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a b s t r a c t 

As one kind of typical network big data, social-information networks (such as Weibo and Twitter) include 

both the complex network structure among users and the rich microblog/tweets information published 

by users. Understanding the interplay of rich content and social relationships is potentially valuable to the 

fundamental network mining task, i.e. the link prediction. Although some of the link prediction methods 

have been proposed by combining topological and non-topological information simultaneously, the in- 

depth analysis of the rich content still being in a minority, and the rich content in the social-information 

networks is still underused in solving link prediction. In this paper, we approach the link prediction 

problem in social-information network by combining network structure and topic information which is 

extracted from users’ rich content. We first define a kind of user-to-user topic inclusion degree (TID) 

based on the dissemination mechanism of the published content in the social-information networks, and 

then construct a TID-based sparse network. On the basis, we build a fusion probabilistic matrix factor- 

ization model which solves the link prediction problem by fusing the information of the original follow- 

ing/followed network and the TID-based network in a unified probabilistic matrix factorization frame- 

work. We conduct link prediction experiments on two types of real social-information network datasets, 

i.e. Twitter and Weibo. The experimental results demonstrate that the proposed method is more effective 

in solving the link prediction problem in social-information networks. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Network is an important organizational form of real-world data.

nalyzing on network data is essential to help us explore the

aw of network evolution ( Juszczyszyn, Musial, & Budka, 2011;

hang, Fang, Chen, & Tang, 2015a ), and understand the mecha-

ism of complex systems ( Li et al., 2015; Pastor-Satorras, Castel-

ano, Van Mieghem, & Vespignani, 2015 ). Among the many tasks

n network data analysis, link prediction ( Getoor & Diehl, 2005 ) is

he most fundamental one, and its solution is of great significance

or many applications, such as finding like-minded friends in social

etworks ( Aiello et al., 2012 ), recommending items in user-item

etworks ( Xie et al., 2015 ), finding experts in academic networks

 Pavlov & Ichise, 2007 ), and discovering unknown interactions in

iological networks ( Lu, Guo, & Korhonen, 2017 ). 

It still remains a challenge in networks to predict the node-to-

ode relations with rich content. For instance, in social-information

etworks ( Romero & Kleinberg, 2010; Rowe, Stankovic, & Alani,
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012 ) (like Twitter and Weibo) with both social and informational

roperties, as the name implies. Formally, a social-information net-

ork can be modeled as G ( V, E , { T u } u ∈ V ) where V denotes the set

f users, E is the set of following/followed links between users,

nd T u ∈ V correspond to the set of published microblogs/tweets of

ser u . As shown in Fig. 1 , where a directed network is formed

hen some users begin to follow others, and such structures ex-

ose the generalized social relations among people; besides the

ollowing/followed relations in the network, rich published con-

ent, i.e. many tweets published by users, are also existed. As is

ell-known to those who familiar with the platforms of social-

nformation networks (such as Twitter and Weibo), the dissem-

nation of published content is entirely dependent on the net-

ork structure, where a tweet is usually propagated from its pub-

isher to his/her followers. However, the formation of the net-

ork structure is probably due to many complex factors. One fac-

or goes like this: during the process of the content dissemina-

ion, if any content appeals to some users, they would like to cre-

te following links to the information publisher/mediator. Although

sers’ interests seem to play an apparent role in producing the

ollowing/followed links, both the quantity and the exact contents

f the factors that manipulate the formation of the links in the

https://doi.org/10.1016/j.eswa.2018.04.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.04.034&domain=pdf
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mailto:ljy@sxu.edu.cn
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https://doi.org/10.1016/j.eswa.2018.04.034
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Fig. 1. An example of social-information network. The upper part of the figure shows a visual result of the Twitter network with 282 nodes (see the introduction of the 

Datasets in Section 6.1 ), where each node is denoted as a number from 1 to 282, and the node-to-node relations are denoted as directed links. The bottom of the figure is 

the sketch of users’ published content in the social-information network. 
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social-information networks are still not clear. Here comes the

challenge: how to build the relationships between the rich pub-

lished content and the formation of the following/followed net-

work in a social-information network. Dealing with the challenge

is essential to understand the evolution of the network structure

and the dissemination mechanism of the published content in

social-information networks, and is certainly the key to efficiently

solve the link prediction problem in this kind of network. In this

paper, we on the one hand focus on effectively exploiting the rich

content in the social-information networks, and on the other hand,

aim to establish a fusion model which can build the relationships

between the information of the following/followed network and

the rich content and then to improve the link prediction perfor-

mance in the social-information networks. 

For link prediction, many methods have been proposed by re-

searchers from physics, biology, sociology, and computer science,

through focusing on physical networks, biological networks, social

networks, and information networks ( Clauset, Moore, & Newman,

2008; He, Liu, Hu, & Wang, 2015; Luo, Wu, & Li, 2017; Martnez,

Berzal, & Cubero, 2016; Moradabadi & Meybodi, 2017; Rowe et al.,
012; Soares & Prudêncio, 2013; Wang, Liang, Li, & Qian, 2016 ).

he existing metric-based methods, including neighbor-based met-

ics ( Adamic & Adar, 2003; Ravasz, Somera, Mongru, Oltvai, &

arabási, 2002; Zhu, Lü, Zhang, & Zhou, 2012 ), path-based met-

ics ( Katz, 1953; Lü, Jin, & Zhou, 2009; Papadimitriou, Symeonidis,

 Manolopoulos, 2012 ), random walk-based metrics ( Brin & Page,

998; Fouss, Pirotte, Renders, & Saerens, 2007; Jeh & Widom, 2002;

ichtenwalter, Lussier, & Chawla, 2010 ) and auxiliary information-

ased metrics ( Aiello et al., 2012; Anderson, Huttenlocher, Klein-

erg, & Leskovec, 2012; Dong et al., 2012; Wang, Liao, Cao, &

i, 2015 ), are taken into consideration in topological or non-

opological information which can reflect users personal interests

nd social behaviors. Compared to the metric-based methods, the

etwork models such as hierarchical network model ( Clauset et al.,

0 08; Ravasz et al., 20 02 ), stochastic block model ( Airoldi, Blei,

ienberg, & Xing, 2008; Holland, Laskey, & Leinhardt, 1983; Now-

cki & Snijders, 2001 ) and latent-feature model ( Miller, Jordan, &

riffiths, 2009; Palla, Knowles, & Ghahramani, 2012; Zhu, 2012 )

ave expanded the scope of application to a certain extent. De-

pite these significant advances, current state-of-the-art methods
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ay not be good enough for solving the following/followed link

rediction problem in social-information networks. Of the existing

etric-based and the learning-based methods, some methods have

ombined both the topological and non-topological information to

olve link prediction problem. However, the in-depth analysis of

he rich content in solving link prediction problem still being a

inority, and the rich content is still underused in the existing

ink prediction methods. The depth mining and exploiting of the

ich content may be great potential to improve the performance of

ink prediction in the social-information networks. Based on these

onsiderations, we focus on addressing the following problems and

ealing with link prediction task in social-information networks. 

• How to in-depth analysis and exploit the rich content effec-

tively in social-information networks. 
• How to build a fusion model which can fuse the information

of the network structure and the rich published content simul-

taneously and to deal with the link prediction task in social-

information networks. 

Concerning with these problems, this paper defines a kind of

ser-to-user topic inclusion degree based on the dissemination

echanism of the published content in social-information net-

orks and constructs a topic inclusion degree-based network. On

his basis, the paper builds a fusion probabilistic matrix factor-

zation model which solves the link prediction problem by fus-

ng the information of the original following/followed network and

he topic inclusion degree-based network in a unified probabilis-

ic matrix factorization framework. Finally, the linking probability

etween network nodes can be obtained based on the learning re-

ults of the model. The method provides a new way to solve the

ink prediction problem by fusing the two different types of se-

antic between users. 

The rest of the paper is organized as follows. Section 2 in-

roduces the related work, Sections 3 and 4 introduce a topic-

ased network construction and a fusion probabilistic matrix

actorization model, respectively. Section 5 presents the link pre-

iction algorithm based on the fusion model, and Section 6 eval-

ates the proposed methods with different social-information net-

ork datasets. Section 7 summarizes the whole text. 

. Related work 

Research on link prediction has won increasing attention in re-

ent years, and various link prediction methods have been pro-

osed. Furthermore, there are also some surveys ( Hasan & Zaki,

011; Lü & Zhou, 2011; Martnez et al., 2016; Wang, Xu, Wu, &

hou, 2014 ) for the link-prediction problem. The existing link pre-

iction methods can be roughly divided into two parts, i.e. the

etric-based methods and the learning based methods. 

.1. Metric-based link prediction 

A considerable part of metric-based link prediction methods

s based on the topological information of networks, and it can

e classified into three groups. One is to develop a neighbor-

ased similarity for link prediction since neighbors can indi-

ectly reflect users’ social behavior and directly affect users’ social

hoice ( Wang et al., 2014 ), such as Common Neighbors ( Lorrain

 White, 1971 ), Jaccard Coefficient ( Jaccard, 1901 ), Adamic-Adar

oefficient ( Adamic & Adar, 2003 ) and Preferential Attachment

 Barabási & Albert, 1999 ). Another kind of similarity metrics

nclude Local Path ( Lü et al., 2009 ), Katz ( Katz, 1953 ), Re-

ation Strength Similarity ( Chen, Gou, Zhang, & Giles, 2012 ),

riendLink ( Papadimitriou et al., 2012 ), Vertex Collocation Profile

 Papadimitriou et al., 2012 ) etc, and they take some local topo-

ogical information or global information into consideration. Ran-
om walk-based similarity metrics is the other kind of link predic-

ion methods, which defines the similarity between nodes by using

andom walk methods, such as Hitting Time ( Fouss et al., 2007;

öbel & Jagers, 1974 ), Commute Time ( Fouss et al., 2007 ), Rooted

ageRank ( Brin & Page, 1998 ), SimRank ( Jeh & Widom, 2002;

hang, Hu, He, Gao, & Sun, 2015b ) and Blondel Index ( Blondel, Ga-

ardo, Heymans, Senellart, & Van Dooren, 2004 ). Compared with

he neighbor-based and path-based similarities, the random walk-

ased methods usually have high complexity. 

Besides the topological-based metrics, many non-topological-

ased metrics are defined by using the non-topological informa-

ion in social networks ( Dong et al., 2012; Wan, Lan, Guo, Fan,

 Cheng, 2013; Xie, 2010 ). Specifically speaking, the existing non-

opology-based link prediction methods are commonly dependent

n similarity; if users have some similar attributes, like age, school,

nd interest in the social network, they will be more likely to

ecome friends. Wang et al. (2015) defined a similarity metric

ased on users’ topic, which is extracted by the Latent Dirichlet

llocation model ( Blei, Ng, & Jordan, 2003 ). Aiello et al. (2012)

easured the similarity between users by using the tag-

ing information in social networks. Leroy, Cambazoglu, and

onchi (2010) presented a new similarity measurement based

n the users’ group features. Also, some other non-topology-

ased metrics defined the similarities by using users’ interests

 Anderson et al., 2012 ), keywords ( Bhattacharyya, Garg, & Wu,

011; Rowe et al., 2012 ) or tags ( Rowe et al., 2012 ). Although the

xisting metrics consider topological or non-topological informa-

ion which can reflect users personal interests and social behav-

ors, the effectiveness of the metrics depends on the domain, the

pecific network, and the available information. 

.2. Learning-based link prediction 

A branch of learning methods are based on the classification

odels, where the link prediction task can be considered as a

inary classification one. In a classification-based link prediction

odel, the features are defined on each pair of nodes, and they

an be constructed in topological or non-topological. The topo-

ogical features (such as the neighbors-based metrics and the

ath-based features) are the commonly used features in a

lassification-based link prediction model ( Chiang, Natarajan,

ewari, & Dhillon, 2011; De Sá & Prudêncio, 2011; Leskovec, Hut-

enlocher, & Kleinberg, 2010 ). Besides the topological features, the

on-topological features (such as users’ location, interests, and ed-

cation) are often selected to improve a classification-based link

rediction model ( Rowe et al., 2012; Scellato, Noulas, & Mascolo,

011; Wohlfarth & Ichise, 2008 ). Although various features can be

used in a classification model to solve the link prediction prob-

em, the class imbalance problem would be difficult to be dealt

ith and the models are prone to yield biased results. 

Another kind of learning approaches are based on probabilistic

raphical model (PGM), which builds a statistical network model

o solve link prediction problem. The hierarchical network model

 Clauset et al., 2008 ) models a network as a hierarchical random

raph and the linking probability between nodes can be calculated

y the probability expectation. Stochastic block models ( Airoldi

t al., 2008; Holland et al., 1983 ) assume that the network nodes

an be partitioned into some blocks, and the linking probability

etween any two nodes depends on which blocks they belong to.

atent-feature models ( Kim & Leskovec, 2011; Miller et al., 2009;

alla et al., 2012; Zhu, 2012 ) belong to the kinds of probabilistic

enerative model, where the nodes’ latent-features and the edges

n a network are all generated based on some distribution. Al-

hough the existing PGM-based models provide a deep insight into

etwork structure, the algorithms usually have high complexity

nd do not scale to large networks. 
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Table 1 

Notations. 

Symbol Explanation 

n ∈ R The number of network nodes. 

N ∈ R n × n The adjacency matrix of the following/followed network. 

C ∈ R n × n The adjacency matrix of the constructed TID-based network. 

U ∈ R n × L The latent-feature matrix of network nodes. 

U i ∈ R 1 × L The latent-feature vector of user u i . 

W 

0 ∈ R L × L The linking parameter of network N . 

W 

1 ∈ R L × L The linking parameter of network C . 
�
 t i ∈ R 1 ×K The vectorized topic representation of user u i . 
�
 A i ∈ R 1 ×K The dominant topic vector of user u i . 

p  

i  

t

3

 

w  

s  

c  

c  

i

 

n  

n  

t  

n  

l  

l  

t  

w  

u

 

b  

e  

w  

m  

i  

L  

p  

i  

s  

a  

i  

c  

c  

t  

t

 ∑
 ∑
 

o  

i  

d  

m  

p

D  

t  

d  

t

i

Comparing with the PGM-based methods, the factorization-

based methods usually solve the link-prediction problem by find-

ing the low-rank approximation of the network adjacency ma-

trix ( Menon & Elkan, 2011; Zhai & Zhang, 2015 ). Menon and

Elkan (2011) proposed a matrix factorization-based method to ad-

dress the class imbalance problem by directly optimizing for a

ranking loss, and the model is optimized with stochastic gradi-

ent descent and scales to large graphs. Zhai and Zhang (2015) in-

vestigated both Matrix Factorization (MF) and Autoencoder (AE)

application to link prediction problem. They applied dropout to

training both the MF and AE parts and showed that it can signif-

icantly prevent overfitting by acting as an adaptive regularization.

Song, Meyer, and Min (2014) proposed a rank-one alternating di-

rection method of multiplier (ADMM) for nonnegative matrix fac-

torization, and the experiment results demonstrated that rank-one

ADMM is more efficient and effective than multiplicative update

rule (MUR), alternating least square (ALS), and traditional ADMM. 

There are also several of methods aim to solve the link pre-

diction problem by optimizing ranking-based models. Song, Meyer,

and Tao (2015b) proposed a top- k link recommendation algorithm

by incorporating both the latent features and the explicit fea-

tures of the network, where the latent features are extracted from

the network by optimizing a ranking-based matrix factorization

model, and their experiments demonstrated that the algorithm

outperforms several state-of-the-art methods. Rendle, Freuden-

thaler, Gantner, and Schmidt-Thieme (2009) presented a generic

optimization criterion BPR-OPT for personalized ranking, and the

experiments indicated that the optimization method outperforms

the standard learning techniques for MF and k nearest-neighbor.

Song, Meyer, and Tao (2015a) , Song and Meyer (2015b) proposed

a generalized AUC (GAUC) to quantify the ranking performance of

potential links (including positive, negative and unknown status

links) in partially observed signed social networks. They ( Song &

Meyer, 2015a ) also presented a link ranking approach by optimiz-

ing the AUC function, where a log-likelihood of sigmoid function is

utilized as a convex surrogate for the indicator function of AUC. 

It is notable that in both the metric-based and the learning-

based link methods, there are some methods have considered the

topological information and non-topological information simulta-

neously. Bliss, Frank, Danforth, and Dodds (2014) provided an ap-

proach to solve link prediction problem by incorporating network

topological features and node attributes, and the method exhib-

ited fast convergence and high levels of precision for the top

twenty predicted links. Valverde-Rebaza and Lopes (2013a) pre-

sented some metric-based link prediction methods by combin-

ing structural with community information, and their experiments

showed its effectiveness in directed and asymmetric large-scale

networks. Munasinghe and Ichise (2012) introduced a new time-

aware feature, called ‘time score’ for link prediction using super-

vised machine learning methods, and the experimental results ver-

ify the effectiveness of time score for link prediction. Murata and

Moriyasu (2007) defined a new weighted graph proximity mea-

sures which outperforms previous approaches. Pecli, Cavalcanti,

and Goldschmidt (2017) reported the effects of three different au-

tomatic variable selection strategies (Forward, Backward and Evo-

lutionary) when applied to supervised link prediction, and the

results showed that the use of these strategies does lead to

better classification models, and combining topological and non-

topological data may improve link prediction. Some classical social

theories, such as homophily and weak ties, are also used to solve

the link prediction problem since they can help to capture the use-

ful interaction patterns. Yang et al. (2011) exploited homophily to

predict not only links between a user and his interested services,

but also links between users who have common interests. L and

Zhou (2009) verified that the weak ties play a significant role in

the link prediction problem, especially to remarkably enhance the
redicting accuracy. The above work implies a great potential for

mproving link prediction by combining the topological and non-

opological information in social networks. 

. Topic inclusion degree-based network construction 

To exploiting the rich content in social-information networks,

e first define a user-to-user relation measurement from a per-

pective of the topic which refers to topic inclusion degree; then

onstruct a network which encodes the information of the topic in-

lusion degree between users. The mainly used notations are listed

n Table 1 before we introduce the method of this paper. 

The topic inclusion degree is defined based on the dissemi-

ation mechanism of the published content in social-information

etworks. In a social-information network, the dissemination of

he published content totally depends on the following/followed

etwork structure, and the content usually disseminates from fol-

owees to followers. Because of this, the dissemination of the pub-

ished content will lead to the overlap of certain topics between

wo users u i and u j , and also the overlapping part of the topics

ill account for a certain proportion of the topics of user u i and

ser u j respectively. 

Before we start to define the topic inclusion degree, let’s take a

rief introduction of the “topic”. In text mining, a “topic” is gen-

rally seen as a cluster of words that frequently occur together,

hich is implemented by topic model; topic models are the com-

only used methods to discovery the hidden semantic structures

n large volumes of unlabeled text. Of the existing topic models,

atent Dirichlet Allocation (LDA) ( Blei et al., 2003 ) is the most

opular one in modeling the topic of a document collection. Intu-

tively, given a document collection, each document can be repre-

ented as a distributed topic vector, and each topic is represented

s a distributed word vector based on the LDA model. In a social-

nformation network, the published microblogs/tweets of one user

an be seen as one document, and all the users’ published mi-

roblogs/tweets can be seen as one document collection. Based on

he LDA model, we can get each user’s distributed topic vector in

he social-information network. 

Formally, let �
 t i = < t i, 1 , . . . , t i,k , . . . , t i,K > ( t i,k ∈ (0, 1),

 K 
k =1 t i,k = 1 ) and 

�
 t j = < t j, 1 , . . . , t j,k , . . . , t j,K > ( t j, k ∈ (0, 1),

 K 
k =1 t j,k = 1 ) denote the K -dimension topic distribution vectors

f u i and u j , respectively (details of the data preprocessing are

ntroduced in Section 6.2.2 ). We argue that the topic inclusion

egree is not affected by their topic vectors as a whole, but by the

ost important topics, i.e. the elements of the vector with larger

robability values, which are also known as the dominant topics. 

efinition 1. (Users’ dominant topic vector) Let �
 t i = <

 i, 1 , . . . , t i,k , . . . , t i,K > ( t i,k ∈ (0, 1), 
∑ K 

k =1 t i,k = 1 ) be the K -

imension topic distribution representations of u i , and let t h 
i 

be the

op h topic elements of � t i . The dominant topic vector � A i of user u i 
s defined as 
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Fig. 2. The construction procedures of the topic inclusion degree based sparse net- 

work. The top of the figure is the original tweets dataset of users. The middle of the 

figure describes the process of the tweets data preprocessing which mainly involves 

6 steps, i.e. the non-textual information deletion, stop words removing, words fre- 

quency vector building, users topic vector building, users’ dominant topic vector 

building, and the TID-based sparse network constructing (details of the data pre- 

processing are introduced in Section 6.2.2 ). The bottom of the figure presents the 

finally constructed TID-based sparse network, and the sparse threshold C thr is set to 

0.92 in the dataset. 

n  

f  

a

 

 

 

 

 

i =1 

1 
−→ 

0 is a zero vector. 
2 I is an identity matrix. 
�
 

 i = < A i, 1 , . . . , A i,k , . . . , A i,K > (1) 

here A i,k = 

{ 

t i,k , t i,k ≥ t h i 

0 , t i,k < t h i 

. The determination of the threshold

 

h 
i 

is based on the statistics of the topic elements in datasets, which

ill be described in the (f) step of the “Data preprocessing” (see

ection 6.2.2 ). 

Based on the definition of the dominant topic vector, the topic

nclusion degree between user u i and user u j is defined as follows.

efinition 2. (Topic inclusion degree (TID)) Let �
 A i = <

 i, 1 , . . . , A i,k , . . . , A i,K > and 

�
 A j = < A j , 1 , . . . , A j,k , . . . , A j,K > be the

ominant topic vector of user u i and user u j respectively. The topic

nclusion degree from user u i to user u j can be conveniently de-

ned as 

 i j = 

K ∑ 

k =1 

min (A i,k , A j,k ) 

K ∑ 

k =1 

A ik 

(2) 

here 
∑ K 

k =1 min (A ik , A jk ) denotes the topic overlapping part be-

ween u i and u j , and 

∑ K 
k =1 A ik denotes the dominant topic volume

f u i . 

The topic inclusion degree can also be seen as a kind of asym-

etry topic similarity. That is to say, the weight of the common

opic between user u i and user u j relative to user u i or user u j is

ifferent. If C i j = 0 , it indicates that there is no common topic be-

ween user u i and user u j ; if C i j = 1 , it indicates that the weight of

he common topic between user u i and user u j relative to user u j 
s 1, which means the topic of user u j is all included in the topic of

ser u i . Based on the definition of the topic inclusion degree, we

urther construct a topic sparse network as follows. 

efinition 3. (Topic inclusion degree (TID)-based network) N C =
(V C ; E C ;C;C thr ) denotes the network based on topic inclusion de-

ree, where V C is the set of nodes, E C is the set of edges, C is the

djacency matrix of the network and each element represents the

opic inclusion degree between any pair of nodes u i and u j ( i and

 are the row number and the column number of matrix C respec-

ively), and C thr is a threshold to make the topic inclusion degree

atrix C sparse and when the topic inclusion degree C ij is greater

han C thr , there is a directed link from user u i to user u j . 

Note that the TID-based network N C is a directed network and

he corresponding adjacency matrix C is an asymmetric matrix.

ig. 2 presents the construction procedures of the network in a

witter dataset, and the sparse threshold C thr is 0.92 in the vi-

ualization network. Why is it necessary to make the TID-based

etwork sparse? There are two reasons. The rich published con-

ent in the social-information network will inevitably bring some

oise and the noise will affect the measurement of the TID and

hen model computing afterward. To relieve the impact of noise,

he necessity to make the TID-based network sparse will arise be-

ause the sparse procedure will only retain the relations with cer-

ain TID between the pair of users in the social-information net-

orks. The other reason is that the sparse of the TID-based net-

ork will reduce the complexity of model computing afterward. 

. Fusion probabilistic matrix factorization model 

Given the adjacency matrixes N and C of the following/followed

etwork and the TID-based network, the fusion probabilistic ma-

rix factorization (FPMF) model is built to fuse the two kinds of
etwork information in a unified probabilistic matrix factorization

ramework. Specifically, the FPMF model is based on the following

ssumptions 

1. Each network node is represented as a L -dimension latent-

feature vector U i ( i ∈ { 1 , . . . , n } ), and U is the n × L latent-feature

matrix of the n nodes in the network. We suppose that U i obeys

a L -dimension Gaussian distribution with mean 

−→ 

0 1 and covari-

ance matrix σ 2 
U I

2 , i.e. U i ∼ N( 
−→ 

0 , σ 2 
U I) . The probability density of

the matrix U can be denoted as: 

p(U| σ 2 
U ) = 

n ∏ 

N(U i | −→ 

0 , σ 2 
U I) (3) 
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Fig. 3. A directed probabilistic graphical model representing the relations between 

the matrixes and parameters. 
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2. For measuring the relation between any two nodes in the fol-

lowing/followed network, a binary relation function is defined

as 

g 0 (U i , U j ) = U i W 

0 U 

� 
j (4)

where W 

0 ∈ R L × L is the matrix parameter of the binary relation

function g 0 . 

We assume that the value of the binary function g 0 ( U i , U j )

from node u i to node u j obeys the Gaussian distribution with

mean 1 and variance σ 2 
N I if there is a link from node u i to

node u j . Otherwise, the value of the binary function g 0 ( U i ,

U j ) obeys the Gaussian distribution with mean 0 and variance

σ 2 
N 

I if there is not a link from node u i to node u j . Formally,

U i W 

0 U 

� 
j 

∼ N(N i j , σ
2 
N ) . Where N is the n ∗n adjacency matrix of

the following/followed network. In the adjacency matrix N , the

value N ij will be 1 if there is a link from node u i to node uj , or

the value will be 0 if there is no link from node u i to node u j .

For the matrix parameter W 

0 , we also suppose that W 

0 
l 

obeys a

L -dimension Gaussian distribution with 

−→ 

0 and covariance ma-

trix σ 2 
W 

0 I, i.e. W 

0 
l 

∼ N( 
−→ 

0 , σ 2 
W 

0 I) . Based on the assumption, the

probability density of the parameter matrix W 

0 and the value

of UW 

0 U 

� can be denoted as 

p(W 

0 | σ 2 
W 

0 ) = 

L ∏ 

l=1 

N(W 

0 
l | 

−→ 

0 , σ 2 
W 

0 I) (5)

p(U W 

0 U 

� | N, U, W 

0 , σ 2 
N ) = 

n ∏ 

i =1 

n ∏ 

j=1 

N(U i W 

0 U 

� 
j 
| N i j , σ

2 
N ) (6)

3. Similar to the above assumptions, a binary relation function is

defined as 

g 1 (U i , U j ) = U i W 

1 U 

� 
j (7)

where W 

1 
l 

obeys a L -dimension Gaussian distribution with

mean 

−→ 

0 and covariance matrix σ 2 
W 

1 I, i.e. W 

1 
l 

∼ N( 
−→ 

0 , σ 2 
W 

1 I) . 

Given the nodes’ latent-feature matrix U and parameter ma-

trix W 

1 , we assume that the value of the binary function g 1 ( U i ,

U j ) from node u i to node u j obeys the Gaussian distribution

with mean C ij and variance σ 2 
C 

I. Where C is the n ∗n adjacency

matrix of the TID-based network (see Definition 3 ). Therefore,

the probability density of the parameter matrix W 

1 and the

value of UW 

1 U 

� can be denoted as 

p(W 

1 | σ 2 
W 

1 ) = 

L ∏ 

l=1 

N(W 

1 
l | 

−→ 

0 , σ 2 
W 

1 I) (8)

p(U W 

1 U 

� | C, U, W 

1 , σ 2 
C ) = 

n ∏ 

i =1 

n ∏ 

j=1 

N(U i W 

1 U 

� 
j 
| C i j , σ

2 
C ) (9)

The reason we introduce the matrix parameter W 

0 ∈ R L × L or

W 

1 ∈ R L × L in the binary relation function g 0 or g 1 is that U i W 

0 U 

� 
j 

or U i W 

1 U 

� 
j 

represents a generalized measurement from node u i to

node u j and need to be learned from the specific network data. If

there is a symmetry network, the learned linking parameter matrix

W 

0 or W 

1 will be a symmetry parameter matrix or vice versa. If

 

0 = I or W 

1 = I, the binary relation function g 0 or g 1 just corre-

sponds to the inner product between node u i and node u j in Euclid

space. More important, comparing with the way of the common

used low-rank approximation A ≈ UV 

� in the collaborative filtering

field (where A is the user-item matrix, U is the users’ latent-feature

matrix, and V is the items’ latent-feature matrix), the way of the

factorization N i j ≈ U i W 

0 U 

� 
j 

or the C i j ≈ U i W 

1 U 

� 
j 

is able to model

the transitivity in the networks with the same set of nodes, which

have been validated by Zhu, Yu, Chi, and Gong (2007) . 
Fig. 3 shows the relations among the matrixes and parameters

y using a directed probabilistic graphical model. Through applying

he product rule of the directed probabilistic graphical model, the

oint probability density distribution over the variables U, W 

0 , W 

1 ,

W 

0 U 

� and UW 

1 U 

� can be represented as the decomposition on

he right-hand side of the following equation. 

p(U W 

0 U 

� , U W 

1 U 

� , U, W 

0 , W 

1 | N, C, σ 2 
U , σ

2 
W 

0 , σ
2 

C , σ
2 
N ) 

= p(U W 

0 U 

� | N, U, W 

0 , σ 2 
N ) p(U W 

1 U 

� | C, U, W 

1 , σ 2 
C ) 

p(U| σ 2 
U ) p(W 

0 | σ 2 
W 

0 ) p(W 

1 | σ 2 
W 

1 ) (10)

The goal of the FPMF model is to learn the nodes’ latent fea-

ure representation U , linking parameters W 

0 of the original fol-

owing/followed network and linking parameters W 

1 of the topic

nclusion degree-based network by maximizing the joint probabil-

ty density distribution, which can be deduced as the optimization

roblem argmin 
U, W 

0 , W 

1 

E C , and the objective function E C is denoted as 

 C = 

1 

2 

n ∑ 

i =1 

n ∑ 

j=1 

(N i j − U i W 

0 U 

� 
j ) 

2 + 

λC 

2 

n ∑ 

i =1 

n ∑ 

j=1 

(C i j − U i W 

1 U 

� 
j ) 

2 

+ 

λU 

2 

n ∑ 

i =1 

U i U 

� 
i + 

λW 

0 

2 

L ∑ 

l=1 

W 

0 
l W 

0 
l 

� + 

λW 

1 

2 

L ∑ 

l=1 

W 

1 
l W 

1 
l 

� 
(11)

here λC = 

σ 2 
N 

σ 2 
C 

, λU = 

σ 2 
N 

σ 2 
U 

, λW 

0 = 

σ 2 
N 

σ 2 
W 

0 

, and λW 

1 = 

σ 2 
N 

σ 2 
W 

1 

. In the end,

he objective function E C can be briefly rewritten as 

 C = 

1 

2 

‖ N − U W 

0 U 

� ‖ 

2 
F + 

λC 

2 

‖ C − U W 

1 U 

� ‖ 

2 
F 

+ 

λU 

2 

‖ U ‖ 

2 
F + 

λW 

0 

2 

‖ W 

0 ‖ 

2 
F + 

λW 

1 

2 

‖ W 

1 ‖ 

2 
F (12)

he objective function E C can be solved by using gradient methods,

q. (13) shows the gradients of function E C against variables U, W 

0 

nd W 

1 . 

∂E C 
∂U 

= (U W 

0 � U 

� U W 

0 + U W 

0 � U 

� U W 

0 � − N 

� U W 

0 − NU W 

0 � ) 

+ λC (U W 

1 � U 

� U W 

1 + U W 

1 � U 

� U W 

1 � 

− C � U W 

1 − CU W 

1 � ) + λU U 

∂E C 
∂W 

0 
= U 

� U W 

0 U 

� U − U 

� NU + λW 

0 W 

0 

∂E C 
1 

= λC (U 

� U W 

1 U 

� U − U 

� CU ) + λW 

1 W 

1 (13)

∂W 
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Fig. 4. The sketch of the FPMF model. The upper half of the figure shows the following/followed network, where the adjacency matrix N of the network is approximated as 

N ≈ UW 

0 U � . The lower half of the figure shows the constructed TID-based network, where the adjacency matrix C of the network is approximated as C ≈ UW 

1 U � . 

 

w  

i  

t

i  

l  

i  

w  

b  

a  

s

5

5

 

e  

a  

a  

b  

l  

u  

i  

u

 

F

5

 

m

a  
Intuitively, the FPMF model can be visually described as Fig. 4 ,

here the matrix N of the following/followed network is approx-

mated as N ≈ UW 

0 U 

� (see the upper half part of Fig. 4 ), U n ∗L is

he L -dimension vector representation of network nodes, and W 

0 

s a L ∗L parameter matrix to measure the following/followed re-

ations; the matrix C of the topic inclusion degree-based network

s approximated as C ≈ UW 

1 U 

� (see the lower half part of Fig. 4 ),

here W 

1 is a L ∗L parameter matrix that used to measure relations

ased on the topic inclusion degree. Combining the two different

pproximations, the model aims to learn the low-dimension repre-

entations U , and two kinds of matrix parameters W 

0 and W 

1 . 

. Link prediction based on FPMF model 

.1. Link prediction algorithm 

We have presented the FPMF model which provides a strat-

gy to fusion the information of the following/followed network
nd the topic inclusion degree-based network in a unified prob-

bilistic matrix factorization framework. In the FPMF model, the

asic part of the model is the approximation UW 

0 U 

� of the fol-

owing/followed network N . Supposing we have learned any two

sers’ low-dimension vector representation U i and U j and the link-

ng parameter matrix W 

0 , the linking probability density p ij from

ser u i to user u j can finally be calculated. 

p i, j = p(U i W 

0 U 

� 
j 
| N i j = 1 , σ 2 

N ) = 

1 √ 

2 σ 2 π
e −

(U i W 
0 U � 

j 
−1) 2 

2 σ2 (14) 

The pseudo code of the link prediction procedures based on the

PMF model is shown in Algorithm 1 . 

.2. Computational complexity analysis 

The computational overhead of the model’s learning process is

ainly from the calculation of the gradients of the function E C 
gainst variables U, W 

0 and W 

1 . Because of the sparsity of the
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Algorithm 1 Link prediction based on FPMF model. 

Input: The adjacency matrix N of the following/followed net- 

work, and the adjacency matrix C of the constructed TID-based 

network. 

Output: AUC value and Accuracy result of link prediction. 

1: Initialize: Users’ L -dimension representation U n ∗L , 

matrix parameters W 

0 
L ∗L 

of N, and matrix parameters 

W 

1 
L ∗L of C, L = integer � n . 

2: repeat 

3: U 

new := U 

old − γ ∂E C 
∂U 

. (see Eq. (13)) 

4: W 

0 new := W 

0 old − γ ∂E C 
∂W 

0 . (see Eq. (13)) 

5: W 

1 new := W 

1 old − γ ∂E C 
∂W 

1 . (see Eq. (13)) 

6: until Convergence 

7: for each pair <u i , u j > calculate 

8: p i, j = 

1 √ 

2 σ 2 π
e 
−

(U i W 

0 U � 
j 

−1) 2 

2 σ2 . (see Eq. (14)) 

9: end for 

10: Calculate AUC = 

r ′ +0 . 5 r ′′ 
r . (see Eq. (15)) 

11: Calculate Accuracy = 

k 
P . (see Eq. (16)) 

12: Return: AUC value and Accuracy results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Statistics of the datasets. 

Datasets Tweets number Links Nodes Link density (%) 

Weibo 1 51,597 3182 977 0.33 

Weibo 2 70,654 5877 1378 0.31 

Twitter 1 13,792 1475 282 1.84 

Twitter 2 16,187 1551 337 1.37 

Twitter 3 543,230 26,243 11,328 0.21 
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matrixes N and C , the computational complexity of multiplication

of N and U is O ( μN L ), where μN is the number of nonzero entries

in N . Similarly, the computational complexity CU is O ( μC L ). The

computational complexity of the rest multiplications in the gradi-

ents is O ( nL 2 ). Therefore, the total computational complexity of the

model in one iteration is O (μN L + μC L + nL 2 ) . In other words, the

computational complexity is linearly as the increase of the nonzero

entries in the matrixes N and C . 

6. Experiments 

In this section, we conduct the experiments for the following

purposes: (1) find out whether the proposed fusion model is su-

perior to baseline methods in link prediction, (2) find out whether

our method is superior to other methods in link prediction, (3) an-

alyze the impacts of the sparseness of the constructed topic inclu-

sion degree-based networks on the performance of link prediction,

(4) find out the impacts of the weight parameter λC on link pre-

diction. 

6.1. Datasets 

In our experiments, we adopt two kinds of social-information

network datasets, i.e. Weibo and Twitter. Each of them contains

information on two aspects, the following/followed network and

users’ published content. Twitter and Weibo are well-known social

media platforms for people to create, spread, and share informa-

tion. In such platforms, the following/followed user-to-user rela-

tions formed directed networks. The Weibo and Twitter datasets 3 

we used in this study are derived from Zhang, Liu, Tang, Chen, and

Li (2013a) , which was crawled from Weibo and Twitter platforms.

Since many users have published little or no contents, we select

the users who have more than 50 microblogs/tweets to meet the

experiment requirement. Finally, we extract five sub-datasets, i.e.

Weibo 1, Weibo 2, Twitter 1, Twitter 2 and Twitter 3 as the ex-

perimental datasets. Details of the Weibo and Twitter datasets are

shown in Table 2 . The in-degree distribution of the nodes is also

shown in each network (see Fig. 5 (a)–(e)), where the significant

characteristics of power-law distribution are manifested. 
3 https://aminer.org/Influencelocality . 
.2. Experiment setup and data pre-processing 

.2.1. Experiment setup 

Following the widely used evaluation method in link prediction

iteratures ( Backstrom & Leskovec, 2011; Clauset et al., 2008; Lü &

hou, 2011; Zhai & Zhang, 2015 ), we split the set of the original

ollowing/followed links E into the training set E T and the testing

et E P . Specifically, we take randomly one-tenth of the links in E as

he testing set E P , and the remaining links constitute the training

et E T . 

For the parameter selection of our FPMF models, we conduct

0-fold cross-validation in the training set E T for each set of pa-

ameter values. Specifically, we divide the training set E T into 10

qual subsets, each subset is served as the validation set for test-

ng the model, and the remaining 9 subsets are used as training

ata. For each set of parameter values, the cross-validation pro-

ess is repeated 10 times, with each of the 10 subsets used ex-

ctly once as the validation data. Then we average the results

f the 10-fold cross validation as the estimation of the model

nder the set of parameter values. We finally select the set of

arameter values corresponding to the best average results, and

he selected parameters are ( K = 30 , L = 60 , C thr = 0 . 95 , λC = 0 . 80 )

or Twitter 1, ( K = 20 , L = 60 , C thr = 0 . 70 , λC = 0 . 40 ) for Twitter 2,

 K = 100 , L = 80 , C thr = 0 . 50 , λC = 0 . 40 ) for Twitter 3, ( K = 20 , L =
0 , C thr = 0 . 97 , λC = 1 . 20 ) for Weibo1, and ( K = 40 , L = 80 , C thr =
 . 70 , λC = 2 . 0 ) for Weibo2, in our FPMF models. In addition, the

egularization parameters λU , λW 

0 and λW 

1 are set to 0.05. 

It is notable that if there’s no special specifying, the experiment

etup including the train-test set partition and the parameter con-

guration are the same in the following experiments. 

.2.2. Data preprocessing 

Before the experiment, we need to process the published mi-

roblogs/tweets in the five social-information network datasets and

urther build the TID-based sparse networks. 

1. For the Weibo datasets, we process the microblogs as following

procedures. 

(a) Non-textual information deletion: The messy codes and tags

are first deleted by scanning the content of the original mi-

croblogs. 

(b) Chinese words segmentation ( Chang, Galley, & Manning,

2008; Sproat, Gale, Shih, & Chang, 1996 ): It is a basic proce-

dure for Chinese language processing. In this step, we pro-

cess the texts using the words segmentation tool “jieba”4 . 

(c) Stop words removing: It is also a necessary step in text min-

ing and is usually to remove the nonsense words and the

extremely common words. We remove the stop words based

on the stop words list we’ve collected. 

(d) Words frequency vector building: Based on the above pre-

processing, we can build the word frequency vector. Specif-

ically, we first determine the dimension of the vector for

each dataset according to the number of words in the corre-

sponding dataset; then we treat all the microblogs that one
4 https://github.com/fxsjy/jieba . 

https://aminer.org/Influencelocality
https://github.com/fxsjy/jieba
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Fig. 5. The in-degree distribution of nodes in the five networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

user has posted as one text document and vectoring the text

document in the words frequency space; finally, the dimen-

sions of the users’ frequency vector corresponding to the

two Weibo datasets (Weibo 1, Weibo 2) are 3740 and 6011

respectively. 

(e) Users’ topic vector building: In text mining, Latent Dirichlet

allocation (LDA) ( Blei et al., 2003 ) is a generative statistical

model which aims to mine the latent topic representation.

Based on the users’ words frequency vector in the last step,

we obtain each user’s topic vector representation by using

the LDA toolkit from scikit-learn ( Pedregosa et al., 2011 ). 

(f) Users’ dominant topic vector building: Based on the defi-

nition of the dominant topic vector (see Definition 1.), we
can get each user’s dominant topic vector. The selection of

the top h topic elements in the dominant topic vector is

based on the statistics of the topic elements weight. We

have counted the proportion of the top h topic elements in

the different value of h (1 ≤ h ≤ L ). We found when h = 5 ,

the proportion of the top h topic elements is over 90% in all

the datasets. Thus we take the value of h = 5 to build users’

dominant topic vectors. 

(g) TID-based sparse network constructing: Based on 

Definition 2 and Definition 3 , we can further construct

the TID-based sparse network for each dataset. 

2. For the Twitter datasets, the same preprocessing steps need be

adopted in the tweets, except for the words segmentation pro-
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cedure. Note that the tweets data are already preprocessed in

the original data resource, thus we extract the users’ words

frequency vector directly, and the dimensions of the users’

frequency vector corresponding to the three Twitter datasets

(Twitter 1, Twitter 2 and Twitter 3) are 919, 1877, and 102,033

respectively; the remaining preprocessing steps are the same as

the preprocessing steps of Weibo datasets. 

6.3. Evaluation measures 

For evaluating the experimental results, we adopt two widely

used measures ‘AUC’ (Area under the receiver operating character-

istic) and ‘Accuracy’ to quantify the link prediction performance in

the link prediction literature ( Lü & Zhou, 2011; Valverde-Rebaza &

Lopes, 2013a; 2013b; Yin, Hong, & Davison, 2011; Zhang, L, Wang,

Zhu, & Zhou, 2013b ). 

1. AUC . Given the ranking of all non-observed links in the present

network, the AUC value can be seen as the probability that a

randomly chosen non-observed link is given a higher score than

a randomly chosen non-existent link ( Hanley & McNeil, 1982 ).

Specifically, we can use the following equation to compute the

AUC value. 

AUC = 

r ′ +0 . 5 r ′′ 
r 

(15)

where r is the number of independent comparisons, r ′ is the

times for the non-observed links are given higher scores than

non-existent links, and r ′ ′ is the times for the scores of the non-

observed links are equal to the scores of the non-existent links.

The value of r is set to 10,0 0 0 in our experiments. 

2. Accuracy . It is defined as the ratio between the k accurately pre-

dicted links and the top- P predicted links. In our experiments,

the value of P is the number of the links in the testing set. 

Accuracy = 

k 
P 

(16)

6.4. Comparison methods 

To verify the performance of the proposed method, we con-

duct two parts of comparison experiments. One is to compare the

proposed method with two baseline methods, and the other is to

compare our method with 11 typical link prediction methods. 

6.4.1. The baseline methods 

1. Basic model . The basic probabilistic matrix factorization model

for link prediction, which only considers the following/followed

network. 

E = 

1 
2 

‖ N − U W 

0 U 

� ‖ 

2 
F + 

λU 

2 
‖ U ‖ 

2 
F + 

λ
W 0 

2 
‖ W 

0 ‖ 

2 
F 

(17)

The optimization problem argmin 
U,W 

0 

E can be solved by using gra-

dient methods, Eq. (18) shows the gradients of the function E

against variables U and W 

0 . 

∂E 

∂U 

= (U W 

0 � U 

� U W 

0 + U W 

0 U 

� U W 

0 � 

− N 

� U W 

0 − NU W 

0 � ) + λU U 

∂E 

∂W 

0 
= (U 

� U W 

0 U 

� U − U 

� NU ) + λW 

0 W 

0 (18)

2. Topic inclusion degree (TID)-based link prediction. The method

indicates that two users are more likely to have a link if they
have a larger topic inclusion degree (see Definition 3 ). 
.4.2. Popular link prediction methods 

1. Katz is mentioned as the best link prediction method in

Katz (1953) , which computes the similarity between nodes u i 
and u j by summing over all possible paths from u i to u j . 

m ∑ 

l=1 

β l · | paths l u i ,u j | (19)

where paths l u i ,u j is the set of all length- l path from user u i to

user u j , and β is the weight to the contribution of the paths

with different lengths (we use β = 0 . 001 in our experiments). 

2. Common Neighbors (CN). The CN metric is one of the most

widely-used measurements in link prediction mainly due to its

simplicity( Newman, 2001 ), and it did give better performance

in many link prediction tasks for networks. Because there are

different types of neighbors (followers and followees) in di-

rected social-information network, we base our calculation of

common neighbors on the number of different types of neigh-

bors between user u i and user u j . 
• CN1(Common followers): 

| �−(u i ) ∩ �−(u j ) | (20)

• CN2(Common followees): 

| �+ (u i ) ∩ �+ (u j ) | (21)

• CN3(Common friends): 

| (�−(u i ) ∩ �+ (u i )) ∩ (�−(u j ) ∩ �+ (u j )) | (22)

• CN4(Common followees and followers): 

| (�−(u i ) ∪ �+ (u i )) ∩ (�−(u j ) ∪ �+ (u j )) | (23)

where �+ (u i ) denotes the set of neighbors following user u i ,

�−(u i ) denotes the set of neighbors followed user u i , and

| �+ (u i ) | and | �−(u i ) | separately denote the number of ele-

ments of set �+ (u i ) and set �−(u i ) . 

3. Preferential Attachment (PA)-based method ( Barabási & Al-

bert, 1999 ). The preferential attachment has received con-

siderable attention as a model of the growth of networks

( Barabâsi et al., 2002 ). Given the number of neighbors of user u i 
and user u j , this index is defined as the product of the neighbor

numbers. As mentioned in the definition of CN metrics above,

we also define four PA -based metrics based on the different

types of neighbors between user u i and user u j in a directed

network. 
• PA1(Followers-based): 

| �−(u i ) | × | �−(u j ) | (24)

• PA2(Followees-based): 

| �+ (u i ) | × | �+ (u j ) | (25)

• PA3(Friends-based): 

| �−(u i ) ∩ �+ (u i ) | × | �−(u j ) ∩ �+ (u j ) | (26)

• PA4(Followers and followees based): 

| �−(u i ) ∪ �+ (u i ) | × | �−(u j ) ∪ �+ (u j ) | (27)

4. Low-rank approximation (LRA)-based methods ( Liben-Nowell

& Kleinberg, 2007 ). Low-rank approximation, a common tech-

nique to find an approximate matrix with low-rank of an orig-

inal matrix. For link prediction, LRA is to compute the rank- k

matrix N k that best approximates the network adjacency ma-

trix N and to use entry < i, j > in the matrix N k as the link-

ing score between user u i and user u j . This can be done effi-

ciently using many low-rank approximation techniques, and we

use two common LRA techniques as the comparison methods in

our experiments: Singular Value Decomposition (SVD) ( Golub &

Reinsch, 1970 ) and Non-negative Matrix Factorization (NNMF)

( Lee & Seung, 1999 ). We denote the two LRA-based methods as
LRA-SVD and LRA-NNMF separately. 
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Table 3 

AUC results of baseline methods. 

Baseline methods Our method 

Data sets Basic model TID FPMF model 

Twitter 1 0.8506 0.6883 0.9502 

Twitter 2 0.7676 0.5932 0.9447 

Twitter 3 0.9055 0.8164 0.9128 

Weibo 1 0.9758 0.5848 0.9886 

Weibo 2 0.9489 0.5180 0.9573 
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Table 4 

AUC results of the experimental comparison. 

Methods Weibo 1 Weibo 2 Twitter 1 Twitter 2 Twitter 3 

CN1 0.4566 0.5191 0.8490 0.8356 0.7820 

CN2 0.4688 0.5477 0.8955 0.8878 0.8050 

CN3 0.4742 0.5422 0.7751 0.7447 0.6745 

CN4 0.5240 0.5832 0.9045 0.9105 0.8621 

PA1 0.9150 0.8847 0.9231 0.9141 0.8297 

PA2 0.8936 0.8664 0.9405 0.9416 0.8537 

PA3 0.6990 0.6810 0.8998 0.8917 0.7709 

PA4 0.7881 0.8010 0.9502 0.9418 0.8736 

Katz 0.8466 0.8778 0.9416 0.9363 0.9159 

LRA-NNMF 0.8527 0.9028 0.9354 0.9396 0.9061 

LRA-SVD 0.7594 0.8394 0.7526 0.7751 0.8703 

WIC 0.4995 0.5553 0.6394 0.6313 0.6073 

RA-W 0.4979 0.4860 0.6407 0.6304 0.6122 

CMA-ES1 0.8933 0.8639 0.9412 0.9317 0.8141 

CMA-ES2 0.9042 0.8531 0.9436 0.9382 0.8635 

FPMF 0.9886 0.9597 0.9517 0.9494 0.9187 

Table 5 

Accuracy results of the experimental comparison. 

Methods Weibo 1 Weibo 2 Twitter 1 Twitter 2 Twitter 3 

CN1 0.0014 0.0034 0.0879 0.0897 0.0541 

CN2 0.0035 0.0034 0.06757 0.0769 0.0392 

CN3 0.0015 0.0102 0.1254 0.1090 0.0194 

CN4 0.0013 0.0034 0.0946 0.0577 0.0396 

PA1 0.0564 0.0460 0.1081 0.1090 0.0027 

PA2 0.0125 0.0018 0.1014 0.0577 0.0103 

PA3 0.0251 0.0153 0.1081 0.0833 0.0061 

PA4 0.0031 0.0187 0.1284 0.0833 0.0328 

Katz 0.0 0 01 0.0068 0.1014 0.0769 0.1036 

LRA-NNMF 0.0897 0.0886 0.0932 0.0615 0.0942 

LRA-SVD 0.0646 0.1014 0.0811 0.0577 0.1170 

WIC 0.0 0 01 0.0 0 04 0.0270 0.0449 0.0324 

RA-W 0.0 0 02 0.0 0 04 0.0622 0.0446 0.0467 

CMA-ES1 0.0243 0.0172 0.1051 0.1240 0.1225 

CMA-ES2 0.0627 0.0751 0.1203 0.0943 0.1342 

FPMF 0.1210 0.1452 0.1554 0.1179 0.1665 

Table 6 

The P value of the statistical T test between our method and the comparison meth- 

ods. 

Evaluation metrics AUC Accuracy 

CN1 0.0135 0.0025 

CN2 0.0321 0.0 0 05 

CN3 0.0 0 08 0.0139 

CN4 0.0486 0.0 0 09 

PA1 0.0187 0.0087 

PA2 0.0345 0.0011 

PA3 0.0085 0.0031 

PA4 0.0494 0.0078 

Katz 0.0469 0.0095 

LRA-NNMF 0.0420 0.0011 

LRA-SVD 0.0 0 03 0.0046 

WIC 0.0 0 0 0 0.0 0 01 

RA-W 0.0 0 0 0 0.0 0 01 

CMA-ES1 0.0363 0.0409 

CMA-ES2 0.0400 0.0283 

a  

v  

p  

0  

t

 

C  

i  

i  

s  

f  
.4.3. The methods considering topological and non-topological 

nformation simultaneously 

1. WIC. It has been validated to be the best link prediction

method in literature ( Valverde-Rebaza & Lopes, 2013a ), which

considers community membership information. 

s W IC 
u i ,u j 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

| 	W 

u i ,u j 
| , i f 	W 

u i ,u j 
= 	u i ,u j 

	W 

u i ,u j 

	u i ,u j 

, otherwise (28) 

where 	u i ,u j is the number of the all common neighbors be-

tween u i and u j , and 	W 

u i ,u j 
is the number of the within-

community common neighbors between u i and u j . 

2. RA-W. It is also from literature ( Valverde-Rebaza &

Lopes, 2013a ) considering the community membership in-

formation, which is the second best link prediction method. 

s RA −W 

u i ,u j 
= 

∑ 

z∈ 	W 
u i ,u j 

1 

| 	u i ,u j | (29) 

3. CMA-ES1 ( Bliss et al., 2014 ). It is a linear combination of sim-

ilarities, which contains both topological and non-topological

similarities, and the combination weights is optimized by ap-

plying the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) ( Hansen & Ostermeier, 2001 ), and we refer to CMA-

ES1 in this paper. 

4. CMA-ES2 ( Bliss et al., 2014 ). For fair comparison with our

method, we also implement an another CMA-ES based method,

which replaces the original key-words based similarity with our

TID-based metric (see Definition 3 ). 

.5. Experimental results 

.5.1. Results of baseline methods 

Table 3 shows the performance of our proposed method com-

ared with two baseline methods, i.e. the Basic model, and the

ID-based method in the datasets of Weibo and Twitter separately.

rom the results, we can see that the proposed FPMF model out-

erforms the Basic model significantly. The Basic model underper-

orms our method because another side of information, i.e. the

ublished content by users in the social-information networks, is

gnored in the Basic model. The metric-based baseline method TID

s lower not only than our FPMF model but also than the Basic

odel. This indicates that a single metric has a very limited role

n predicting links in social-information networks. The FPMF model

onsiders both the information of the following/followed network

nd the TID information, and therefore, our link prediction method

s superior to the baseline methods. 

.5.2. Results of comparison methods 

Tables 4 and 5 show the AUC values and Accuracy results of our

PMF model compared with 15 link prediction methods in the five

witter and Weibo datasets separately. In most cases, the results

how that the proposed FPMF model get better Accuracy results
nd AUC values than the compared methods. Table 6 shows the P

alue of the statistical T test between our method and the com-

arison methods. We can see all the statistical P -value is less than

.05, which indicates that our method is significantly better than

he comparison methods. 

As for the four common neighbors-based metrics, CN1, CN2,

N3 and CN4, their performances are almost equal to pure chance

n the very sparse Weibo datasets but better in Twitter; which

ndicates that the neighbors-based metrics are susceptible to the

parseness of the networks (see the Link Density in Table 2 ). The

our Preferential Attachment-based metrics, PA1, PA2, PA3 and PA4,
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Fig. 6. Sparse parameter C thr analysis. The five figures from (a) to (e) respectively show the performances of the FPMF model on data sets Weibo 1, Weibo 2, Twitter 1, 

Twitter 2 and Twitter 3, when the sparse parameter C thr changes. The horizontal axis in each figure represents the values of C thr , the vertical axis on the left in each figure 

represents the running time (s) of the model, and the vertical axis on the right in each figure represents the AUC values of link prediction. 
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get better results than the four common neighbors-based metrics

since the obvious power law distribution of the node in-degree in

the five network datasets (see Fig. 5 (a)–(e)). However, their results

are significantly inferior to our method. The performances of the

Katz-based method are also inferior to our model. In short, the ad-

vantage of the compared metric-based methods is that they have

low complexity and only need to use little information to achieve

the link prediction; while each metric has certain limitation and

one single metric usually cannot get very high results because it

exploits little network information. 

In terms of the LAR-based methods LAR-SVD and LRA-NNMF,

the AUC value and the Accuracy results of LRA-NNMF are better

than LRA-SVD, and they are still inferior to our FPMF model. The

two matrix factorization-based methods in essence are learning-

based method by fitting the network adjacent matrix. Their advan-
age is that they can fit the network adaptively in learning process,

hile overfitting is usually the big problem in the methods. 

The methods WIC and RA-W are also belonging to the common

eighbor-based methods, and they consider the common neighbors

rom the inside and outside communities. They show poor results

n the five social-information networks, which indicates that the

ommunity information is insufficient and even pull down the re-

ults of the original common neighbors-based methods. The reason

or this is that the community information may limit the weak

ies prediction in the social-information networks. The CMA-ES1

nd CMA-ES2 methods get the second best link prediction result

n all comparison methods because they consider the combina-

ion of many metrics in topological and non-topological. That is to

ay, the more features the better results in link prediction can be
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Fig. 7. Parameter λC analysis. The five figures from (a) to (d) respectively show the AUC values on data Weibo 1, Weibo 2, Twitter 1, Twitter 2 and Twitter 3 when the 

weight parameter λC changes in the FPMF model. The horizontal axis in each figure represents the value of λC , and the vertical axis in each figure represents the AUC values 

of link prediction. 
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btained if the features are combined properly; while the more

eatures mean a higher complexity. 

To sum up, the reasons why our FPMF model is superior to the

ther methods can be elaborated from two aspects: From the per-

pective of information fusion, our model can be seen as the fu-

ion of the network information with the topic-based information

n one unified factorization-based model, and the topic-based in-

ormation (the TID information) is a useful supplement to network

opological information; from the perspective of machine learning,

he adopted of the TID information in our FPMF model can be seen

o add a regularization in the factorization-based objective func-

ion from the topic-based semantic space. Therefore, our method

as good generalization ability and shows better results. 

.5.3. Sparse parameter C thr analysis 

In our model, the sparse parameters C thr correspond to the con-

tructed topic inclusion degree-based network, and they control

he sparseness of the network. The bigger the sparse parameter is,

he sparser the network will be. 
The figures from 6 (a) to (e) show the performance of the FPMF

odel on Twitter and Weibo datasets when the sparse parame-

er αC changes. The horizontal axis of each figure represents the

alue of C thr from 0.1 to 0.99, and the two vertical axes in each

gure represent the AUC results of link prediction and the running

ime (s) of the 10 0 0 iterations in the FPMF model separately. From

he red curves of these figures, we can observe when the sparse

arameter C thr become bigger, the iterating time of the model is

ignificantly reduced. The changes of the red curves indicate that

he sparser of the network is, and the less time of the model

uns. From the blue curves in these figures, we can observe when

he sparse parameter C thr increases, the AUC values of link predic-

ion also increase at first, but when αC surpasses a certain thresh-

ld, the prediction results will stop increasing and even decrease

ith further increase of the C thr value. This phenomenon indicates

hat the reasonable use of the sparseness of the constructed un-

erlying network is effective to improve the performance of link

rediction. While over-sparse or under-sparse of the network in

he FPMF model will produce lower results in link prediction. In-
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tuitively, over-sparse of the constructed network means that the

FPMF model cannot fuse the underlying information enough to get

good results for link prediction, and under-sparse of the underlying

network means that the FPMF model fuse much more user-to-user

TID-based information, but at the same time high noise will be

brought to the model, which affects model’s performance. 

6.5.4. Weight parameter λC analysis 

The weight parameter λC balances the information between

the original following/followed network and the topic inclusion

degree-based network. In the FPMF model, if λC = 0 , the model

only considers the information from the following/followed net-

work, and if λC = in f ( inf represent that the value of λC is infin-

ity), the model only extracts information from the topic inclusion

degree-based network. 

The figures from 7 (a) to (e) show the performances of the FPMF

model on Twiter and Weibo datasets when λC is changed sepa-

rately. We observed that the value of λC impacts the link predic-

tion results significantly, which demonstrates that fusing the in-

formation of the underlying network greatly improves the predic-

tion results. As λC increases, the prediction results also increase

at first, but when λC surpasses a certain threshold, the predic-

tion results stop increasing and even decrease. The phenomenon

coincides with the intuition that overmuch usage of such informa-

tion, the observed network, underlying network, rather than rea-

sonable fusing these resources together, cannot generate best per-

formances. 

6.6. Method discussions 

In this section, we summarize the characteristics and advan-

tages of the proposed method and discuss the scalability of the

method. 

1. Constructing the topic inclusion degree-based network is one of

the characteristics of our method. 

The construction of the topic inclusion degree-based network

provides a way to structure the rich published content in social-

information networks. Topic inclusion degree is uniquely user-

to-user semantic in social-information networks, and the TID-

based network encodes the user-to-user semantic relations in

topic space. 

2. The constructed TID-based network and the original follow-

ing/followed network are fused in one unified probabilistic ma-

trix factorization framework. 

In the unified probabilistic matrix factorization framework, the

FPMF model fuses the two networks into a single, consistent,

and compact feature representation of the network nodes. The

learning outcome of the FPMF model is the result of informa-

tion fusion, which not only benefits for performing on the link

prediction task in social-information networks but also helps to

perform on many other network data mining tasks. 

3. The FPMF model provides a general modeling strategy to fuse

network information. 

The FPMF model we built in this paper focuses on fusing the in-

formation of the following/followed links and the user-to-user

semantic relations based on topic. Actually, the FPMF model is

not limited to fuse the information of the topic-based network.

It provides a general strategy to model the multi-network in-

formation via probability matrix factorization. 

7. Conclusions and future work 

The study of how to accurately infer the node-to-node relations

in social-information networks still remains a challenge. This study

presents a fusion model, in which the information of the original
ollowing/followed network and a topic-based network are fused

n one unified probabilistic matrix factorization framework. Based

n the learned latent-feature representation and the learned ma-

rix linking parameters of the fusion model, the linking probability

etween any pair of the network nodes is obtained. To assess the

erformance of the proposed model for link prediction, we com-

are our approach with nine metric-based methods and two tradi-

ionally matrix factorization-based methods. Experiments with two

ypes of real-world social-information networks Twitter and Weibo

how that the proposed approach is effective for predicting the

inks in the social-information networks. 

This work has many potential directions in the future. For ex-

mple, we could study how to conduct incremental learning on the

roposed fusion model so that the model could be adapted to a

ynamic circumstance. Besides, it is worth pointing out that study-

ng on the explanation of the observed links by exploiting the rich

ublished content will be a very interesting direction. 
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ppendix. The derivation process of the objective function 

In the appendix, we will derive the following objective function

f the FPMF model. 
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aximizing the joint probability density distribution is equivalent

o maximizing the following logarithmic function. 

ln p(U W 
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here the five condition probability density distribution functions

an be expressed as Eqs. (33) –(37) because of the Gaussian distri-

utional assumptions. 
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Based on Eqs. (33) –(37) , the logarithmic function (30) can be
ritten in the form 
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here M represents the constant term in the equation. And further

he maximization problem can be expressed as the minimization

roblem argmin 
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here λC = 
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