution of the 4 methods. From Fig. 8, we can see CSSC-
MDP has the highest cumulative rewards. This illustrates
that CSSC-MDP is best adaptive to the variable QoS values,
and satisfy the user constraints as well as possible.

4.4 Experiments on Real-World Dataset
To further evaluate the performance of CSSC-MDP, we do
service composition experiments on the dataset 2 of WS-
DREAM, a real-world QoS dataset released by [24] and
[25]. The dataset includes response time data rtmatrix and
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Fig. 8: Cumulative reward comparison for 4 methods.

through-put data tpmatrix, which are collected from 339
users on 5, 825 Web services. We group the services into 50
tasks, hence, each task has about 116 candidate services, and
each service has 339 response time and through-put records.

Setting user constraints as (ResponseT ime ≤ 22s) and
(ThroughPut ≥ 13Kbps), and setting the number of tasks
t = 10, 20, 30, 40, 50, we do the service composition using
the 4 methods mentioned above for 1000 times respectively.
The results are shown in Table 8 and Fig. 9.

TABLE 8: Comparison of times of successful execution.

Method t=10 t=20 t=30 t=40 t=50

CSSC-MDP 795 615 514 445 276
RQASC 174 45 37 29 16
WS-IP 249 19 4 1 0
Hybrid 394 17 3 0 0

From the data in Table 8, we can see the success rate of
CSSC-MDP on the real world dataset is significantly higher
than that of other methods. More seriously, for methods
WS-IP and Hybrid, when the number of tasks t ≥ 30, the
service compositions are almost all failed. This is because
the uncertainty of service composition increases rapidly as
the number of tasks increases. Fortunately, CSSC-MDP is
more adaptive to the variable QoS and service behavior, so
CSSC-MDP is relatively the most robust method.
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Fig. 9: Comparison of cumulative rewards on a real dataset.
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Fig. 9 shows the mean cumulative reward of the suc-
cessful executions of the 4 service composition methods.
From Fig. 9 we can see CSSC-MDP is obviously superior
to the others when t = 10, 20, 40, 50. And when t = 30,
CSSC-MDP is very close to the highest cumulative reward.
In conclusion, experimental results on the real world dataset
verify the superior adaptivity of CSSC-MDP to the uncertain
QoS and service behavior.

5 RELATED WORK

In this section, we study the existing methods for constraint-
satisfied service composition at first, then we discuss the
service composition methods using reinforcement learning.

5.1 Methods for CSSC

The existing methods for solving CSSC problem can roughly
be grouped into two groups: global optimization and local
optimization.

5.1.1 Global Optimization Methods
The global optimization methods attempt to find the op-
timal composite service among all possible combinations
while meeting user constraints.

In one of the early studies on constraint-satisfied service
composition, Hassine et al. [4] formalized the CSSC prob-
lem as a constraint optimization problem at first; then an
incremental user-intervention-based protocol was used to
find the optimal composite service at run time. Yu et al. [5]
modeled the CSSC problem in two ways: a multi-dimension
multi-choice knapsack problem (MMKP) model and a multi-
constrained problem (MCOP) model, and for each model,
an efficient heuristic algorithm was proposed. Zhao et al.
[11] modeled the CSSC problem using the weighted Tcheby-
cheff distance, avoiding the limitations of linear functions
in setting the weight of the QoS attributes, and proposed
two evolutionary algorithms to solve optimal problems in
different scenarios. Lecue and Mehandjiev [26] balanced se-
mantic fit with QoS metrics, modeled the CSSC problem as a
constraint-satisfaction problem, and adapted a hill-climbing
algorithm to compute a ”good enough” solution that met
initial constraints rather than computing the optimal com-
position. Caporuscio et al. [27] built both design-time and
run-time models for the service composition and identified
the service composition satisfying the QoS requirements.
The quality attributes of the selected composition are mon-
itored, analyzed and, if necessary, plans are generated in
terms of modifications.

Other optimization methods, such as, Ardagna and Per-
nici [6], Kritikos and Plexousakis [7] and He et al. [9]
consider the CSSC process as mixed-integer linear program-
ming (MILP) problem, and Garcia et al. [10] model the CSSC
problem as constraint shortest path problem. In theory, such
exhaustive global optimization methods can get the global
optimal constraint-satisfied composite service, if it exists.
However, the efficiency of global optimization methods
decreases dramatically as the problem grows. Some approx-
imate optimization algorithms, such as the stochastic search
method [26], particle swarm optimization [28], evolutionary
algorithm [11] and so on, have been studied to improve

optimization efficiency in the CSSC problem. In general,
most of the global service composition methods assume
the QoS values are fixed and the service behaviors are
determined, as a result, their adaptivity to the dynamic
environments are poor.

5.1.2 Local Optimization Methods
The local optimization method decomposes global con-
straints for tasks in the workflow and selects the optimal
service for each task, so as to meet local constraints inde-
pendently.

Sun et al. [12] computed the utility of a composite
service from the utilities of component services and derived
the constraints of component services from the constraints
of the composite service. Alrifai et al. [13] used a global
optimization method to find the optimal decomposition of
constraints, and then used the distributed local selection to
find the best services satisfying the local constraints. Raj
and Sasipraba [14] used local constraints as the thresholds
to filter unqualified services and took service utility as the
key value to select the optimal service for a task. Then the
highest-ranked service was provided to user.

Because of the undetermined QoS values, it is almost
impossible to get an appropriate decomposition of global
constraints. The local constraints are either too strict or
too loose, and the success rate of service composition is
inevitably reduced.

Table 9 shows the pros and cons of these methods.

5.2 Service Compositions by Reinforcement Learning

Reinforcement learning is a typical technology used for
planning and optimization in dynamic environments, and
many researches has used reinforcement learning to conduct
service composition, such as [17] considering the under-
mined service behaviors, [29] considering the uncertainty
of the acture environment, [30] discussing the optimization
of different composition structure, [31] finding multiple
composition plans and selecting the most appropriate for
user, [23] concerning the undetermined QoS, [32] facilitating
the service composition, [33] considering the indeterminacy
of service behavior, [36] finding the optimal workflow, [34]
improving the optimization efficiency for large-scale service
composition, [37] presenting an approach of multi-agent
service composition, [35] building service pair to handle the
change in dynamic environment etc. Table 10 shows the pros
and cons of some presentative methods.

In contrast to these works, the proposed CSSC-MDP sat-
isfies the user’s functional requirements and QoS constraints
furthest and considers the conflicts between the QoS at-
tributes. Moreover, CSSC-MDP selects a component service
after the execution of the previous service. Thus, before
the selection of a component service, the execution QoS
of the previous services are certain values, hence the con-
straints which need to be satisfied by the following services
can be calculated. Based on the results of calculation, the
component service mostly satisfied the constraints can be
selected. Even if in the case where a selected service failed,
the optimal alternative service can be selected immediately
to replace it. Therefore, CSSC-MDP is highly adaptive to the
dynamic and uncertain environment.
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TABLE 9: Methods for CSSC

Method/Model Advantage Weakness

incremental user-intervention-
based protocol [4] adaptive to stochastic service evolution not adaptive to the variable QoS

MMKP and MCOP [5] optimize the QoS of the composite service not adaptive to the variable QoS

MILP [6], [7], [9] get the global optimal solution the efficiency decreases dramatically as the problem grows

multi-objective optimization [11] the limitations of linear functions are avoided not adaptive to the variable QoS

hill-climbing algorithm [26] high solving efficiency the solution is locally optimal and not adaptive to the
dynamic environment

design-time model and run-time
model [27]

services that most likely contribute in QoS viola-
tions are get rid off new services have no chance to take part in

local selection approach[12] high efficiency not adaptive to the variable QoS

constraints decomposition [13] the decomposition of constraints is optimized QoS values are regarded as determined

local-global combined [14] use local constraints to filter unqualified services not adaptive to the variable QoS and uncertain service
behaviors

TABLE 10: Service composition methods using reinforcement learning

Model Advantage Weakness

MDP+Bayesian learning [17] can generate robust workflow can not guarantee the optimality of composite services

MDP+Bayesian learning [29] improve the quality of Workflow through Bayes learning without considering the QoS of the composite service

MDP [30] different structures of service composition are considered only one QoS attribute can be optimized

MDP+HTN planning [31] multiple QoS attributes are taken into consideration take the QoS values as be determined

MDP[23] measure QoS by mean and variance, reduce the proba-
bility of composite service failure

the real QoS value could not be consistent with the
theory distribution

improved MDP [32] facilitate the service composition by improving the opti-
mization equation

the real QoS value could not be consistent with the
theory distribution

MDP [33] integrate multiple workflows and alternative services
into service composition

the optimal service composition can only be find in the
long run

team Markov Games [34] applicable to the distributed environment the optimal service composition can only be find in the
long run

MDP [35] provide flexible service composition can only get the near optimal composite service

6 CONCLUSIONS

In this paper, we presented a reinforcement learning method
for solving the CSSC problem in the dynamic environment.
This method built a CSSC-MDP model based on an MDP
model and used a Q-learning algorithm to solve the model.
Extensive experiments show a significant improvement in
terms of adaptivity to the uncertain behavior of services
in the dynamic environment. In comparison with a global
optimization method, a local optimization method and an
MDP-based service composition method, CSSC-MDP also
showed the superiority in terms of the satisfaction of user’s
QoS constraints.

The main contributions of this paper are threefold: first,
considering the uncertain behavior of service, we selected
component services during execution of the service compo-
sition; this avoids the service composition failure brought
by the failure of a component service. Second, considering
that QoS attributes are not always the same for different
executions, we select a component service based on the real
execution QoS data of the previous services; this will help
to calculate the real constraints that need to be satisfied by
the following service. Thirdly, the selection strategy of Q-
learning is globally optimized, this guarantees the optimal-
ity of the composite service.
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