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Abstract 

In this paper, we first introduce the concepts of knowledge closeness and knowledge distance for 

measuring the sameness and the difference among knowledge in an information system, respectively. 

The relationship between these two concepts is a strictly mutual complement relation. We then 

investigate some important properties of knowledge distance and perform experimental analyses on 

two public data sets, which show the presented measure appears to be well suited to characterize the 

nature of knowledge in an information system. Finally, we establish the relationship between the 

knowledge distance and knowledge granulation, which shows that two variants of the knowledge 

distance can also be used to construct the knowledge granulation. These results will be helpful for 

studying uncertainty in information systems. 
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1. Introduction 
As a recently renewed research topic, 

granular computing (GrC) is an umbrella term to 

cover any theories, methodologies, techniques, 

and tools that make use of granules in problem 

solving （Zadeh 1996, Zadeh 1997, Zadeh 1998）. 

Basic ideas of GrC have appeared in related 

fields, such as interval analysis, rough set theory, 

cluster analysis, machine learning, databases, 

and many others (Zadeh 1979). Zadeh (1997) 

identified three basic concepts that underlie the 

process of human cognition, namely, granulation, 

organization, and causation. A granule is a 

clump of objects (points), in the universe of 

discourse, drawn together by indistinguishability, 

similarity, proximity, or functionality. In 
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situations involving incomplete, uncertain, or 

vague information, it may be difficult to 

differentiate different elements and instead it is 

convenient to consider granules, i.e., clump or 

group of indiscernible elements, for performing 

operations. Although detailed information may 

be available, it may be sufficient to use granules 

in order to have an efficient and practical 

solution. Very precise solutions may not be 

required for many practical problems. The 

acquisition of precise information may be too 

costly and coarse-grained information reduced 

cost. There is clearly a need for the systematic 

studies of granular computing. 

A general framework of granular 

computing was presented by Zadeh (1997) in the 

context of fuzzy set theory. Granules are defined 

by generalized constraints. Examples of 

constraints are equality, possibilistic, 

probabilistic, fuzzy, and veristic constraints. 

Many specific models of granular computing 

have also been proposed. Pawlak (1991), 

Polkowski and Skowron (1998), and Yao (2006) 

examined granular computing in connection 

with the theory of rough sets. Yao (1996, 2000) 

suggested the use of hierarchical granulations 

for the study of stratified rough set 

approximations. Lin (1998) and Yao (1999) 

studied granular computing using neighborhood 

systems. Klir (1998) investigated some basic 

issues of computing with granular probabilities. 

In the literature (Zhang and Zhang 2003), Zhang 

extended the theory of quotient space into the 

theory of fuzzy quotient space based on fuzzy 

equivalence relation, in which they studied 

topology relation among objects, and provided 

theory basis for fuzzy granular computing. 

Liang et al. (Liang and Shi 2004, Liang and Li 

2005) gave a measure called knowledge 

granulation for measuring the uncertainty of 

knowledge in rough set theory from the view of 

granular computing. Liang and Qian (2005) 

studied rough sets approximation based on 

dynamic granulation and its application for rule 

extracting. Qian and Liang (2006a) extended the 

Pawlak's rough set model to rough set model 

based on multi-granulations (MGRS), where the 

set approximations are defined by using 

multi-equivalences on the universe. 

Recently, the rough set theory proposed by 

Pawlak (1991) has become a popular 

mathematical framework for granular computing. 

The focus of rough set theory is on the 

ambiguity caused by limited discernibility of 

objects in the domain of discourse. Its key 

concepts are those of object “indiscernibility” 

and “set approximation”. The primary use of 

rough set theory has so far mainly been in 

generating logical rules for classification and 

prediction (Skowron and Rauszer 1992) using 

information granules; thereby making it a 

prospective tool for pattern recognition, image 

processing, feature selection, data mining and 

knowledge discovery process from large data 

sets. Use of rough set rules based on reducts has 

a significant role for dimensionality 

reduction/feature selection by discarding 

redundant features; thereby having potential 

application for mining large data sets 

(Komorouski et al. 1999). 

Knowledge base and indiscernibility relation 

are two basic concepts in Pawlak's rough set 

theory. Research on the uncertainty of 

knowledge in knowledge base becomes an 

important issue in resent years and information 

entropy and knowledge granulation are two 



Knowledge Distance in Information Systems 

  JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING  436

main approaches. For our further development, 

we briefly review some relative researches. The 

entropy of a system, as defined by Shannon 

gives a measure of uncertainty about its actual 

structure (Shannon 1948). It has been a useful 

mechanism for characterizing the uncertainty in 

various modes and applications in many diverse 

fields. Several authors have used Shannon's 

entropy and its variants to measure uncertainty 

of knowledge in rough set theory (Beaubouef et 

al. 1998, Duntsch and Gediga 1998, Chakik et al. 

2004). A new definition for information entropy 

in rough set theory was presented by Liang in 

the literature (Liang et al. 2002). Unlike the 

logarithmic behavior of Shannon entropy, the 

gain function considered there possesses the 

complement nature. Combination entropy and 

combination granulation in incomplete 

information system were proposed by Qian and 

Liang for measuring uncertainty of knowledge 

(Qian and Liang 2006b), their gain function 

possesses intuitionistic knowledge content 

nature. Especially, Wierman (1999) presented a 

well justified measure of uncertainty, the 

measure of granularity, along with an axiomatic 

derivation. Its strong connections to the Shannon 

entropy and the Hartley measure of uncertainty 

(Hartley 1928) also lend strong support to its 

correctness and applicability. Furthermore, the 

relationships among information entropy, rough 

entropy and knowledge granulation in 

information systems were established (Liang 

and Shi 2004). In essence, knowledge 

granulation characterizes and defines average 

measure of information granules in a given 

partition or cover on the universe. Although the 

information entropy and knowledge granulation 

can effectively characterizes the uncertainty of 

knowledge, the difference in between all 

knowledge in a knowledge base. In fact, if 

knowledge granulations or information entropy 

of two knowledge have the same value, then 

these two knowledge have the same 

discernibility ability in information systems. 

Therefore, this kind of measures cannot be used 

to characterize the difference between two 

knowledge on the universe. In many practical 

issues, however, we need often to distinguish 

any two knowledge for uncertain data 

processing. Thus, a more comprehensive and 

effective measure for depicting the difference 

between knowledge is desirable.  

This paper aims to present an approach to 

measure the difference among knowledge in an 

information system. The rest of this paper is 

organized as follows. In Section 2, some 

preliminary concepts such as complete 

information systems, incomplete information 

systems and partial relation are brief recalled. In 

Section 3, the concept of a knowledge closeness 

is introduced to measure the similarity between 

two knowledge in information systems. In 

Section 4, the concept of a knowledge distance 

is presented for describing the difference among 

knowledge on the universe and its some 

important mathematical properties are derived. 

In Section 5, we establish the relationship 

between the knowledge distance and the 

knowledge granulation. Section 6 concludes the 

paper.  

2. Preliminaries 
In this section, some basic concepts are 

reviewed, which are complete information 

systems, incomplete information systems and 

partial relation among knowledge.  
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An information system is a pair ( , )S U A= , 

where, 

1) U is a non-empty finite set of objects; 

2) A is a non-empty finite set of attributes; 

3) for every a A∈ , there is a mapping 

: aa U V→ , where aV  is called the value set of 

a . 

For an information system ( , )S U A= , if 

a A∀ ∈ , every element in aV  is a definite 

value, then S is called a complete information 

system. 

Each subset of attributes P A⊆  

determines a binary indistinguishable relation 

( )IND P  given by 

( ) {( , ) | , ( ) ( )}.IND P u v U U a P a u a v= ∈ × ∀ ∈ =  

It is easily shown that 

( ) ({ }).a PIND P IND a∈= I  

( )U IND P  constitutes a partition of U. 

( )U IND P  is called a knowledge in U and 

every equivalence class is called a knowledge 

granule or information granule (Liang et al. 

2006). Information granulation, in some sense, 

denotes the average measure of information 

granules (equivalence classes) in P. In general, 

we denote the knowledge induced by P A⊆  

by U P . 

Example 2.1 Consider descriptions of several 

cars in Table 1.  

This is a complete information system, 

where 1 2 3 4 5 6{ , , , , , }U u u u u u u= and 1 2{ , ,A a a=

3 4, },a a  with 1a -Price, 2a -Mileage, 3a -Size, 

4a -Max-Speed. By computing, it follows that  

1 2 6 3 4 5( ) {{ },{ , },{ },{ , }}.U IND A u u u u u u=  

It may happen that some of the attribute 

values for an object are missing. For example, in 

medical information systems there may exist a 

group of patients for which it is impossible to 

perform all the required tests. These missing 

values can be represented by the set of all 

possible values for the attribute or equivalence 

by the domain of the attribute. To indicate such a 

situation, a distinguished value, a so-called null 

value is usually assigned to those attributes. 

Table 1 The complete information system about car 

(Kryszkiewicz 1998, Kryszkiewicz 1999) 

Car Price Mileage Size Max- 
Speed 

u 1 High Low Full Low 

u 2 Low High Full Low 
u 3 Low Low Compact Low 
u 4 High High Full High 
u 5 High High Full High 
u 6 Low High Full Low 

If aV contains a null value for at least one 

attribute a A∈ , then S  is called an incomplete 

information system (Liang et al. 2006, 

Kryszkiewicz 1998, Kryszkiewicz 1999), 

otherwise it is called a complete information 

system. From now on, we will denote the null 

value by∗ . 

Let ( , )S U A= be an information system 

and P A⊆ an attribute set. We define a binary 

relation on U as 

( ) {( , ) | , ( ) ( )SIM P u v U U a P a u a v= ∈ × ∀ ∈ =   

( ) * ( ) *}.or a u or a v= =   

In fact, ( )SIM P is a tolerance relation on U. 

The concept of a tolerance relation has a wide 

variety of applications in classification (Liang et 

al. 2006, Kryszkiewicz 1998, Kryszkiewicz 

1999). It can be easily shown that  

( ) ({ }).a PSIM P SIM a∈= I  

Let ( )U SIM P denote the family sets 
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{ ( ) | }PS u u U∈ , the classification induced by P . 

A member ( )PS u  from ( )U SIM P  will be 

called a tolerance class or a granule of 

information. It should be noticed that the 

tolerance classes in ( )U SIM P  do not 

constitute a partition of U in general. They 

constitute a cover of U, i.e., ( )PS u ≠ ∅  for 

every u U∈  and ( )u U PU S u U∈ = . 

Of course, ( )SIM P ) degenerates into an 

equivalence relation in a complete information 

system. 

Example 2.2 Consider descriptions of several 

cars in Table 2. 

Table 2 The complete information system about car 

(Kryszkiewicz 1998, Kryszkiewicz 1999) 

Car Price Mileage Size Max-Speed 

u 1 High Low Full Low 

u 2 Low * Full Low 

u 3 * * Compact Low 

u 4 High * Full High 

u 5 * * Full High 

u 6 Low High Full * 

This is an incomplete information system, 

where 1 2 3 4 5 6{ , , , , , }U u u u u u u= and 1 2{ , ,A a a=

3 4, }a a , with 1a -Price, 2a -Mileage, 3a -Size, 

4a -Max-Speed. By computing, it follows that 

1 2 3 4/ ( ) { ( ), ( ), ( ), ( ),A A A AU SIM A S u S u S u S u=  

5 6( ), ( )},A AS u S u  

where 1 1( ) { },AS u u= 2 2 6( ) { , },AS u u u= 3( )AS u  

3{ },u= 4 4 5( ) { , }AS u u u= , 5 4 5 6( ) { , , }AS u u u u= , 

6 2 5 6( ) { , , }AS u u u u= . 

Of particular interest is the discrete 

classification  

( ) { ( ) { } | }AU SIM A S u u u Uω= = = ∈ ,  

and the indiscrete classification 

( ) { ( ) { } | }AU SIM A S u U u Uδ= = = ∈ , 

or justδ andω is there is no confusion as to the 

domain set involved. 
Now we define a partial order on the set of 

all classifications of U. Let ( , )S U A=  be an 

incomplete information system, , ,P Q A⊆  

1 2/ ( ) { ( ), ( ), , ( )}P P P UU SIM P S u S u S u= L  and 

1 2/ ( ) { ( ), ( ), , ( )}Q Q Q UU SIM Q S u S u S u= L . We 

define a partial relation p  as follows 

( ) ( ),P QP Q S u S u u U⇔ ⊆ ∀ ∈p .  

When S be a complete information system, there 

are two partitions 1 2( ) { , , , }mU IDN P P P P= L  

and 1( ) { ,U IDN P Q= 2 , , }nQ QL . Then the 

partial relation has the following property (Liang 

and Li 2005) 
P Q ⇔p for any ( ) ,iP U IND P∈  there 

exists ( )jQ U IND Q∈  such that i jP Q⊆ . 

3. Knowledge Closeness 
In this section, we extend the concept of set 

closeness to the concept of knowledge closeness 

for measuring the closeness degree between two 

knowledge in an information system. 

Tolerance classes induced by attribute 

set A are described by a family of sets 

{ ( ) | }AS u u U∈  in an incomplete information 

system. In fact, a complete information system 

is a special form of incomplete information 

systems. Let ( , )S U A= be a complete 

information system, ( )U SIM A 1{ ( ),AS u=  

2( ), , ( )},A A US u S uL  ( )U IND A =  1 2{ , ,X X  

, }mXL and 1 2{ , , , },
ii i i imX u u u= L  where 

i iX s=  and 1| | .m
i iX U= =∑  Then, the 

relationship between the elements in 

( )U SIM A  and the elements in ( )U IND A  is 
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as follows (Liang et al. 2006)  

1 2( ) ( ) ( )
ii A i A i A imX S u S u S u= = = =L  and  

1 2( ) ( ) ( )
ii A i A i A imX S u S u S u= = = =L . 

Definition 3.1 (Yao 2001) Let A , B be two finite 

sets. Set closeness between A and B is defined 

as 

( , )
A B

H A B
A B

∩
=

∪
( )A B∪ ≠∅ ,        (1) 

where 0 ( , ) 1H A B≤ ≤ and we assume that 

( , ) 1H A B =  if ( )A B∪ ≠ ∅ . 

If A B= , then the set closeness between A  

and B  achieves maximum value 1. 

If A B∩ =∅ , then the set closeness 

between A and B achieves minimum value 0. 

The set closeness denotes the measure of the 

similarity between two sets. The more the 

overlap between these two sets is, the large the 

value of H is, and vice versa. 

In order to investigate the measure of the 

similarity between two knowledge and its some 

properties, we here introduce the concept of 

complement of knowledge. Let / ( )U SIM A =  

1{ ( ),AS u 2( ), , ( )A A US u S uL be the knowledge 

induced by attribute set A on the universe U, 

then the complement of this knowledge is 

defined as  

1 1~ ( ( )) {{ } ( ( )),AU SIM A u U S u= ∪ −  

2 2{ } ( ( )), ,{ } ( ( ))}A AU Uu U S u u U S u∪ − ∪ −L . 

That is 

~ ( ( )) {{ } ( ( )) | }i A iU SIM A u U S u i U= ∪ − ∈ . 

Proposition 3.1 Let ( , )S U A= be an information 

system, ,P Q A⊆  and ( )U SIM P , ( )U SIM Q  

two knowledge on the universe .U  

If ( ) ~ ( ( )),U SIM P U SIM Q=  then U SIM  

( )P Q ω∪ = . 

Proof. From the definition of tolerance relation, 

we have that for arbitrary i U∈ , the tolerance 
classes induced by iu  in ( ),U SIM P  

( )U SIM Q  and ( )U SIM P Q∪  are ( )P iS u , 

( )P iS u  and ( ),P Q iS u∪  respectively. Since 

( ) ~ ( ( ))U SIM P U SIM Q= , we have that  

( ) { }Q i iS u u= ∪ ( ( ))P iU S u− ( )i U≤ .  

Hence, for arbitrary i U∈ , it follows that 

( ) ( ) ( )P Q i P i P iS u S u S u∪ = ∩  

( ) ({ } ( ( ))) { }P i i P i iS u u U S u u= ∩ ∪ − =
Therefore, 

( ) { ( ) { }, }P Q i iU SIM P Q S u u i U ω∪∪ = = ≤ =  

This completes the proof.                 ■ 

Corollary 3.1 The following properties hold 

1) ~ (~ ( ( ))) ( )U SIM P U SIM P= , 

2) ~ , ~ω δ δ ω= = . 

Definition 3.2 Let ( , )S U A= be an information 

system, ,P Q A⊆ , and ( ) ,U SIM P  ( )U SIM Q  

two knowledge on the universe U , where 

1 2 | |( ) { ( ), ( ), , ( )},P P P UU SIM P S u S u S u= L   

1 2( ) { ( ), ( ), , ( )}Q Q Q UU SIM Q S u S u S u= L .  

Knowledge closeness between the knowledge 

( )U SIM P and the knowledge ( )U SIM Q is 

defined as 

1

( ) ( )1
( , )

( ) ( )

U
P i Q i

i P i Q i

S u S u
H P Q

U S u S u=

∩
=

∪
∑ ,      (2) 

where 
1

( , ) 1H P Q
U

≤ ≤ . 

The knowledge closeness represents the 

measure of the similarity between two 

knowledge on U. The more the overlap between 

knowledge is, the larger knowledge closeness H 
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is, and vice versa. 

Proposition 3.2 (Maximum) Let ( , )S U A=  be 

an information system, , ,P Q A⊆  and 

( )U SIM P , ( )U SIM Q two knowledge on the 

universe U . If ( ) ( )U SIM P U SIM Q= , then 

the knowledge closeness between the knowledge 

( )U SIM P  and ( )U SIM Q  achieves its 

maximum value 1.  

Proof. It is straightforward. 

Proposition 3.3 (Minimum) Let ( , )S U A=  be an 

information system, , ,P Q A⊆  and ( )U SIM P , 

( )U SIM Q two knowledge on the universe U. If 

( ) ~ ( ( )),U SIM P U SIM Q= then the knowledge 

closeness between the knowledge  ( )U SIM P  

and the knowledge ( )U SIM Q  achieves 

minimum value
1

| |U
.  

Proof. From the definition of tolerance relation, 

we have that for arbitrary i U∈ , the tolerance 

classes induced by iu in ( )U SIM P  

and ( )U SIM Q are ( )P iS u and ( )Q iS u , 

respectively. Since ( ) ~ ( ( ))U SIM P U SIM Q=  

we have  

( ) { } ( ( ))( )Q i i P iS u u U S u i U= ∪ − ≤ . 

Hence, we have that 

1

( ) ( )1
( , )

( ) ( )

U
P i Q i

i P i Q i

S u S u
H P Q

U S u S u=

∩
=

∪
∑  

 

1

( ) ({ } ( ( )))1

( ) { } ( ( ))

U
P i i P i

P i i P ii

S u u U S u

U S u u U S u=

∩ ∪ −
=

∪ ∪ −∑  

 

1

( ( ) { }) ( ( ) ( ( )))1

( ) ( ( ))

U
P i i P i P i

P i P ii

S u u S u U S u

U S u U S u=

∩ ∪ ∩ −
=

∪ −∑

1

{ }1

( ) ( ( ))

U
i

P i P ii

u

U S u U S u

φ

=

∪
=

∪ −∑  

1

U
= . 

This completes the proof.              ■ 

Corollary 3.2 
1

( , )
| |

H
U

ω δ = . 

4. Knowledge Distance 
In this section, we first introduce the concept 

of knowledge distance to measure the difference 

between two knowledge on the same universe. 

Then, its some important mathematical 

properties are obtained. Finally, experimental 

analyses on two public data sets are performed 

for verifying the validity of this knowledge 

distance.  
Definition 4.1 Let ( , )S U A= be an 

information system, ,P Q A⊆ , and ( )U SIM P , 

( )U SIM Q  two knowledge on the universe U, 

where 

1 2( ) { ( ), ( ), , ( )}P P P UU SIM P S u S u S u= L  and  

1 2( ) { ( ), ( ), , ( )}Q Q Q UU SIM Q S u S u S u= L .  

Knowledge distance between the knowledge 

( )U SIM P and the knowledge ( )U SIM Q is 

defined as 

1

( ) ( )1
( , ) (1 )

( ) ( )

u
P i Q i

i P i Q i

S u S u
D P Q

U S u S u=

∩
= −

∪
∑ ,   (3) 

where
1

0 ( , ) 1D P Q
U

≤ ≤ − . 

The knowledge distance denotes the measure 

of difference between two knowledge on the 

same universe. The more the overlap between 

knowledge is, the smaller knowledge distance 

H  is, and vice versa. 
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Proposition 4.1 (Maximum) Let ( , )S U A=  be an 

information system, ,P Q A⊆ , and ( )U SIM P , 

( )U SIM Q  two knowledge on the universe U . 

If ( ) ~ ( ( )),U SIM P U SIM Q=  then the 

knowledge distance between the knowledge 
( )U SIM P  and the knowledge ( )U SIM Q  

achieves maximum value 
1

1
| |U

− . 

Proof. It is straightforward.  

Corollary 4.1 
1

( , ) 1D
U

ω δ = − .  

Proof. This proof is similar to that of 

Proposition 3.3. 

Proposition 4.2 (Minimum) Let ( , )S U A=  be an 

information system, ,P Q A⊆ , and ( )U SIM P , 

( )U SIM Q two knowledge on the universe U. If 

( ) ( )U SIM P U SIM Q= , then the knowledge 

closeness between the knowledge ( )U SIM P  

and the knowledge ( )U SIM Q  achieves 

minimum value 0. 

Proof. It is straightforward. 

Proposition 4.3 Knowledge distance D  has the 

following properties 

1) ( , ) 0D P Q ≥  (non-negative), 

2) ( , ) ( , )D P Q D Q P=  (symmetrical). 

Proof. They are straightforward. 

Proposition 4.4 Let ( , )S U A= be an 

information system, ,P Q A⊆ , and ( )U SIM P , 

( )U SIM Q  two knowledge on the universe U . 

Then, ( , ) ( , ) 1H P Q D P Q+ = . 

Proof. From Definition 3.2 and 4.1, we have 

that 

1

( ) ( )1
( , ) (1 )

( ) ( )

U
P i Q i

i P i Q i

S u S u
D P Q

U S u S u=

∩
= −

∪
∑  

1

( ) ( )1
1

( ) ( )

U
P i Q i

i P i Q i

S u S u

U S u S u=

∩
= −

∪
∑  

1 ( , )H P Q= − . 

Hence, ( , ) ( , ) 1H P Q D P Q+ = .            ■ 

Obviously, there is a strictly mutual 

complement relation between the knowledge 

distance and the knowledge closeness in terms 

of Definition 3.2 and 4.1. 

Example 4.1 For Table 1, let {P=  Price }  and 

Q ={Max-speed}. Compute the knowledge 

distance between P and Q . 

By computing, we have that 

1 4 5 2 3 6( ) {{ , , },{ , , }}U IND P u u u u u u= , 

1 2 3 6 4 5( ) {{ , , , },{ , }}U IND Q u u u u u u= . 

If we regard Table 1 as a special incomplete 

information system, we can obtain the following 

1 4 5 2 3 6( ) {{ , , },{ , , },U SIM P u u u u u u=

2 3 6 1 4 5 1 4 5 2 3 6{ , , },{ , , },{ , , },{ , , }},u u u u u u u u u u u u  

1 2 3 6 1 2 3 6( ) {{ , , , },{ , , , },.U SIM Q u u u u u u u u=

1 2 3 6 4 5 4 5 1 2 3 6{ , , , },{ , },{ , },{ , , , }}u u u u u u u u u u u u . 

By computing, the knowledge distance 

between P and Q  is  

1

( ) ( )1
( , ) (1 )

( ) ( )

U
P i P i

P i P ii

S u S u
D P Q

U S u S u=

∩
= −

∪∑  

1 1 3 3 2 2 3
[(1 ) (1 ) (1 ) (1 ) (1 ) (1 )]

6 6 4 4 3 3 4
= − + − + − + − + − + −

        
3

8
= , 

and the knowledge closeness between P and Q  

is  

1

( ) ( )1
( , )

( ) ( )

U
P i P i

P i P ii

S u S u
H P Q

U S u S u=

∩
=

∪∑  

1 1 3 3 2 2 3
( )

6 6 4 4 3 3 4
= + + + + +  

5

8
= . 

Therefore,  
5 3

( , ) ( , ) 1
8 8

H P Q D P Q+ = + = . 



Knowledge Distance in Information Systems 

  JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING  442

Proposition 4.5 Let ( , )S U A= be an information 

system, , ,P Q R A⊆  with Pp .Q Rp  Then 

( , ) ( , )D P R D P Q≥  and ( , ) ( , )D P R D Q R≥ . 

Proof. If we regard S as an incomplete 
information system, then 1/ ( ) { ( ),PU SIM P S u=  

2( ), , ( )},P P US u S uL  1 2( ) { , , ,U IND P P P= L  

}mP  and 1 2{ , , , }
ii i i imP u u u= L , where i iP s=  

and 1 | |m
i iX U= =∑ . In other words, complete 

information systems and incomplete information 

systems can be consistently represented. Then,  

the relationship between the elements in 

( )U IND P  and the elements in ( )U SIM P  is 

as follows 

1 2( ) ( ) ( )
ii P i P i P imP S u S u S u= = = =L . 

Similarly, 

1 2( ) ( ) ( )
jj Q j Q j Q jmQ S u S u S u= = = =L , 

1 2( ) ( ) ( )
kk R k R k R kmR S u S u S u= = = =L . 

Since P Q Rp p , we have 

( ) ( ) ( )P Q RS u S u S u⊆ ⊆  for arbitrary u U∈ . So,  

( )PS u ∪ ( ) ( ) ( )R P QS u S u S u⊇ ∪  and 

( ) ( ) ( ) ( )P Q P RS u S u S u S u∩ = ∪ .  

Hence, one can obtain that 

( ) ( )P RS u S u∩ ≥ ( ) ( )P QS u S u∩  and  

( ) ( ) ( ) ( )P Q P RS u S u S u S u∩ = ∪ .  

Therefore, we have that 

( , ) ( , )D P R D P Q−  

1

1

( ) ( )1
(1 )

( ) ( )

( ) ( )1
(1 )

( ) ( )

U
P i R i

P i R ii

U
P i Q i

i P i Q i

S u S u

U S u S u

S u S u

U S u S u

=

=

∩
= −

∪

∩
− −

∪

∑

∑

1

( ) ( ) ( ) ( )1
( )

( ) ( )( ) ( )

U
P i Q i P i R i

P i R ii P i Q i

S u S u S u S u

U S u S uS u S u=

∩ ∩
= −

∪∪
∑  

 0≥ . 

Similarly, we have ( , ) ( , ) 0D P R D P Q− ≥ . 

Therefore, ( , ) ( , )D P R D P Q≥ and 

( , ) ( , )D P R D Q R≥  hold.                 ■ 

Proposition 4.6 Let ( , )S U A= be an 

information system, , ,P Q R A⊆  with Pp Q Rp . 

Then 

( , ) ( , ) ( , )D P R D Q R D P Q+ ≥ , 

( , ) ( , ) ( , )D P R D P Q D Q R+ ≥  and 

( , )D P Q + ( , ) ( , )D Q R D P R≥ . 

Proof. From Proposition 4.4, one can know that 

( , ) ( , )D P R D P Q≥  and ( , ) ( , )D P R D Q R≥  

if P Q Rp p . It is clear that     

( , ) ( , ) ( , )D P R D Q R D P Q+ ≥ and

( , ) ( , ) ( , )D P R D P Q D Q R+ ≥  hold.  

Therefore, we just need to prove     

( , ) ( , ) ( , )D P Q D Q R D P R+ ≥ . 

Similar to the proof of Proposition 4.4, we can 

get that ( ) ( ) ( )P Q RS u S u S u⊆ ⊆ if P Q Rp p  

That is to say, 

( ) ( ) ( )P Q PS u S u S u∩ = , 

( ) ( ) ( )P Q QS u S u S u∪ = ; 

( ) ( ) ( )P R PS u S u S u∩ = , 

( ) ( ) ( )P R RS u S u S u∪ = ;  

and ( ) ( ) ( )Q R QS u S u S u∩ = ,  

( ) ( ) ( )Q R RS u S u S u∪ = .  

So ( )PS u ( ) ( )Q RS u S u≤ ≤ . Therefore, we 

have that 

( , ) ( , ) ( , )D P Q D Q R D P R+ −  

1

( ) ( )1
(1 )

( ) ( )

U
P i Q i

i P i Q i

S u S u

U S u S u=

∩
= −

∪
∑  
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1

1

( ) ( )1
(1 )

( ) ( )

( ) ( )1
(1 )

( ) ( )

U
Q i R i

i Q i R i

U
P i R i

P i R ii

S u S u

U S u S u

S u S u

U S u S u

=

=

∩
+ −

∪

∩
− −

∪

∑

∑

1

( ) ( )1
( 1

( ) ( )

U
P i R i

P i R ii

S u S u

U S u S u=

∩
= +

∪∑      

( ) ( ) ( ) ( )
)

( ) ( ) ( ) ( )

P i Q i Q i R i

P i Q i Q i R i

S u S u S u S u

S u S u S u S u

∩ ∩
− −

∪ ∪

1

( )( ) ( )1
( 1 )

( ) ( )( )

U
Q iP i P i

R i R ii Q i

S uS u S u

U S u S uS u=
= + − −∑ . 

Denoted by ( )P ip S u= , ( )Q iq S u=  and 

( )R ir S u= . From ( ) ( )P QS u S u≤ ≤ ( )RS u , it 

follows that 0 p q r U< ≤ ≤ ≤ . Suppose that the 

function ( , , ) 1
p p q

f p q r
r q r

= + − − . Here, we 

only need to prove ( , , )f p q r 0≥ . Therefore 

( , , ) 1
p p q

f p q r
r q r

= + − −  
2qr pq pr q

qr

+ − −=  

( )( )r q q p

qr

− −= 0≥ . 

Hence, ( , ) ( , ) ( , )D P Q D Q R D P R+ −  

1

1
( , , ) 0

U

i

f p q r
U =

= ≥∑ . This completes the proof.        

■ 

In the following, through experimental 

analyses, we illustrate some properties of the 

knowledge distance in information systems. We 

have downloaded two public data sets with 

practical applications from UCI Repository of 

machine learning databases, which are 

information system dermatology with 240 

objects and information system monks-problems 

with 432 objects. All condition attributes in the 

two data sets are discrete. We analyze 

knowledge distances between knowledge 

induced by all attributes of an information 

system and knowledge induced by various 

numbers of attributes. The changes of values of 

knowledge distances with the number of 

attributes in these two data sets are shown in 

Figure 1 and Figure 2.  

 
Figure 1 Knowledge distance with the number of 

attributes about dermatology 

 

Figure 2 Knowledge distance with the number of 
attributes about monks-problems 

It can be seen from Figure 1 and Figure 2 

that the value of knowledge distance decreases 

as the number of selected attributes becomes 

bigger in the same data set. In other words, 

through adding number of attributes, the 

knowledge induced by these attributes can 

approach to the knowledge induced by all 

attributes in this information system, i.e., the 

knowledge distance between them can approach 
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to zero. Therefore, we can draw a conclusion 

that the knowledge distance can well 

characterize the difference between two 

knowledge in the same information system.  

5. Relationship between Knowledge 
Distance and Knowledge 
Granulation 
Knowledge granulation is an important 

concept of granular computing proposed by 

Zadeh (1997). The knowledge granulation of an 

information system gives a measure of 

uncertainty about its actual structure. In general, 

knowledge granulation can represent the 

discernibility ability of knowledge in 

information systems. Especially, several 

measures in an information system closely 

associated with granular computing such as 

granulation measure, information entropy, rough 

entropy and knowledge granulation and their 

relationships were discussed (Liang et a. 2004, 

Liang et al. 2006). In the literature (Qian and 

Liang 2006b), we introduced two concepts 

so-called combination entropy and combination 

granulation to measure the uncertainty of an 

information system. In the literature (Liang and 

Qian 2006), an axiom definition of knowledge 

granulation was given, which gives a unified 

description for knowledge granulation. In this 

section, we will discuss the relationship between 

knowledge distance and knowledge granulation. 

Let ( , )S U A=  be an information system, 

, .P Q A⊆  ( ) { ( ) | },P i iK P S x x U= ∈  ( )K Q =  

{ ( ) | }Q i iS x x U∈ . We define a partial relation 

p  with set size character as follows (Liang and 

Qian 2006):  
'P Qp  if and only if, for 1( ) { ( ),PK P S x=  

2( ), , ( )},P P US x S xL  there exists a sequence 
' ( )K Q of ( )K Q , where   

' ' ' '
1 2( ) { ( ), ( ), , ( )}P P P UK P S x S x S x= L ,  

such that '( ) ( )P i Q iS x S x≤ . If there exists a 

sequence ' ( )K Q  of ( )K Q  such that 
'( ) ( )P i Q iS x S x≤ , then we will call that P  is 

strict granulation finer than Q , and denote it by 
'P Qp . 

Definition 5.1 (Liang and Qian 2006) 

Let ( , )S U A= be an information system and 

G be a mapping from the power set of A to the 

set of real numbers. We say that G is a 

knowledge granulation in an information system 

if G satisfies the following conditions: 

1) ( ) 0G P ≥ for any P A⊆  (Non- 

negativity); 

2) ( ) ( )G P G Q=  for any ,P Q A∈  if there 

is a bijective mapping function : ( )f K P →  

( )K Q  such that  

( ) ( ( )) ( {1,2, , })P i P iS u f S u i U= ∀ ∈ L ,  

where ( ) { ( ) | }P i iK P S u x U= ∈  and 

( ) { ( ) | }Q i iK Q S u x U= ∈  (Invariability); 

3) ( ) ( )G P G Q<  for any ,P Q A∈  with 
'P Qp  (Monotonicity).  

Corollary 5.1 If P Qp , then ( , )D P ω ≤  

( , )D Q ω . 

Proof. Since knowledge {{ }| }i iu u Uω = ∈  

and P Qp . So for iu we have that  

{ }iu ⊆ ( ) ( )P i Q iS u S u⊆ .  

Thus, 1 ( ) ( )P i Q iS u S u≤ ≤ .  

Hence, we have that 

1

( ) { }1
( , ) (1 )

( ) { }

U
P i i

P i ii

S u u
D P

U S u u
ω

=

∩
= −

∪∑   
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1

( ) 11

( )

U
P i

P ii

S u

U S u=

−
= ∑  

1

( ) 11

( )

U
Q i

i Q i

S u

U S u=

−
≤ ∑  

1

( ) { }1
(1 )

( ) { }

U
Q i i

i Q i i

S u u

U S u u=

∩
= −

∪
∑  

( , )D Q ω= , 

i.e., ( , ) ( , )D P D Qω ω≤ . This completes the 

proof.                                 ■ 

Proposition 5.1 1( ) ( , )G P D P ω=  is a 

knowledge granulation in Definition 5.1. 

Proof. 1) Obviously, it is non-negative; 

2) Let ,P Q A⊆ , then  

1 2( ) { , , , }mU IND P P P P= L  and 

1 2( ) { , , , }nU IND Q Q Q Q= L  in a complete 

information system can be denoted by 

1 2( ) { ( ), ( ), , ( )}P P P UU SIM P S u S u S u= L  

and 

1 2( ) { ( ), ( ), , ( )}Q Q Q UU SIM Q S u S u S u= L . 

Suppose that there be a bijective mapping 

function : ( ) ( )f U SIM P U SIM Q→ such that 

( ) ( ( )) ( {1, 2, , })P i P iS u f S u i U= ∈ L and

( ( )) ( )( {1,2, , })
iP i Q j if S u S u j U= ∈ L ,  

then we have that 

1

( ) { }1
( , ) (1 )

( ) { }

U
P i i

P i ii

S u u
D P

U S u u
ω

=

∩
= −

∪∑  

1

( ) 11

( )

U
P i

P ii

S u

U S u=

−
= ∑  

1

( ) 11

( )

i

i

U
Q j

i Q j

S u

U S u=

−
= ∑  

1

( ) { }1
(1 )

( ) { }

U
Q i i

i Q i i

S u u

U S u u=

∩
= −

∪
∑  

( , )D Q ω= , 

i.e., 1 2( ) ( )G P G Q= . 

3) Let ,P Q A⊆ with 'P Qp , then for arbitrary 

( )( )P iS u i U≤ , there exists a sequence 
' ' '
1 2{ ( ), ( ), , ( )}Q Q Q US u S u S uL  such that 

( ) ( )P i Q iS u S u< . Hence, we obtain that 

1

( ) { }1
( , ) (1 )

( ) { }

U
P i i

P i ii

S u u
D P

U S u u
ω

=

∩
= −

∪∑  

1

( ) 11

( )

U
P i

P ii

S u

U S u=

−
= ∑  

'

'
1

( ) 11

( )

U
Q i

i Q i

S u

U S u=

−
< ∑  

1

( ) { }1
(1 )

( ) { }

U
Q i i

i Q i i

S u u

U S u u=

∩
= −

∪
∑  

( , )D Q ω= , 

i.e., 1 2( ) ( )G P G Q< . This completes the proof. 

■ 

Corollary 5.2 If P Qp , then ( , )D P δ ≥  ( , )D Q δ .  

Proof. Since { ( ) | ( ) , }P i P i iS u S u U u Uδ = = ∈  

and P Qp . So for iu  we have that  

( ) ( )P i Q iS u S u U⊆ ⊆ .  

Thus ( ) ( )P i Q iS u S u U≤ ≤ . 

Hence, we have that 

1

( )1
( , ) (1 )

( )

U
P i

P ii

S u U
D P

U S u U
δ

=

∩
= −

∪∑  

1

( )1 U
P i

i

U S u

U U=

−
= ∑  

1

( )1 U
Q i

i

U S u

U U=

−
≥ ∑  

1

( )1
(1 )

( )

U
Q i

i Q i

S u U

U S u U=

∩
= −

∪
∑  

( , )D Q δ= , 

i.e., ( , ) ( , )D P D Qδ δ≥ . This completes the 

proof.                                 ■ 
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Proposition 5.2 2
1

( ) 1 ( , )G P D P
U

δ= − −  is a 

knowledge granulation in Definition 5.1. 

Proof. 1) Obviously, it is non-negative; 
2) Let , ,P Q A⊆  then 1( ) { ,U IND P P=  

2 , , }mP PL  and 1 2( ) { , , , }nU IND Q Q Q Q= L  

in complete information system can be denoted 

by 

1 2( ) { ( ), ( ), , ( )}P P P UU SIM P S u S u S u= L  

and 

1 2( ) { ( ), ( ), , ( )}Q Q Q UU SIM Q S u S u S u= L . 

Suppose that there be a bijective mapping 
function : ( ) ( )f U SIM P U SIM Q→ such that 

( ) ( ( )) ( {1,2, , })P i P iS u f S u i U= ∈ L  

and ( ( )) ( )( {1,2, , })
iP i Q j if S u S u j U= ∈ L , then 

we have that 

2
1

( ) 1 ( , )G P D P
U

δ= − −  

1

( )1 1
1 (1 )

( )

U
P i

P ii

S u U

U U S u U=

∩
= − − −

∪∑  

1

( )1 1
1 (1 )

U
P i

i

U S u

U U U=

−
= − − −∑  

1

( )1 1
1 (1 )i

U
Q j

i

U S u

U U U=

−
= − − −∑  

1

( )1 1
1 (1 )

( )

U
Q i

i Q i

S u U

U U S u U=

∩
= − − −

∪
∑  

1
1 ( , )D Q

U
δ= − −  

2 ( )G Q= , 

i.e., 2 2( ) ( )G P G Q= . 

3) Let ,P Q A⊆ with 'P Qp , then for arbitrary 

( )( ),P iS u i U≤  there exists a sequence 
' ' '
1 2{ ( ), ( ), , ( )}Q Q Q US u S u S uL  such that 

( ) ( )P i Q iS u S u< . Hence, we obtain that 

2
1

( ) 1 ( , )G P D P
U

δ= − −  

1

( )1 1
1 (1 )

( )

U
P i

P ii

S u U

U U S u U=

∩
= − − −

∪∑  

1

( )1 1
1 (1 )

U
P i

i

U S u

U U U=

−
= − − −∑   

'

1

( )1 1
1 (1 )

U
Q i

i

U S u

U U U=

−
< − − −∑  

1

( )1 1
1 (1 )

( )

U
Q i

i Q i

S u U

U U S u U=

∩
= − − −

∪
∑  

1
1 ( , )D Q

U
δ= − −  

2 ( )G Q= , 

i.e., 2 2( ) ( )G P G Q< . This completes the proof. 

■ 
Proposition 5.1 and 5.2 show that 

( , )D P ω and 
1

1 ( , )D P
U

δ− − are all special 

forms of knowledge granulation in Definition 
5.1, and can be used to measure the uncertainty 
of knowledge induced by attribute set P A⊆ in 
the view of granular computing. 

6. Conclusion 
In the view of granular computing, the 

information entropy and knowledge granulation 

can measure the discernibility ability of 

knowledge on the universe. But these two kinds 

of measures could not felicitously characterize 

the difference between two knowledge with the 

same value of information entropy or knowledge 

granulation. For this reason, a new measure 

so-called knowledge distance has been 

introduced to information systems. We have 

shown the mechanism how this measure 

characterizes the difference among knowledge 

by several important properties and 
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experimental analyses on two public data sets. 

Furthermore, we have pointed out that the 

relationship between the knowledge distance 

and knowledge granulation. With the above the 

discussions, we have developed the theoretical 

foundation of measuring knowledge distance in 

information systems for its further research.  
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