
An active learning-based SVM multi-class classification model

Husheng Guo a, Wenjian Wang a,b,n

a School of Computer and Information Technology, Shanxi University, Taiyuan, 030006 Shanxi, China
b Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan,
030006 Shanxi, China

a r t i c l e i n f o

Article history:
Received 21 May 2014
Received in revised form
18 November 2014
Accepted 6 December 2014
Available online 18 December 2014

Keywords:
Multi-class classification with unknown
categories
Active learning
Support vector machine
MC_SVMA model

a b s t r a c t

Traditional multi-class classification models are based on labeled data and are not applicable to
unlabeled data. To overcome this limitation, this paper presents a multi-class classification model that
is based on active learning and support vector machines (MC_SVMA), which can be used to address
unlabeled data. Firstly, a number of unlabeled samples are selected as the most valuable samples using
the active learning technique. And then, the model quickly mines the pattern classes for unlabeled
samples by computing the differences between the unlabeled and labeled samples. Moreover, to label
the unlabeled samples accurately and acquire more class information, the active learning strategy is also
used to select compatible, rejected and uncertain samples, which are labeled by experts. Thus, the
proposed model can determine as many classes as possible while requiring fewer samples to be
manually labeled. This approach permits an unlabeled multi-classification problem to be translated into
a classical supervised multi-classification problem. The experimental results demonstrate that the
MC_SVMA model is efficient and exhibits good generalization performance.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In real-world applications, there are many multi-class classifi-
cation problems with unknown categories. Due to the rapid
growth in webpage data, multi-class classification approaches
are needed for automatic webpage annotation. However, it is
impossible to obtain labels for all webpages, and the attainable
labels may not contain all possible cases. As an example, labeled
webpages may only contain two categories (political and eco-
nomic), but the categories of unlabeled webpages are usually
uncertain. Additionally, disease diagnosis is another multi-class
classification case with unknown classes. Similarly, we can only
label the vital signs of existing diseases. When the vital signs from
an incoming patient are different from the statistical data, we
must determine whether a new disease is occurring and if a new
pattern should be built. However, it is not realistic for experts to
label all of the training samples one by one. Several reasons for
this include (1) the labeling cost is always high for large amounts
of data, (2) the problem itself may be not suitable for large scale
labeling, such as fault detection (especially dud detection in the
military), (3) if only a part of the unlabeled samples are extracted
for experts to label, we must know which ones are important or

how many samples are enough to be worthwhile, and (4) experts
may not directly choose which samples to label if the samples are
provided by stream mode. Therefore, efficient approaches to solve
these problems need to be designed.

Although many multi-class classification approaches, such as One-
Versus-One (OvO), One-Versus-Rest (OvR), Directed Acyclic Graph
(DAG) and Global Optimal Classification (GOC) algorithms, have been
presented, they are limited to solving multi-class classification pro-
blems containing known categories [1–4]. If the classes are not
identified before training, typical multi-class classification approaches
cannot be applied directly. Although the unsupervised clustering
technique is away to obtain the categories, the evaluation of clustering
validity is highly important and is a difficult problem. Additionally,
clustering for imbalanced data is another serious issue that must be
dealt with. Hence, clustering is more suitable for data analysis, not for
classification. Manual intervention may be a better choice. Active
learning is such a strategy, which selects certain data as the most
valuable samples to be labeled by experts. It reduces the labeling cost
in a complementary way by querying the labels of the most
informative points. Thus, instead of being a passive recipient of the
data to be processed, the active learner can control what data needs to
be added to the training dataset. In this way, high classification
accuracy can be achieved for only few labeled samples, translating
the above problem into a traditional multi-class classification problem.

This paper presents a novel multi-class classification approach
based on SVM active learning (MC_SVMA). This approach is not a
simple combination of the active learning and the SVM multi-class
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classification approach but allows the former to participate during
the entire learning processes, including the initial pattern classes
mining and subsequent SVM training. The proposed MC_SVMA
model can quickly mine the pattern class in the unlabeled samples
by computing the Discrepancy between the unlabeled and labeled
samples. Next, the problem can be translated into a traditional
multi-class classification problems and the initial hyperplane can
be obtained by SVM learning. Because the rejected, compatible
and uncertain samples are generally difficult to classify, three
measurement factors Rejection, Compatibility and Uncertainty are
defined to determine which samples will serve as the most
valuable samples and be labeled by experts. Located areas of these
three types of samples are referred to as classification blind areas
(CBA), classification compatible areas (CCA) and classification
uncertain areas (CNA), respectively. These areas are introduced
by analyzing the relationships between the unlabeled samples and
the obtained approximate hyperplanes. After extracting a small
part of the most valuable samples in the CBA, CCA and CNA to label,
all of the rejected, compatible and uncertain samples can be
classified effectively. In this way, the convergence speed and
generalization performance can be improved synchronously.

We begin by presenting the background knowledge, including the
active learning and multi-class classification models in Section 2. In
Section 3, we describe how to mine the pattern classes based on the
Discrepancy, introduce three the most valuable samples extraction
techniques based on Rejection, Compatibility and Uncertainty, and
summarize the proposed MC_SVMA algorithm. In Section 4, we
simulate experiments and discuss the proposed model with regards
to efficiency and performance. In the last section, we present this
work's conclusions and discuss future research.

2. Background knowledge

2.1. Active learning

Active learning [5], first presented by Simon in 1974, is an
effective machine learning method that originated to solve unla-
beled binary classification problems. The basic function is to select
the most valuable samples, label them by experts and add them to
the training set. This process is executed iteratively through a
certain number of loops. Presently, active learning has been used
in many fields, including image classification [6], target detection
[7] and text classification [8], which has become a research
hotspot in the machine learning field.

Because the most valuable samples extracted by active learning
directly affect learning efficiency and generalization performance,
the most crucial step for active learning is designing the rules for
selecting the most valuable samples. Most early classical studies
about active learning focused mainly on binary classification tasks,
such as the active binary classification methods that extract the
most valuable samples based on various criteria: measuring the
distance between a hyperplane and samples [9], derived impor-
tance weight [10], degree of uncertainty [11], Query-by-Committee
(QBC) [12–15], neural network [16] or decision tree [17].

SVM introduced by Vapnik [18] is an effective method to solve
pattern recognition and regression problems such as hand-written
digit recognition, face image recognition and time series predic-
tion. Similarly, one key of SVM active learning is designing the
most valuable samples extraction technique. Fig. 1 shows an
intuitive example in which the most valuable samples directly
affect the performance of the final classifier. The samples denoted
by the black solid triangles and the black solid circle in Fig. 1(b) are
more significant for obtaining the good classification results than
those in Fig. 1(a). In other words, if we can select some “good”

samples to label, we can obtain optimal classifiers for all unlabeled
samples at a very low labeling cost.

Generally, if the unlabeled samples near the initial approximate
hyperplane are selected, the hyperplane after retraining may be
slightly changed. On the contrary, if the unlabeled samples far
away from the hyperplane are selected, the hyperplane may be
drastically improved. Therefore, the initial extraction of the most
valuable samples is extremely important for SVM active learning.
Recently, many SVM active methods are being designed by
effective extraction of the most valuable samples for expert
labeling, which effectively improves the efficiency and accuracy
of binary classification [19–22].

2.2. Multi-class classification models

For a multi-class classification problem, assume first that the
training dataset is X ¼ fðxi; yiÞgli ¼ 1, xiARn and yiAf1;2; U U U ; cg. For
the existing multi-class classification models, the OvR model is the
most commonly used [23]. Samples belonging to the jth class are
labeled with þ1 and all other samples are labeled with �1, and
one can subsequently obtain c classifiers, and the jth classifier is
determined by solving the following quadratic optimization pro-
blem:

min 1
2‖w

j‖2þC ∑
l

i ¼ 1
ξji

 !

s:t:

ðwjΦðxiÞÞþbjZ1�ξji; if ðyi ¼ jÞ
ðwjΦðxiÞÞþbjr1�ξji; if ðyia jÞ
ξjiZ0
i¼ 1;2; U U U ; l

8>>>>><
>>>>>:

: ð1Þ

According to formula (1), one can solve the c quadratic optimization
problems and obtain c decision functions. When we predict an
unlabeled sample x, we need only compute c function classifiers
values. The corresponding class maxima and positive distinguishing
function value is selected to label the sample x (see formula (2)):

yc � arg max
j ¼ 1; U U U ;c

f jðxÞ: ð2Þ

Because the OvR needs to train only c binary classifiers, and the
number of classifiers is much smaller than training samples, it is
considered as a type of simple model with a fast testing speed.
However, it may be unbounded due to some samples being
incorrectly classified. For example, samples located in some areas
may not belong to any class (here the “area” is referred to as a
classification blind area, CBA – see Fig. 2(a)), or belong to different
classes at same time (we call this a classification compatibility area,
CCA – see Fig. 2(b)), or even be unsure as to what type of classes
they belong to (for the unlabeled sample x in this area, there exists
a classifier f j such that the distance between the sample x and f j is

Fig. 1. Extraction of the most valuable samples. (a) Unreasonable the most valuable
sample extraction and (b) reasonable the most valuable sample extraction.
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smaller than the marginj; this area is denoted as a classification
uncertain area, CNA – see Fig. 2(c)). Although some of the most
valuable samples may locate in the intersection of regions CBA and
CNA, many samples in CBA may be not in CNA (See the shadow
region in following Fig. 3(a)). Similarly, some of the most valuable
samples may belong in the intersection of regions CCA and CNA,
but many of them in CCA do not locate in CNA (See the shadow
region in following Fig. 3(b)). At present, some existing SVM-based
active learning techniques can select the most valuable samples
from the CNA region by incorporating suitable diversity criteria
[24,25], but there are no effective methods to distinguish between
samples in CBA and CCA.

Additionally, there are also other typical multi-class classifica-
tion models. The OvO model constructs all the possible N¼
cðc�1Þ=2 binary classifiers [26]. The number of classifiers obtained
by the OvO model is often too large, and the model is too complex.
This model is therefore not suitable for solving multi-class classi-
fication problems containing many classes. On the basis of the OvO
model, the DAG model decides the category of a new sample by
building a decision tree [27]. The GOC model obtains c decision
functions by solving a quadratic optimization problem which may
be too complex for large-scale problems [4]. Other multi-class
classification models are generally improvements upon these
traditional models [28–30].

2.3. Multi-class classification models based on active learning

In recent years, there have been many research studies of
multi-class classification models based on active learning, such as
the multi-class classification active learning method that extracts
the most valuable samples by margin-based disagreement, uncer-
tainty sampling-based disagreement, or specific disagreement
[31]. Furthermore, converting an active multi-class classification
problem into a series active binary classification problem is also an
efficient path [32].

Some scholars have developed SVM active multi-class classifi-
cation methods. For example, Patra et al. [24] presented the novel

batch-mode active learning technique for solving multi-class
classification problems by using the SVM classifier with the
multi-class classification method. The uncertainty of each unla-
beled sample is measured by defining criteria that not only
consider the smallest distances to the decision hyperplanes but
also take into account the distances to other hyperplanes. Chen
et al. [25] presented a novel multi-class classification algorithm for
music annotation problems. This method can select multiple most
valuable samples in each iteration process, and it solves problems
like reducing redundancy and avoiding selecting outliers within
the selected examples. Although these methods can solve classical
supervised multi-class classification problems, they cannot be
applied immediately to multi-class classification problems with
unknown classes. To the best of our knowledge, obtaining accurate
category labels at an acceptable cost has not yet been discussed.

3. SVM active multi-class classification model

At present, the majority of the research on SVM active multi-
class classification learning focuses on extracting the most valu-
able samples in CNA. Work on the most valuable samples extrac-
tion in CBA and CCA is still lacking. Additionally, most current
methods are focused on multi-class classification with known
categories. Corresponding effective methods for multi-class classi-
fication problems with unknown categories are missing. To
address these needs, this paper presents an effective SVM active
multi classification model. The basic task of it is to select samples
that are as good as possible to label at the lowest labeling cost.
According to the labeled samples, one can obtain the initial class
information. Next, the final classifiers are obtained after classifying
the most valuable samples into the CBA, CCA and CNA categories.

3.1. Pattern class mining

For unlabeled data, the categories are not acknowledged before
training, and research has been performed on mining pattern classes.
Obviously, the random sampling method is a simple and direct way
for sample labeling. Because more samples may need to be selected to
obtain class information, this method is low in mining efficiency and
high in labeling cost, especially for large-scale and complicated
problems. Clustering provides another way to select samples. The
important samples in each cluster (the center of the clusters) can be
identified served as the most valuable samples for labeling. However,
the optimal class mining result may be not obtained due to bottle-
necks in the clustering method itself. Currently, certain of the
machine learning methods for a variety data mining tasks are based
on farthest-first traversal for the purpose of extracting the important
information that is in large datasets. For example, Basu et al. pick the
disjoint neighborhoods that are obtained from clustering by farthest-
first traversal to solve semi-supervised clustering tasks [33]. In this
paper, we use farthest-first-traversal technology, active learning, to
mine initial pattern classes. A factor referred to as the Discrepancy

Fig. 2. The three areas where samples cannot be classified correctly. (a) CBA, (b) CCA and (c) CAN.

Fig. 3. The difference region between CBA (CCA) and CAN. (a) Samples in CBA not
belonging in CNA and (b) Samples in CCA not belonging in CNA.
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measures the difference between an unlabeled sample and labeled
sample as follows:

Definition 1 (Discrepancy). The Discrepancy of the unlabeled
sample xj is defined as:
DiscrepancyðxjÞ ¼ min

xs ALabel_set
dðxj; xsÞ: ð3Þ

where Label_set is the set of labeled samples and dðxj; xsÞ is the
Euclidean distance between the samples xj and xs. If the Discre-
pancy of an unlabeled sample is large (or exceeds a given thresh-
old), it shows that the sample is far from each labeled sample and
may serve as a new pattern class. Fig. 4 provides an intuitive
explanation. In Fig. 4, the labeled sample set is Label_set ¼ fli; lj; lkg
and the unlabeled sample set is Unlabel_set ¼ fum;ung. According
to Definition 1, DiscrepancyðumÞ is equal to dðum; liÞ and
DiscrepancyðunÞ is equal to dðun; lkÞ. Because dðum; liÞodðun; lkÞ, it
is more likely to produce a new class using un rather by using um.

Because computing the Discrepancy of an unlabeled sample
requires at least two labeled samples, the proposed pattern class
mining algorithm (PM_D) includes two parts: (a) The extraction of
the initial two samples to be labeled by experts and (b) the
extraction of as many classes as possible contained in the whole
dataset.

The PM_D algorithm is summarized as follows. In Algorithm 1,
Label_set is the set of labeled samples, Unlabel_set is the set of
unlabeled samples, Class_set is the set of pattern classes and Step
is the iteration loop number. The variable Step may affect the
number of mining classes, which directly affects the final learning
efficiency. The influence of Step is discussed in the specifically in
the experimental section.

Algorithm 1. Pattern class mining based on Discrepancy (PM_D)
Initialize:X ¼ fxigli ¼ 1, Label_set ¼ ϕ, Unlabel_set ¼ X,

Class_set ¼ ϕ, and the given iteration loops Step.
Part1: Extract initial two samples.
Step1: Compute the center μ from the samples in the
Unlabel_set.

μ¼ ð1=lÞ∑l
p ¼ 1xp

Setp2: Extract the first sample.
Setp 2.1 xn1 ¼ arg max

xs AUnlabel_set
dðxs; μÞ.

Setp 2.2 Label the sample xn1 using experts and obtain
the label yn

1 of xn1.
Setp 2.3 Label_set ¼ Label_set [ fxn1g,

Unlabel_set ¼Unlabel_set\fxn1g,
Step2.4 Class_set ¼ Class_set [ fyn

1g.
Step3: Extract the second sample.

Step3.1 xn2 ¼ arg max
xs AUnlabel_set

dðxs; xn1Þ.
Step3.2 Label the sample xn2 using experts and obtain

the label yn

2 of xn2.

Step3.3 Label_set ¼ Label_set [ fxn2g,
Unlabel_set ¼ Unlabel_set\fxn2g.

Step3.4 If (yn

2ayn

1)
Class_set ¼ Class_set [ fyn

2g
Part2: Mine other pattern classes
Step4: Mine other pattern classes and update Label_set,
Unlabel_set and Class_set.

Step4.1: Step¼ 0.
Setp4.2: xno ¼ arg max

xs AUnlabel_set
DiscrepancyðxsÞ.

Step4.3: Label the sample xno using experts and obtain
the label yn

o of xno.
Label_set ¼ Label_set [ fxnog,

Unlabel_set ¼ Unlabel_set\fxnog.
Step4.4: if (yn

oAClass_set)
Step¼ Stepþ1

else {Step¼ 0, Class_set ¼ Class_set [ fyn
og}

Setp4.5: if (SteprStep)
go to Step4.2.

Step5: End the algorithm and obtain the Label_set, Unlabel_set
and Class_set.

In Algorithm 1, samples are selected using the Discrepancy
instead of random sampling, which provides a way to identify as
many classes as possible using as few samples as possible.

To test the performance of PM_D, the pattern class mining
based on a random method (PM_R) and clustering method (PM_C)
(samples that are the nearest to the centers of clusters being
selected to be labeled) are compared.

The PM_R method is summarized as follows.

Algorithm 2. Pattern class mining algorithm based on random
selection (PM_R)
Initialize: X ¼ fxigli ¼ 1, Label_set ¼ ϕ, Unlabel_set ¼ X,

Class_set ¼ ϕ, and the given iteration loops Step.
Step1: Select a sample xi randomly from the initial unlabeled
samples set.

Step2: Label the sample xi using experts and obtain the label yi.
Label_set ¼ Label_set [ fxig,

Unlabel_set ¼ Unlabel_set\fxig.
Step3: if (yiAClass_set)

Step¼ Stepþ1
else

{Step¼ 0, Class_set ¼ Class_set [ fyig}.
Step4: if (SteprStep)

go to Step1.
Step5: End the algorithm and obtain the Label_set, Unlabel_set
and Class_set.

The PM_C method is summarized as follows.

Algorithm 3. Pattern class mining algorithm based on clustering
(PM_C)
Initialize: X ¼ fxigli ¼ 1, Label_set ¼ ϕ, Unlabel_set ¼ X,

Class_set ¼ ϕ, the given iteration loops Step, and the given the
initial clustering parameter k.

Step1: Divide X into k categories fX1; U U UXi; U U U ;Xkg.
Step2: Compute the center μi for each Xi.
Step3: Compute the distance dðxij ; μiÞ between sample xij of ith
cluster and the center μi, and select
xni ¼ argmin

xij AXi

Discrepancyðxij ; μiÞ so that Xn ¼ fxin; i¼ 1; U U U ; kg

can be constructed.

Fig. 4. A large Discrepancy may easily lead to the identification of a new class.
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Step4: Label all the samples in Xn and obtain the corresponding
categories Yn ¼ fyn

i ; i¼ 1; U U U ; kg.
Label_set ¼ Label_set [ Xn,

Unlabel_set ¼Unlabel_set\Xn

Step5: If (YnDClass_set)
Step¼ Stepþ1.

else
{Step¼ 0, Class_set ¼ Class_set [ Yn}.

Step6: If (SteprStep)
kþ1-k, and goto Step1.

else
{ End the algorithm and obtain the Label_set,

Unlabel_set and Class_set}

3.2. The most valuable samples extraction

Many effective approaches for extracting the most valuable
samples for active learning have been presented in [2,6–9,
13–14,19,26]. They are based on two ideas: extracting uncertain
samples (such as those near the hyperplane) as the most valuable
samples, and selecting the most valuable samples by some
evaluation criteria determined by the committee. Either way,
these can effectively classify difficult samples only into CNA
because CBA and CCA are not available for binary classification
problems. Therefore, the means to extract the most valuable
samples for multi-class classification problems is worth further
research.

As mentioned in Section 2.2, for multi-class classification
problems, those samples in three CBA, CCA and CNA are difficult
to classified and are most likely to be the most valuable samples.
These samples may be many in number, and the labeling costs will
increased if all these samples are selected. Hence, only a few part
of rejected samples, compatible samples and uncertain samples
located in CBA, CCA and CNA should be serve as the most valuable
samples for active learning, and some new classes that not be
mined in Section 3.1 may be found as well.

3.2.1. The most valuable samples extraction in CBA
Suppose the set of a series of classifiers F ¼ ff 1; f 2; U U U ; f cg is

obtained after the initial pattern class mining using Algorithm 1.
The Rejection of an unlabeled sample in CBA is defined first.

Definition 2 (Rejection). The Rejection of an unlabeled sample xi
in the CBA is:

RejectionðxiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
c

j ¼ 1
d xi; f j
� �

�ð∑c
j ¼ 1dðxi; f jÞ=cÞ

� �2s : ð4Þ

where dðxi; f jÞ denotes the distance between xi and the hyperplane
f j. For an extreme case, if all the d xi; f j

� �
are equal to the average

value ∑c
j ¼ 1dðxi; f jÞ=c, a sufficiently large value is assigned to

RejectionðxiÞ.
If the Rejection of a sample is large, then the distances between

this sample and all hyperplanes f 1; f 2;⋯; f c obtained by Label_set
are close. Otherwise, the sample must be closer to at least one of
the hyperplanes f 1; f 2;⋯; f c , meaning that a sample with a large
Rejection will be more difficult to classify into one of known
classes, or may produce a new class. Fig. 5 presents is a simple
example. In Fig. 5, the labeled dataset is Label_set ¼ fli; lj; lkg, the
unlabeled dataset is Unlabel_set ¼ fμm; μng, and f i; f j; f k are
obtained as approximate hyperplanes based on the labeled sam-
ples. The distances between μm and f i; f j; f k are similar, but the
distances between μn and these three hyperplanes are different

(μn is the closest to f j). According to Definition 2, we may
determine that RejectionðμmÞ is larger than RejectionðμnÞ. Because
the standard deviation of the distance between μm and the three
hyperplanes is smaller than that of μn, the probability of
yðμmÞ=2Class_set is larger than that of yðμnÞ=2Class_set. In other
words, μm is more likely to contribute to mining a new class.
However, if yðμmÞAClass_set and yðμnÞAClass_set, when μm is
extracted as a most valuable sample, the updating range for the
hyperplane may be larger than that of μn (see Fig. 6). Hence, the
classification information for μm is greater than that of μn. There-
fore, the samples in the CBA with a larger Rejection should be
extracted as the most valuable samples.

On the basis of this analysis, the sample that is nearest to the
center of the CBA should be selected as the most valuable sample
because its Rejection is the biggest. By doing so, a new category
may be produced, or the corresponding hyperplane may be greatly
adjusted. The algorithm for classifying rejected samples is sum-
marized as follows.

Algorithm 4. Classify rejected samples in the CBA
Initialize:Label_set, Unlabel_set, Class_set ¼ f1;2;⋯; cg, K: RBF
kernel.

Step1: Obtain initial classifiers.
Train SVM using all samples in Label_set

based on OvR method and obtain the initial classifier set:
F ¼ ff 1; f 2;⋯; f cg.

Step2: Construct Blind_set ¼ fxi xiAUnlabel_set
�� , for each f jAF

such that f jðxiÞo0g.
Step3: Select the most valuable rejected samples and retrain
SVM.

Step3.1: xnr ¼ arg max
xi ABlind_set

RejectionðxiÞ.
Step3.2: Label the sample xnr using experts and obtain

the label yn
r of xnr .

Label_set ¼ Label_set [ fxnr g,
Unlabel_set ¼ Unlabel_set\fxnr g,
Blind_set ¼ Blind_set\fxnr g,
If (ynr =2Class_set)
{Class_set ¼ Class_set [ fyn

r g}

Fig. 5. Rejected samples.

Fig. 6. Hyperplane updating based on a large Rejection
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Step3.3: Retraining SVM on the new Label_set and
obtain the new F.

Step3.4: If (Blind_setaϕ)
Goto Step2.

Step4: End the algorithm and obtain the final F.

From Algorithm 4, Blind_set ¼ ϕ denotes that most of the
samples in the CBA are dispelled and only a very small number
of the rejected samples in the CBA need to be labeled. This shows
that active learning can correctly classify all the unlabeled samples
for a very low labeling cost.

3.2.2. The most valuable samples extraction in CCA
As mentioned in Section 2.2, samples in the CCA may be

classified in several categories simultaneously. Hence, they should
also be taken as the most valuable samples and labeled by experts.
To determine the most valuable samples in the CCA, a criterion is
defined to measure the compatibility of an unlabeled sample as
follows.

Definition 3 (Compatibility). Suppose the classifiers f 1; f 2; U U U ; f c
are obtained from the labeled samples, and an unlabeled sample xi
in the CCA belongs to c' categories (c'rc). The compatibility of the
sample xi is defined as:

CompatibilityðxiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
c'

d xi; f k
� ��∑

c'
dðxi; f jÞ=c0

 !2
vuut

: ð5Þ

where dðxi; f kÞ is the same as in Eq. (4). Similarly, if all the d xi; f k
� �

are equal to the average value ∑c0dðxi; f jÞ=c0, a sufficiently large
value is assigned to CompatibilityðxiÞ.

If the Compatibility of a sample is large, then the differences in
the various distances between this sample and its corresponding
hyperplanes are small, which means the close degree of the
sample to corresponding hyperplanes are similar. Because those
samples with large a Compatibility may be difficult to determine
class information on, they should be extracted as the most
valuable samples. Fig. 7 shows an intuitive example. In Fig. 7,
the set of labeled samples is Label_set ¼ fli; lj; lkg, the set of
unlabeled samples is Unlabel_set ¼ fμm; μng, and f i; f j; f k are the
obtained approximate hyperplanes. Obviously, dðμm; f iÞ � dðμm; f kÞ
and dðμn; f iÞodðμn; f jÞ. According to Definition 3, CompatibilityðμmÞ
is larger than CompatibilityðμnÞ. Compared with μn, when μm is
extracted as the most valuable sample, the updated range of
hyperplanes may be larger. The convergence speed of the active
learning process will be increased (see Fig. 8).

The classification algorithm for compatible samples is summar-
ized as follows.

Algorithm 5. Classify compatible samples in CCA
Initialize:Label_set, Unlabel_set, Class_set, Classif iers_set F, K:
RBF kernel.

Step1: Construct Compatibility_set ¼ fxi xiAUnlabel_set
�� , so

there at least exists f m; f nAF such that f nðxiÞ40 and
f mðxiÞ40g.

Step2: Extract the most valuable compatible samples and
retrain SVM.

Step2.1: xnc ¼ arg max
xi ACompatibility_set

CompatibilityðxiÞ.
Step2.2: Label the sample xnc using experts and obtain

the label yn
c of xnc .

Label_set ¼ Label_set [ fxnc g,
Unlabel_set ¼Unlabel_set\fxnc g,
Compatibility_set ¼ Compatibility_set\fxnc g,
If (ync =2Class_set)

Class_set ¼ Class_set [ fyn
c g

Step2.3: Retraining SVM on the new Label_set and
obtain the new F.

Step2.4: If (Compatibility_setaϕ)
Go to Step1.

Step3: End the algorithm and obtain the final F.

Similarly to Algorithm 4, in Algorithm 5, there are only a small
number of samples in the CCA that are labeled by experts, and all
samples in the CCA will be removed automatically. Therefore,
those unlabeled samples in the CCA can be classified with a very
low labeling cost.

3.2.3. The most valuable samples extraction in CNA
Class information on those samples in the CNA may be

uncertain, so that they should also be taken as the most valuable
ones. To find the most valuable samples in the CNA, a criterion
used to measure the uncertainty of an unlabeled sample in CNA is
introduced as follows.

Definition 4 (Uncertainty). Suppose a classifier set F ¼ ff 1; f 2;⋯;

f cg is obtained based on the labeled samples. The Uncertainty of an
unlabeled sample xi in the CNA is defined as:

UncertaintyðxiÞ ¼
0; dðxi; f jÞZmarginj

1
min

jA f1;2;⋯;cg
ðdðxi ;f jÞÞ; dðxi; f jÞomarginj

8<
: : ð6Þ

where dðxi; f jÞ is identical to that in Eq.(4). Similarly, if
min

jA f1;2;⋯;cg
ðdðxi; f jÞÞ ¼ 0, then the sample xi is on the hyperplane f j,

and a sufficiently large value is assigned to the UncertaintyðxiÞ.
Generally, if the UncertaintyðxiÞ is large, then the distance of xi to
the nearest classifier f j is small, meaning that the uncertainty that the
sample belongs to the jth class (or other classes) is large. Therefore,
this sample should be extracted as the most valuable sample.

Because different sample distributions in CNA influence the most
valuable samples extracted using Uncertainty, some hyperplanes
may be updated continuously, whereas others may never be upda-
ted (See Fig. 9). In Fig. 9, suppose dðfA1;A2;B1;B2g; f 1Þomargin1,Fig. 7. Compatible samples.

Fig. 8. Hyperplane updating based on the Compatibility
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dðfB3;C1;C2g; f 2Þomargin2 and dðD1; f 3Þomargin3, but dðfA1;A2;

B1; B2g; f 1Þ⪡dðD1; f 3Þ and dðfB3;C1;C2g; f 2Þ⪡dðD1; f 3Þ, so Uncerta
intyðfA1;A2;B1;B2;B3;C1;C2gÞ⪢UncertaintyðD1Þ. If the most valuable
samples are only extracted based on the Uncertainty directly, the
classifiers f 1 and f 2 may be updated continuously but f 3 will not be
updated. Moreover, the sequential implementation for hyperplane
updating may lead to slow convergence.

To solve the unbalanced hyperplane-updating problem, an
improved batch-mode method for most uncertain valuable sample
extraction criteria, the “Round Robin” principle, is used. With this
method, the extraction process for the most uncertain valuable
sample is balanced and more efficient. To demonstrate this
method accurately, an improved measure of uncertainty is defined
to measure the Uncertainty of an unlabeled sample in the CNA,
which relies on a classifier first.

Definition 5 (Improved Uncertainty). Suppose the classifier set
F ¼ ff 1; f 2;⋯; f cg is obtained based on the labeled samples and the
margin of jth classifier is marginj. The Uncertainty of an unlabeled
sample xi on the jth hyperplane in CNA is redefined as:

Uncertaintyðxi; f jÞ ¼
0; dðxi; f jÞZmarginj

1
dðxi ;f jÞ; dðxi; f jÞomarginj

8<
: : ð7Þ

Based on the “Round Robin” principle, an algorithm for extract-
ing the most valuable uncertain samples is presented and is
summarized as follows.

Algorithm 6. Classify uncertain samples in the CNA based on the
“Round Robin” principle

In Algorithm 6, there are Uncertainty_set
�� �� uncertain samples

near all of the classifiers, but only a few of them will be identified
as the most valuable samples. Moreover, there are c' to 2c'
hyperplanes that will be improved in a “Round Robin” process
(c' is the class number of the Uncer_set). It means that at least two
hyperplanes are adjusted for cases (3) and (4), and then the
convergence speed will increase significantly. Additionally, the
degree of each hyperplane adjustment is relatively large, which
may also lead to increase the convergence speed. Fig. 10 shows an
intuitive explanation of the proposed Algorithm 6. From Fig. 10,
the samples that are denoted by triangles belong to the jth class
(labeled by þ1), and others are denoted by gray squares (labeled

by -1) and belong to the other classes. Suppose that the initial
obatained classifier is f oldj , the margin of classifier f oldj is marginold

j ,
and the distance between xnu and the old hyperplane f oldj is
þdðxnu; f oldj Þ or �dðxnu; f oldj Þ. The þdðxnu; f oldj Þ represents that the
sample xnu is on the positive side (the jth class) of the hyperplane
f oldj , i.e., f oldj ðxnuÞ40. Similarly, �dðxnu; f oldj Þ represents that sample
xnu is on the negative side (the other class) of the hyperplane f oldj ,
i.e., f oldj ðxnuÞo0. Generally, dðxnu; f oldj Þ⪡marginold

j . Then, xnu should be
extracted as the most valuable uncertain sample.

(1). If f oldj ðxnuÞ40 and yn
u ¼ classj (See Fig. 10(a)), then f newj can be

obtained by shifting f oldj in parallel. Those unlabeled samples
that are located on the upper side (denoted by dashed circles)
within ½þdðxnu; f oldj Þ; þmarginold

j =2� of hyperplane f oldj are
unnecessary to be labeled by the experts and can be classified

into the jth class automatically. The hyperplane updating
range is

Δ1ðf newj ; f oldj Þ �
dðxnu; f oldj Þþmarginold

j =2

2
�dðf oldj ; xnuÞ

¼
marginold

j �2dðxnu; f oldj Þ
4

: ð8Þ

(2). If f oldj ðxnuÞ40 and yn
uaclassj (See Fig. 10(b)), then the unla-

beled samples that are located on the lower side (denoted
with dashed circles) within ½�marginold

j =2; þdðxnu; f oldj Þ� of
hyperplane f oldj are also unnecessary to be labeled because
they cannot belong to the jth class. The hyperplane updating

Initialize:Label_set, Unlabel_set, Class_set, Classif iers_set F, K: RBF kernel.
Step1: Construct Uncertainty_set ¼ fxi xiAUnlabel_set

�� , so that there exists some f jAF , such that the Uncertaintyðxi; f jÞ40g and
F '¼ ff jjf jAF , so that there exists some xiAUnlabel_set, such that Uncertaintyðxi; f jÞ40g.

Step2: Extract the most valuable uncertain samples for every hyperplane.
Step2.1: Construct Uncer_set ¼ fxujxu ¼ arg max

xi AUncertainty_set;
Uncertaintyðxi; f jÞ; f jAF 'g.

Step2.2: Extract the most valuable uncertain samples of f nj and retrain the SVM.
Step2.2.1: xnu ¼ arg max

xu AUncer_set
Uncertaintyðxu; f jÞ,

Step2.2.2: Label the sample xnu using experts and obtain the label yn
u of xnu,

Label_set ¼ Label_set [ fxnug,
Unlabel_set ¼Unlabel_set\fxnug,
Uncer_set ¼ Uncer_set\fxnug,
If (yn

u =2Class_set)
Class_set ¼ Class_set [ fyn

ug,
Step2.2.3: Retraining SVM on new Label_set and obtain the new F,
Step2.2.4: If (Uncer_setaϕ)

Go to Step2.2.1.
Step2.3: Uncertainty_set ¼ Uncertainty_set\Uncer_set,
Step2.4: If (Uncertainty_setaϕ)

Go to Step1.
Step3: End the algorithm and obtain the final classifiers F.

Fig. 9. Imbalanced hyperplanes updating.
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range is

Δ2ðf newj ; f oldj Þ �
marginold

j

2
þdðxnu; f oldj Þ: ð9Þ

(3). If f oldj ðxnuÞo0 and yn
u ¼ classj (See Fig. 10(c)), then the unla-

beled samples that are located on the upper side (denoted
with dashed circles) within ½�dðxnu; f oldj Þ; þmarginold

j =2� of
hyperplane f oldj are also unnecessary to be labeled because
they can be classified into the jth class automatically. The
hyperplane updating range is

Δ3ðf newj ; f oldj Þ �
marginold

j =2�dðxnu; f oldj Þ
2

þdðxnu; f oldj Þ ¼
marginold

j þ2dðxnu; f oldj Þ
4

: ð10Þ

(4). If f oldj ðxnuÞo0 and yn
uaclassj (See Fig. 10(d)), then the unlabeled

samples that are located on the lower side (denoted with dashed
circles) within ½�marginold

j =2; �dðxnu; f oldj Þ� of hyperplane f oldj are
also unnecessary to be labeled because they cannot belong to the
jth class. The hyperplane updating range is

Δ4ðf newj ; f oldj Þ �
marginold

j

2
�
marginold

j =2þdðxnu; f oldj Þ
2

¼
marginold

j �2dðxnu; f oldj Þ
4

: ð11Þ

For practical problems, the hyperplane updates may not be
parallel. Therefore, the above analysis is only an approximation,

and Δ1ðf newj ; f oldj Þ, Δ2ðf newj ; f oldj Þ, Δ3ðf newj ; f oldj Þ and Δ4ðf newj ; f oldj Þ are
greater than zero because dðxnu; f oldj Þ⪡marginold

j such that the degree
of each hyperplane update is relatively large.

3.3. MC_SVMA method

To solve the multi-class classification problems containing
unknown classes, the proposed MC_SVMA algorithm first mines
the possible pattern classes contained in unlabeled samples using
the Discrepancy. Then, three factors (Rejection, Compatibility and
Uncertainty) are used to extract the most valuable samples in the
CBA, CCA and CNA, respectively. By analyzing Algorithm 4, it can be
seen that the rejected valuable sample extracted by this algorithm
is not always the most valuable sample in CNA because it has the
largest rejection value and it may be near the center of CNA.
Similarly, by analyzing Algorithm 5, it can be seen that the
compatible sample extracted by this algorithm is not always the
most valuable sample in CNA, because it has the largest compat-
ibility value and it may be near the intersection region of two
classifiers. Because the mining process in these three areas is not
in fixed order, we testify the different mining process sequences in
CBA, CCA and CNA. By classifying these certain difficult distin-
guished samples, good classification performance can be obtained.
The process for the MC_SVMA algorithm is shown in Fig. 11.

The MC_SVMA algorithm contains two steps: initial pattern
class mining and SVM active learning. The main steps in the
proposed MC_SVMA algorithm are summarized as follows.

Algorithm 7. MC_SVMA algorithm
Initialize: Unlabeled training set X ¼ fxigli ¼ 1, K: RBF Kernel.

Fig. 10. Hyperplane updating based on the Uncertainty (a) f oldj ðxnuÞ40, ynu ¼ classj , (b) f
old
j ðxnuÞ40, yn

uaclassj , (c) f
old
j ðxnuÞo0, ynu ¼ classj , (d) f

old
j ðxnuÞo0,yn

uaclassj .

H. Guo, W. Wang / Pattern Recognition 48 (2015) 1577–15971584



Step1: Mine the pattern classes based on Algorithm1 and obtain
initial Label_set, Class_set, and the set of a series classifiers F.

Step2: Extract and classify the most valuable samples in CBA,
CCA and CNA using Algorithms 4, 5 and 6.

Step3: Obtain the final multiple classifiers F.

3.4. Complexity analysis

The proposed MC_SVMA method includes two procedures: the
pattern class mining and sample classification. Assume that the
sample set size is l. In the first process (PM_D algorithm), the
complexity of labeling the initial two categories samples is OðlÞ.
Suppose that the iteration loops in the other pattern class process is
m (mo l) and that the number of unlabeled samples is l� i�1 in the
ith iteration loop, which implies that the complexity is Oðl� i�1Þ for
the ith iteration loop. Therefore, the complexity of the PM_D algorithm
is Oðð2lm�m2�3mÞ=2ÞþOðlÞ ¼OðlmÞ. Because the complexity of the
initial clustering processing of the PM_C algorithm is Oðl2Þ, it is not
used to solve large-scale practical problems. However, PM_D and
PM_R both have high learning efficiency and they can be used to solve
large-scale class-mining tasks. Although the complexity of PM_R is less
than PM_D and PM_C, the labeling cost of PM_R is higher.

To verify the efficiency of the most valuable samples extraction
using MC_SVMA, five commonly used active multi-class classification
methods are used to compare references. MC_BA [24] selects the
most uncertain valuable samples by defining criteria that not only
consider the smallest distance to the decision hyperplanes but also
take into account the distances to other hyperplanes, if the sample is
within the margin of their decision boundaries. MC_HA [34] selects
samples that are nearest to the current hyperplane to be the most
valuable samples, MC_PDA [35] extracts the most valuable samples
through the probability distribution over the unlabeled samples, and
Shannon entropy (MC_SEA) and Informational entropy (MC_IEA) [36]
are used to extract the most valuable samples.

In the second multi-class classification process, the complexity of
the construction process of Blind_set is OðcjUnlabel_setjÞ, where c is
the number of categories, and the complexity of the SVM training of
Step3.3 in algorithm 4 is OðjLabel_setj2Þ; thus, the complexity of
extracting and classifying the most valuable samples in CBA is

OðAlgorithm4Þ ¼O ðjLabel_setj2þcjUnlabel_setjÞUt1
� � ð12Þ

where t1 is the loop number of Algorithm 4. Although the loop end
condition is Blind_set ¼ ϕ, the Blind_set is reconstructed on every
loop step; thus, the loop number is not equal to the initial value of
jBlind_setj and t1⪡jBlind_setj. Similarly, the complexities of extract-
ing and classifying the most valuable samples in CCA and CNA are as
follows, respectively:

OðAlgorithm5Þ ¼O ðjLabel_setj2þcjUnlabel_setjÞUt2
� � ð13Þ

OðAlgorithm6Þ ¼ O ðjLabel_setj2þcjUnlabel_setjÞUt3
� � ð14Þ

where t2 and t3 are the loop numbers of Algorithms 5 and 6,
respectively, and t2⪡jCompatibility_setj, t3⪡jUncertainty_setj.

Firstly, the MC_BA method selects the most uncertain valuable
samples by defining a custom criterion based on the literature and
extracts the most uncertain valuable samples using a “Round
Robin” (Batch-mode) extraction method [24]. Therefore, its com-
plexity is approximately:

OðMC_BAÞ �O ðjLabel_setj2þcjUnlabel_setjÞU t� � ð15Þ
where t is the extraction loop number. Thus, the complexity of
MC_BA is approximately equal to extracting and classifying the
most valuable samples in the CNA of MC_SVMA method. However,
extracting the most valuable samples by MC_BA not only considers
the smallest distance to the decision hyperplanes but also takes
into account the distances to other hyperplanes. It also adds a
diversity step using kernel k-means clustering algorithm to
improve learning efficiency, but the most valuable samples in
CBA and CCA are not considered and it cannot solve the multi-class
classification problem with unknown categories.

Secondly, because the complexity of the most valuable samples
extraction process by the other four algorithms MC_HA, MC_PDA,
MC_SEA and MC_IEA is OðcjUnlabel_setjÞ and the complexity of the
SVM training is also OðjLabel_setj2Þ. The complexities of these four
methods are approximately:

OðotheralgorithmsÞ � O ðjLabel_setj2þcjUnlabel_setjÞU jUnlabel_setj� �
ð16Þ

Clearly, Blind_set, Compatibility_set and Uncertainty_set are sub-
sets of Unlabel_set, which means that t1⪡jUnlabel_setj,
t2⪡jUnlabel_setj and t3⪡jUnlabel_setj. Therefore, the complexity
of MC_SVMA is smaller than that of the other four active multi-
class classification algorithms.

4. Simulation experiments and discussion

In this section, three aspects are verified: initial pattern class
mining, extracting the most valuable samples and confirming the
classification results. Ten UCI benchmark datasets [37] are used
(Listed in Table 1) for the experiments. Each dataset is randomly
divided into two parts: the training set and the testing set (The
dataset Machine is specific because only one sample is labeled by
the fifth category and to make the classifiers be representative,
this sample serves only as the training datum), and the average
experiment results of three times randomly dividing datasets are
evaluated. The experiments were conducted on a PC (2.66 Ghz
CPU, 1 G RAM) running Matlab7.0.

4.1. Pattern class mining

4.1.1. Effectiveness of pattern class mining
To illustrate the effectiveness of the proposed PM_D algorithm

(Algorithm 1), we compare the results with the classical algo-
rithms PM_R (Algorithm 2) and PM_C (Algorithm 3). Unlike PM_D
and PM_C, the results of algorithm PM_R are not unique. There-
fore, for PM_R, all the experiments are carried out five times, and
the mean result is used as the final result. Fig. 12 shows the class
mining results from using the benchmark datasets.

As seen in Fig. 12, as the number of new labeled samples
increases, all the classes may be mined using these three algo-
rithms. The number of mined categories is always increased using
PM_D and PM_R. However, for PM_C, the results of mining some
datasets produce slight fluctuations (see the mining results on
datasets Balance_scale, Glass, Letter and Segment). This finding isFig. 11. MC_SVMA algorithm operating process.
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observed because the clustering process is executed repeatedly,
and the categories mined in former steps may be not appear in the
following steps.

The average numbers of labeled samples are 18.9 for PM_D,
48.7 for PM_R and 28.9 for PM_C using these datasets. Compared
with PM_R and PM_C, with the exception of the Letter dataset,
PM_D reduces the number of selected samples. For the Letter
dataset, there are only 54 samples labeled when 25 classes are
mined using PM_D. However, the last class is found after 77
samples are labeled, which is larger observed with PM_C. These
experimental results demonstrate that PM_D can measure the
Discrepancy between samples effectively, and the classes deter-
mined from these samples can be mined quickly for a very low
labeling cost.

To further illustrate the effectiveness of PM_D, we investigated
how many new samples need to be labeled to find each class. A
comparison of the results determined from the above three
algorithms is shown in Fig. 13.

It can be observed from Fig. 13 that the number of new samples
that need to be labeled is different when a new class is found.

Generally, fewer samples are needed at the beginning of class
mining. In later periods (especially where one or two classes are
waiting to be mined), more samples will be required for mining
the next class. In most cases, the slopes in the curves derived by
PM_D are less than is observed for other two algorithms. The
number of new labeled samples in each loop does not exceed four
in seven datasets, and the maximum is 23. For PM_R, the number
of newly labeled samples in each loop does not exceed to four in
two datasets, and the maximum number even reaches 150. For
PM_C, that value does not exceed four in four datasets, and the
maximum number reaches 41. We can see that PM_D algorithm is
very high performing with exception of the Segment. This is
because the similarities in samples are not measured effectively
by employing the Euclidean distance. In other words, two samples
may not belong to a same class if their Euclidean distance is
notably small.

Because the relationship between unlabeled samples and the
mined classes are adequately considered, the new algorithm PM_D
can mine new pattern classes in a very short time. Therefore, it
cannot only improve the class mining efficiency but also find as
many classes as possible in the first stage, which plays a decisive
role in the following classification task.

4.1.2. Influence of Step on class mining
For the unlabeled multi-class classification problem, the class

mining results of the first step may directly affect the performance
of the subsequent processes. Therefore, setting a suitable iteration
step threshold Step for finding a new class is crucial. If Step is too
small, then the class mining may be insufficient and some classes
will not be found. However, if Step is too large, the class mining
efficiency may be low and act against the original intention of
active learning. Here, the influence of Step on the performance is
tested before the whole performance of the unlabeled class mining
is verified.

Table 1
Benchmark datasets used in the experiments.

Datasets Training data Testing data Features classes

Balance scale 125 500 4 5
Glass 100 114 10 6
Iris 50 100 4 3
Letter 2000 18,000 16 26
Machine 100 109 7 7
Page block 1000 4473 10 5
Segment 1000 1310 19 6
Vehicle 300 546 18 4
Vowel 220 770 10 15
Wine 78 100 13 3
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Fig. 12. Class mining results using the benchmark datasets.(a) Balance_scale (b) Glass (c) Iris (d) Letter, (e) Machine (f) Page_block (g) Segment (h) Vehicle, (i) Vowel (j) Wine.
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Fig. 14 shows the varying trends of mined class number using
Step for the above three methods. It can be observed that all the
classes can be found with the increment in Step for the three

methods. From the eight datasets, Step determined in the PM_D is
smaller than or equal to the other two methods when all the classes
have been found. For the Letter dataset, when all the classes are
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Fig. 13. Newly labeled samples from each class mining. (a) Balance_scale, (b) glass, (c) iris (d) letter, (e) machine, (f) page_block, (g) segment, (h) vehicle, (i) vowel and (j) wine.
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Fig. 14. The influence of the parameter Step on the mined classes. (a) Balance_scale, (b) glass, (c) iris, (d) letter, (e)machine, (f) page_block, (g) segment, (h) vehicle, (i) vowel and
(j) wine.
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found, the Step values for PM_D, PM_R and PM_C are 23, 35 and 11,
respectively. For the Segment dataset, the Step values of the three
methods are 8, 5 and 10 respectively. Because the number of the
samples labeled using experts are dependent on Step, the labeling
cost of PM_D is significantly lower than for the other two methods.
Therefore, when Step is set to a small value, good class mining results
and a low labeling cost can be obtained by the PM_D.

4.1.3. Robustness of class mining
Because the sample sizes of the different categories are different

for most datasets, the sample distribution is often imbalanced. For
example, there is only one sample belonging to the sixth category in
the Machine dataset. If we select samples labeled by experts
randomly or by clustering, those samples belonging to categories
containing more samples are most likely to be selected, which will
lead greater labeling costs and slower learning times to find as many
classes as possible. The PM_D selects samples by considering the
distances between the labeled and unlabeled samples, but not the
data distribution. Hence, those samples belong to categories
with fewer samples with the same chance to be selected. In this

subsection, three imbalanced datasets Glass, Machine and Page_block
are investigated. In Fig. 15(a) is the statistical results of the sample
number for each class in the three datasets and (b), (c) and (d) are
the distributions of the extracted samples during the class mining
process for the three class mining methods, respectively.

There are three categories with more samples than the others
in the Glass dataset, and samples belonging to one category from
the Machine and Page_block datasets.

For PM_R, the distribution of the selected samples is identical
to that of the original samples and is especially obvious for
Machine and Page_block. The ratios of the selected samples
belonging to the large scale categories are 70.6%, 68.3% and
96.3% for these three datasets, respectively, whereas those ratios
from the original data are 65%, 67% and 88.8%, respectively. This
finding means that categories including more samples are more
easily found. Nevertheless, those samples belonging to these
categories are easily selected during next new class mining period.
These samples are not helpful at finding a new class, but may lead
to convergence slowly even if they cannot find enough categories.
The results from PM_C are similar to that of PM_R. Although the
distribution of the selected samples by PM_C are not always

0

10

20

30

40

1 2 3 4 5 6
Category No.

N
o.

 o
f s

am
pl

es

0

20

40

60

80

1 2 3 4 5 6 7
Category No.

N
o.

 o
f s

am
pl

es

0

200

400

600

800

1000

1 2 3 4 5
Category No.

N
o.

 o
f s

am
pl

es

0

1

2

3

4

5

1 2 3 4 5 6
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0

1

2

3

1 2 3 4 5 6 7
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0

1

2

3

4

5

1 2 3 4 5
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0

5

10

15

1 2 3 4 5 6
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0
10
20
30
40
50
60

1 2 3 4 5 6 7
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0
20
40
60
80

100
120
140
160

1 2 3 4 5
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0

20

40

60

80

1 2 3 4 5 6
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 5 6 7
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

0
40
80

120
160
200
240
280
320
360
400

1 2 3 4 5
Category No.

N
o.

 o
f l

ab
el

ed
 sa

m
pl

es

Fig. 15. Distributions of the extracted samples during the class mining process. (a) Samples in each class of the three imbalanced datasets (Glass, Machine and Page_block),
(b) PM_D method, (c) PM_R method, and (d) PM_C method.

H. Guo, W. Wang / Pattern Recognition 48 (2015) 1577–15971588



identical to that of the original samples, it is affected by original
datasets such as the samples in second category of the Glass
dataset, the second category of Machine dataset and the first
category of Page_block. For the PM_D, the distribution of the
selected samples is well-proportioned for the above three data-
sets, so that fewer samples need to be labeled by experts and more
categories can be found synchronously. The experimental results
support the assertion that the proposed PM_D is effective and
robust in spite of the data distribution.

4.2. The most valuable samples extraction

4.2.1. Influences of different sequences on the most valuable samples
extraction

Firstly, we testify the different sequences of the most valuable
samples extraction methods. Here, the Gaussian kernel function is
adopted with parameter 1.0, and the a penalization parameter is 200.
Because the extraction process of the MC_SVMA method is not in a
fixed order, six different extraction process sequences of the most
valuable samples in CBA, CCA and CNA are experimental. Three
measurements, the rejection samples ratio Rejection_rate, the com-
patibility samples ratio Compatibility_rate and the uncertainty
samples ratio Uncertainty_rate are introduced to measure the
efficiency of the most valuable samples extraction, respectively.

Rejection_ratei ¼
Blind_seti
�� ��

UXij j : ð17Þ

Compatibility_ratei ¼
Compatibility_seti
�� ��

UXij j : ð18Þ

Uncertainty_ratei ¼
Uncertainty_seti
�� ��

UXij j : ð19Þ

where |Blind_seti |, |Compatibility_seti| and |Uncertainty_seti | repre-
sent the numbers of unlabeled samples in the CBA, CCA and CNA,
respectively, and |UXi | is the number of unlabeled samples at the ith
iteration step.

For the MC_SVMA, the iterative steps during the extraction of
the most valuable rejected and compatible samples are set 20, and
it is set as twice the number of categories for the uncertain sample
extraction. When the Rejection_rate or the Compatibility_rate is
twice that in last step, the loop is terminated early.

To express simply, “R”, “C” and “U” represent the extraction of
rejected samples, compatible samples and uncertain samples,
respectively, and “MC_SVMARCU”, “MC_SVMARUC”, “MC_SVMACRU”,
“MC_SVMACUR”, “MC_SVMAURC” and “MC_SVMAUCR” represent the
MC_SVMA methods with six different extraction sequence meth-
ods, respectively.

From the simulations that were conducted on all of the datasets
(see Figs. 16–18), we found that under most circumstances, the
Rejection_rate, Compatibility_rate and Uncertainty_rate of the
MC_SVMA decrease stably. For example, the Rejection_rate
decreases during all of the most valuable samples extraction
procedure on the experimental datasets with the exception of
Vehicle by the method MC_SVMAUCR, despite of its fluctuations.
The Compatibility_rate also decreases stably for all of the datasets
on the seven datasets except for Glass, Vehicle and Segment. The
Uncertainty_rate from MC_SVMA is stable on all of the datasets.
The experimental results support that the rejected, compatible
and uncertain valuable samples that were extracted using the
MC_SVMA are effective and efficient under different extraction
sequences.

4.2.2. Performance verifications under different extraction sequences
Fig. 19 shows the changes and trends in the testing results

using the different extraction sequences of the most valuable

samples from the MC_SVMA method on all of the datasets. It
can be observed that all of the cases obtain similar results under
different extraction sequences. However, some cases are not stable
when compared with binary active classification problems because
the most valuable samples extraction processes for multi-class
classifications are difficult in nature.

Fig. 20 is comparisons of the average testing accuracy and
standard deviation to measure the overall performance. The upper
standard deviation and under standard deviation are defined as
follows.

UPSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nupper�1

∑
ai ZA

ðai�AÞ2
s

ð20Þ

UNSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nunder�1

∑
ai oA

ðai�AÞ2
s

ð21Þ

where nupper (or nunder) represents the numbers of the testing
accuracy values larger (or smaller) than average values A. The
nupper of Iris data by MC_SVMARUC and the nunder of Wine data by
former three methods are equal to one, so the UPSD or UNSD of
these circumstances are not existed.

It can be observed that the average testing accuracy results of
the MC_SVMA method by a variety of the most valuable samples
extraction sequences are closed, and of those, the UPSD and UNSD
are small except for Page_block. For Page_block, the testing accu-
racy values of the above training steps are obviously smaller than
the average values, except for the MC_SVMAURC and MC_SVMAUCR.

Table 2 gives the number of rounds for producing the statistics
shown in Fig. 19. It can be observed that for more categories of
datasets (such as Letter and Vowel), the number of rounds is large.
If the categories number of a dataset is large, then the classifier
number may be large and complex. Thus, the extractions of
rejected, compatible and uncertain valuable samples are then
complex, and the extraction process may be executed many times.
However, if the categories number is small but the dataset size is
small, the rounded number is not very large (such as Segment and
Page_block). Therefore, for the datasets that have too many
categories, the model should be simple.

4.3. Model selection

All of the above MC_SVMA methods with the RBF kernel have
two parameters: kernel parameter p and penalty parameter C, and
these two parameters should be tuned to obtain better general-
ization of the methods [38–41]. It can be observed from the above
that there is a minor variation in the testing accuracy among the
different most valuable samples extractions. To simplify the
analysis, this part executes the model selection only for
MC_SVMARCU except for Page_block because of its large standard
deviation in the testing accuracy. For Page_block, MC_SVMAUCR is
selected to analyze. For the sake of brevity, we present only the
concrete analysis process of the Wine datasets in this paper.

Table 3 shows the influences of p on the maximal testing
accuracy (MAX), the average testing accuracy (AVE) and the
number of algorithm executing rounds (ROU) on the Wine dataset
by the MC_SVMARCU method. From Table 3, it can be observed that
when p takes a small value (e.g., p¼0.1), the testing accuracy is
small (MAX¼92%, AVE¼78.3333%). Then, the testing results
increas with increments in p, and the MAX and AVE remain large
values with [88%, 98%] and [82.25%, 91.6%] for a certain range of p
(i.e., [0.5, 10]). Again, the testing results tend to decrease as p
continues to increment. After pZ20, the testing accuracy varies
mildly, and the number of algorithm executing rounds becomes a
constant. Additionally, when pZ30, all of the testing accuracy
values reach 40%. A similar trend in the number of algorithm
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executing rounds can also be observed from Table 3. By the
presented approach, the optimal p is 2.0.

Secondly, the penalty parameter C is tuned to improve the
generalization performance of the model. Here, the kernel para-
meter takes the value 2.0. Fig. 21 shows the average testing
accuracy versus C. From Fig. 21, it can be seen that the value of
the average testing accuracy is small when C has a small value
(i.e., the average testing accuracy is 25% when C is 0.01). Then, the
average testing accuracy increases steeply when C varies from 0.01
to 10. At this moment, the average testing accuracy reaches
82.25%. Finally, the average testing accuracy changes mildly after
CZ10. When CZ90, the average testing accuracy achieves 91.6%
and does not change. Hence, it can be concluded that the testing
accuracy is scarcely influenced by C. To make the learning process
stable, a large value should be set up for C (e.g., C ¼ 100 for the
Wine dataset).

Because the testing accuracy is scarcely influenced by C, Table 4
gives only the kernel parameter optimization results of the other
datasets. Here, the penalty parameter C is adopted with parameter
200. It can be observed that the kernel parameter p takes a value

in the range [0.8, 2.5] and the model can obtain good general-
ization performance. The reason is that the undetermined para-
meters optimization method can obtain only a locally optimal
solution but not globally optimal results. Thus a grid search
method can be used to optimize the model parameters and
improve the generalization performance for the small size data-
sets, although this approach is inefficient.

4.4. Comparison with other active multi-class classification methods

Fig. 22 shows the changes and trends in the testing results
using the above presented serial MC_SVMA methods
(MC_SVMAUCR for Page_block and MC_SVMARCU for the other
datasets) and other active multi-class classification methods pre-
sented above (in Section 3.4), namely, MC_BA, MC_HA, MC_PDA,
MC_SEA and MC_IEA), on all of the datasets. All of the parameters
of these methods are tuned by the algorithm of Section 4.3. For the
serial MC_SVMA methods, the sample query end conditions are
the same as in Section 3.2.1, and for the other five active multi-
class classification methods, the sample query end conditions are
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Fig. 16. Change tendencies in the Rejection_rate (a) Balance_scale, (b) glass, (c) iris, (d) letter, (e) machine, (f) page_block, (g) segment, (h) vehicle, (i) vowel, and (j) Wine.
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set to be the same as in the corresponding MC_SVMA except on
the dataset Vowel. For the Vowel dataset, there is not enough data
because the most uncertain valuable samples fall within the
margin of the decision boundaries for MC_BA and MC_HA, and
they are terminated early without extracting the 70 unlabeled
samples.

The maximal testing accuracy using MC_SVMA is found to be the
best among these methods except on the datasetsMachine, Segment
and Vowel. On the Machine dataset, the maximal testing accuracy of
MC_SVMA appears to be the best of the results that are observed
using all of the methods. On the Vowel dataset, the maximal testing
accuracy value using the MC_SVMA is only slightly lower than what
is observed when using the other four active multi-class classifica-
tion methods. On the Segment dataset, the maximal testing value
using the MC_SVMA is only slightly lower than what is observed
when using the MC_BA. The experimental results support that
MC_SVMA obtains good generalization performance among the
active multi-class classification learning models.

Fig. 23 shows comparisons of the average testing accuracy and
standard deviation from measuring the overall performance of
these six methods. It can be observed that the average testing
accuracy results of the MC_SVMA method are greater than or
equal to the other four active multi-class classification methods on
seven datasets except for the Page_block, Segment and Wine
datasets. Moreover, the standard deviation values on some of the
datasets of the MC_SVMA method are large, such as the UNSD of
Page_block and the UPSD of Vehicle. Clearly, this finding is caused
by the testing accuracy values being too low for the earlier steps of
Page_block and too high for the last steps of Vehicle. However,
these values do not impact the good generalization performance of
the MC_SVMA method because we focused mainly on the most
optimal testing accuracy of the model.

Furthermore, we find from the experiments that the training
times of active multi-class classification methods MC_HA, MC_PDA,
MC_SEA and MC_IEA are longer than MC_SVMA and MC_BA
because the former methods need to extract only one sample in
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Fig. 17. Change tendencies in the Compatibility_rate. (a) Balance_scale, (b) glass, (c) iris, (d) letter, (e) machine, (f) page_block, (g) segment, (h) vehicle, (i) vowel, and (j) Wine.
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an extraction loop, but the “Round Robin” method is used by
MC_SVMA and MC_BA to extract the uncertain valuable samples.

4.5. Comparison with traditional multi-class classification methods

The traditional multi-class classification methods that do not use
active learning are compared. Firstly, it must be stated that these
traditional multi-class classification methods cannot solve directly
the problems that this paper proposes, i.e., multi-class classification
problems with unknown categories. Thus, in this section, we
compare only the generalization performance and learning effi-
ciency of MC_SVMA and traditional multi-class classification meth-
ods. We assume that all of the training datasets have labels for the
traditional multi-class classification methods. Here, the OvR [23],
OvO [24], DAG [25] and the multi-class classification method based
on decision tree (DT) [26], are compared. The kernel function and
penalty parameters are tuned in the earlier experiments.

Table 5 shows the testing accuracy results of these methods. For
the MC_SVMA active learning method, only the maximal testing

accuracy is meaningful and is obtained for comparison. In the table,
the unlined values that represent the corresponding test accuracy
values are better than the other four traditional multi-class classi-
fication methods. It can be observed that for five datasets, Bal-
ance_scale, Glass, Iris, Vehicle and Wine, the testing accuracy values
of MC_SVMA are higher than for the other traditional multi-class
classification methods, and the testing accuracy values of MC_SVMA
on Machine, Page_block and Segment are only slightly lower than
that of the traditional methods. It means that many of the most
valuable samples are in CBA, CCA and CNA, and they are difficult to
correctly classify automatically by traditional multi-class classifica-
tion methods (such as OvO, OvR, DAG and DT). For OvO and OvR,
the most valuable samples in CBA, CCA are classified into a category
randomly, and for DAG and DT methods, these samples are
classified blindly into one class. However, for the MC_SVMA
method, most valuable samples are not classified into any class
but only extracted, and then the expert-machine interaction
method is used to maintain the high classification accuracy of these
important samples. In summary, the MC_SVMA obtains optimal
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Fig. 18. Change tendencies in the Uncertainty_rate. (a) Balance_scale, (b) glass, (c) iris, (d) letter, (e) machine, (f) page_block, (g) segment, (h) vehicle, (i) vowel and (j) wine.
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results on most datasets when compared with traditional multi-
class classification methods because it can extract the most valuable
samples with more important classification information and obtain
higher testing accuracy results.

Table 6 shows the training time for the five methods. It can be
observed that on all of the datasets, the training time of MC_SVMA

is shorter than that of the traditional methods. The learning
efficiency of MC_SVMA is on average 9 to 230 times as fast as the
OvR method on all of the datasets, and the learning efficiency of
MC_SVMA is on average 6 to 93 times as fast as the OvO and DAG
methods except for the Letter dataset. The DT learning efficiency of
DT is slightly high, but its generalization performance is not perfect.
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Fig. 19. Change tendencies in the testing accuracy. (a) Balance_scale, (b) glass, (c) iris, (d) letter, (e) machine, (f) page_block, (g) segment, (h) vehicle, (i) vowel, and (j) wine.
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Fig. 20. Comparison results of different series MC_SVMA methods.
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4.6. Discussion about the combination of MC_SVMA and OvO

This paper proposes MC_SVMA to solve multi-class classifica-
tion problems with unknown classes by combining active learning
with the OvR based on the SVM. From Table 6, it can be observed
that the learning efficiency of OvR is lower than the OvO method.
Especially if the training set is large, OvO can obtain higher
learning efficiency. For example, the traditional OvO is nearly ten
learning times as fast as OvR. However, the complexity of
MC_SVMA is dependent on the number of classifiers. For a
classification problem with the same number of categories, the
number of classifiers of OvO is larger than the OvR method.
Especially if the number of categories in the dataset is large, the

difference is more obvious. Here, we take machine dataset as an
example; if the OvR is used to construct the MC_SVMA model,
then the number of classifiers is 7. But when the OvO is used, the
number of classifiers becomes 21. The reason is that the complex-
ity of extracting the most valuable samples in the CBA, CCA and
CNA processes is directly dependent on the number of classfiers.
Thus, although the OvO is used in this method, the learning
efficiency might be not obviously improved and the generalization
performance could be affected by the complex extraction process.

5. Conclusions

This paper proposes using MC_SVMA to solve multi-class
classification problems with unknown classes by combining active
learning with SVM. The MC_SVMA has several advantages: (1) it
can mine class information from given unlabeled samples and
obtain categories in different levels according to the different
requirements. (2) based on the labeled samples, certain unlabeled
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Fig. 21. The average testing accuracy versus penalty parameter C.

Table 2
the number of rounds for producing the results of the MC_SVMA methods

Datasets MC_SVMARCU MC_SVMARUC MC_SVMACRU MC_SVMACUR MC_SVMAURC MC_SVMAUCR

Balance scale 18 20 12 16 24 27
Glass 21 15 24 18 27 20
Iris 4 7 8 5 7 7
Letter 92 92 92 92 92 92
Machine 18 22 10 10 11 10
Page block 23 26 25 19 19 22
Segment 50 50 20 35 42 52
Vehicle 32 28 16 26 42 48
Vowel 70 70 58 58 70 70
Wine 5 5 5 9 11 15

Table 3
The testing results from different values of the kernel parameter p.

p ROU Testing accuracy with query samples (%) MAX (%) AVE (%)

0.1 3 60, 83, 92 92 78.3333
0.5 7 68, 60, 82, 95, 95, 95 95 82.5
1.0 5 89, 91, 91, 91, 91 91 90.6
1.5 14 79, 72, 85, 89, 76, 74, 90, 88, 88, 88, 92, 92, 92, 92 92 85.5
n2.0 15 79, 77, 82, 93, 94, 92, 93, 94, 90, 92, 96, 98, 98, 98, 98 98 91.6
2.5 16 79, 80, 82, 93, 95, 94, 94, 98, 94, 97, 96, 97, 97, 97, 97, 97 98 87.4375
3.0 14 79, 78, 90, 89, 80, 85, 88, 89, 93, 92, 93, 93, 93, 93 93 88.21429
5.0 8 84, 76, 75, 80, 80, 83, 91, 89 91 82.25
10.0 7 85, 77, 84, 84, 79, 88, 87 88 83.42857
15.0 7 64, 64, 56, 40, 40, 40, 40 64 49.14286
20.0 7 42, 41, 40, 40, 40, 40, 40 42 40.42857
30.0 7 40, 40, 40, 40, 40, 40, 40 40 40
50.0 7 40, 40, 40, 40, 40, 40, 40 40 40
100.0 7 40, 40, 40, 40, 40, 40, 40 40 40

Table 4
Parameter optimization results.

Datasets p ROU MAX AVE(%)

Balance scale 1.5 13 33.4 32.4
Glass 1.0 21 57.9 54.0
Iris 2.5 6 95 91.5
Letter 1.5 70 56.6 53.8
Machine 0.8 21 76.2 74.1
Page block 1.0 23 93.1 74.6
Segment 1.0 50 85.5 74.3
Vehicle 1.5 34 59.7 39.6
Vowel 1.5 70 46.2 42.6
Wine 2.0 15 98 91.6
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samples that are difficult to distinguish can be classified, and
certain new categories may be found synchronously, (3) unlike the
clustering technique, the MC_SVMA requires experts to participate

in the whole learning process to guide the process properly but for
a small labeling cost, and (4) the MC_SVMA may provide another
way to process large quantities data.
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Fig. 22. Comparison testing accuracy with the other active multi-class classification methods. (a) Balance_scale, (b) glass, (c) iris, (d) letter, (e) machine, (f) page_block,
(g) segment, (h) vehicle, (i) vowel, and (j) wine.
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Fig. 23. Comparison results of different active multi-class classification methods.
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Because the pattern class mining of unlabeled data is an
uncertain problem, dynamic class mining may be more useful for
practical problems. Categories should be identified on more
abstract levels (fewer classes) or more concrete levels (more
classes) automatically by the specific cognitive level of the users.
Therefore, research on dynamic class granule mining will consti-
tute our future work. Finally, the similarities between the samples
in some special datasets may not be effectively measured using
the Euclidean distance, and determining how to classify these
samples using the MC_SVMA method is also an important issue.
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