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Feature selection is a challenging problem in areas such as pattern recognition, machine
learning and data mining. Considering a consistency measure introduced in rough set
theory, the problem of feature selection, also called attribute reduction, aims to retain the
discriminatory power of original features. Many heuristic attribute reduction algorithms
have been proposed however, quite often, these methods are computationally time-
consuming. To overcome this shortcoming, we introduce a theoretic framework based on
rough set theory, called positive approximation, which can be used to accelerate a heuristic
process of attribute reduction. Based on the proposed accelerator, a general attribute
reduction algorithm is designed. Through the use of the accelerator, several representative
heuristic attribute reduction algorithms in rough set theory have been enhanced. Note
that each of the modified algorithms can choose the same attribute reduct as its original
version, and hence possesses the same classification accuracy. Experiments show that these
modified algorithms outperform their original counterparts. It is worth noting that the
performance of the modified algorithms becomes more visible when dealing with larger
data sets.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection, also called attribute reduction, is a common problem in pattern recognition, data mining and machine
learning. In recent years, we encounter databases in which both the number of objects becomes larger and their dimen-
sionality (number of attributes) gets larger as well. Tens, hundreds, and even thousands of attributes are stored in many
real-world application databases [6,12,37]. Attributes that are irrelevant to recognition tasks may deteriorate the perfor-
mance of learning algorithms [44,45]. In other words, storing and processing all attributes (both relevant and irrelevant)
could be computationally very expensive and impractical. To deal with this issue, as was pointed out in [20], some at-
tributes can be omitted, which will not seriously impact the resulting classification (recognition) error, cf. [20]. Therefore,
the omission of some attributes could not only be tolerable but even desirable relatively to the costs involved in such
cases [32].

In feature selection, we encounter two general strategies, namely wrappers [16] and filters. The former employs a
learning algorithm to evaluate the selected attribute subsets, and the latter selects attributes by being guided by some sig-
nificance measures such as information gain [23,46], consistency [6,41], distance [15], dependency [30], and others. These
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measures can be divided into two main categories: distance-based measures and consistency-based measures [20]. Rough
set theory by Pawlak [33–36] is a relatively new soft computing tool for the analysis of a vague description of an object,
and has become a popular mathematical framework for pattern recognition, image processing, feature selection, neuro-
computing, data mining and knowledge discovery from large data sets [7,11,31]. Attribute reduction in rough set theory
offers a systematic theoretic framework for consistency-based feature selection, which does not attempt to maximize the
class separability but rather attempts to retain the discernible ability of original features for the objects from the universe
[13,14,53].

Generally speaking, one always needs to handle two types of data, viz. those that assume numerical values and symbolic
values. For numerical values, there are two types of approaches. One relies on fuzzy rough set theory, and the other is
concerned with the discretization of numerical attributes. In order to deal with numerical attributes or hybrid attributes,
several approaches have been developed in the literature. Pedrycz and Vukovich regarded features as granular rather than
numerical [37]. Shen and Jenshen generalized the dependency function in classical rough set framework to the fuzzy case
and proposed a fuzzy-rough QUICKREDUCT algorithm [13,14,48]. Bhatt and Gopal provided a concept of fuzzy-rough sets
formed on compact computational domain, which is utilized to improve the computational efficiency [3,4]. Hu et al. pre-
sented a new entropy to measure of the information quantity in fuzzy sets [21] and applied this particular measure to
reduce hybrid data [22]. Data discretization is another important approach to deal with numerical values, in which we usu-
ally discretize numerical values into several intervals and associate the intervals with a set of symbolic values, see [5,28]. In
the “classical” rough set theory, the attribute reduction method takes all attributes as those which assume symbolic values.
Through preprocessing of original data, one can use the classical rough set theory to select a subset of features that is the
most suitable for a given recognition problem.

In the last twenty years, many techniques of attribute reduction have been developed in rough set theory. The concept
of the β-reduct proposed by Ziarko provides a suite of reduction methods in the variable precision rough set model [60].
An attribute reduction method was proposed for knowledge reduction in random information systems [57]. Five kinds of
attribute reducts and their relationships in inconsistent systems were investigated by Kryszkiewicz [18], Li et al. [24] and
Mi et al. [29], respectively. By eliminating some rigorous conditions required by the distribution reduct, a maximum distri-
bution reduct was introduced by Mi et al. in [29]. In order to obtain all attribute reducts of a given data set, Skowron [49]
proposed a discernibility matrix method, in which any two objects determine one feature subset that can distinguish them.
According to the discernibility matrix viewpoint, Qian et al. [42,43] and Shao et al. [47] provided a technique of attribute
reduction for interval ordered information systems, set-valued ordered information systems and incomplete ordered infor-
mation systems, respectively. Kryszkiewicz and Lasek [17] proposed an approach to discovery of minimal sets of attributes
functionally determining a decision attribute. The above attribute reduction methods are usually computationally very ex-
pensive, which are intolerable for dealing with large-scale data sets with high dimensions. To support efficient attribute
reduction, many heuristic attribute reduction methods have been developed in rough set theory, cf. [19,20,22,25,26,39,52,
54–56]. Each of these attribute reduction methods can extract a single reduct from a given decision table.1 For convenience,
from the viewpoint of heuristic functions, we classify these attribute reduction methods into four categories: positive-region
reduction, Shannon’s entropy reduction, Liang’s entropy reduction and combination entropy reduction. Hence, we review
only four representative heuristic attribute reduction methods.

(1) Positive-region reduction

The concept of positive region was proposed by Pawlak in [33], which is used to measure the significance of a condition
attribute in a decision table. While the idea of attribute reduction using positive region was originated by J.W. Grzymala-
Busse in [9] and [10], and the corresponding algorithm ignores the additional computation required for selecting significant
attributes. Then, Hu and Cercone [19] proposed a heuristic attribute reduction method, called positive-region reduction,
which remains the positive region of target decision unchanged. The literature [20] gave an extension of this positive-
region reduction for hybrid attribute reduction in the framework of fuzzy rough set. Owing to the consistency of ideas and
strategies of these methods, we regard the method from [19] as their representative. These reduction methods are the first
attempt to heuristic attribute reduction algorithms in rough set theory.

(2) Shannon’s entropy reduction

The entropy reducts have first been introduced in 1993/1994 by Skowron in his lectures at Warsaw University. Based
on the idea, Slezak introduced Shannon’s information entropy to search reducts in the classical rough set model [50–52].
Wang et al. [54] used conditional entropy of Shannon’s entropy to calculate the relative attribute reduction of a decision
information system. In fact, several authors also have used variants of Shannon’s entropy or mutual information to measure
uncertainty in rough set theory and construct heuristic algorithm of attribute reduction in rough set theory [22,55,56]. Here

1 The attribute reduct obtained preserves a particular property of a given decision table. However, as Prof. Bazan said, from the viewpoint of stability of
attribute reduct, the selected reduct may be of bad quality [1,2]. To overcome this problem, Bazan developed a method for dynamic reducts to get a stable
attribute reduct from a decision table. How to accelerate the method for dynamic reducts is an interesting topic in further work.



Author's personal copy

Y.H. Qian et al. / Artificial Intelligence 174 (2010) 597–618 599

we only select the attribute reduction algorithm in the literature [54] as their representative. This reduction method remains
the conditional entropy of target decision unchanged.

(3) Liang’s entropy reduction

Liang et al. [25] defined a new information entropy to measure the uncertainty of an information system and applied
the entropy to reduce redundant features [26]. Unlike Shannon’s entropy, this information entropy can measure both the
uncertainty of an information system and the fuzziness of a rough decision in rough set theory. This reduction method can
preserve the conditional entropy of a given decision table. In fact, the mutual information form of Liang’s entropy also can
be used to construct a heuristic function of an attribute reduction algorithm. For simplicity, we here ignore its discussion.

(4) Combination entropy reduction

In general, the objects in an equivalence class cannot be distinguished each other, but the objects in different equivalence
classes can be distinguished each other in rough set theory. Therefore, in a broad sense, the knowledge content of a given
attribute set can be characterized by the entire number of pairs of the objects which can be distinguished each other on
the universe. Based on this consideration, Qian and Liang [39] presented the concept of combination entropy for measuring
the uncertainty of information systems and used its conditional entropy to select a feature subset. This reduction method
can obtain an attribute subset that possesses the same number of pairs of the elements which can be distinguished each
other as the original decision table. This measure focuses on a completely different point of view, which is mainly based on
the intuitionistic knowledge content nature of information gain.

Each of these above methods preserves a particular property of a given information system or a given decision table.
However, these above methods are still computationally very expensive, which are intolerable for dealing with large-scale
data sets with high dimensions. In this paper, we are not concerned with how to discretize numerical attributes and con-
struct a heuristic function for attribute reduction. Our objective is to focus on how to improve the time efficiency of a
heuristic attribute reduction algorithm. We propose a new rough set framework, which is called positive approximation.
The main advantage of this approach stems from the fact that this framework is able to characterize the granulation struc-
ture of a rough set using a granulation order. Based on the positive approximation, we develop a common accelerator for
improving the time efficiency of a heuristic attribute reduction, which provides a vehicle of making algorithms of rough
set based feature selection techniques faster. By incorporating the accelerator into each of the above four representative
heuristic attribute reduction methods, we construct their modified versions. Numerical experiments show that each of the
modified methods can choose the same attribute subset as that of the corresponding original method while greatly reducing
computing time. We would like to stress that the improvement becomes more profoundly visible when the data sets under
discussion get larger.

The study is organized as follows. Some basic concepts in rough set theory are briefly reviewed in Section 2. In Section 3,
we establish the positive approximation framework and investigate some of its main properties. In Section 4, through
analyzing the rank preservation of four representative significance measures of attributes, we develop a general modified
attribute reduction algorithm based on the positive approximation. Experiments on nine public data sets show that these
modified algorithms outperform their original counterparts in terms of computational time. Finally, Section 5 concludes this
paper by bringing some remarks and discussions.

2. Preliminaries

In this section, we will review several basic concepts in rough set theory. Throughout this paper, we suppose that the
universe U is a finite nonempty set.

Let U be a finite and nonempty set called the universe and R ⊆ U × U an equivalence relation on U . Then K = 〈U , R〉 is
called an approximation space [33–36]. The equivalence relation R partitions the set U into disjoint subsets. This partition
of the universe is called a quotient set induced by R , denoted by U/R . It represents a very special type of similarity between
elements of the universe. If two elements x, y ∈ U (x �= y) belong to the same equivalence class, we say that x and y are
indistinguishable under the equivalence relation R , i.e., they are equal in R . We denote the equivalence class including x
by [x]R . Each equivalence class [x]R may be viewed as an information granule consisting of indistinguishable elements [59].
The granulation structure induced by an equivalence relation is a partition of the universe.

Given an approximation space K = 〈U , R〉 and an arbitrary subset X ⊆ U , one can construct a rough set of the set on the
universe by elemental information granules in the following definition:{

R X = ⋃{[x]R | [x]R ⊆ X},
R X = ⋃{[x]R | [x]R ∩ X �= ∅},

where R X and R X are called R-lower approximation and R-upper approximation with respect to R , respectively. The order
pair 〈R X, R X〉 is called a rough set of X with respect to the equivalence relation R . Equivalently, they also can be written
as {

R X = {x | [x]R ⊆ X},
R X = {x | [x]R ∩ X �= ∅}.
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There are two kinds of attributes for a classification problem, which can be characterized by a decision table S = (U , C ∪
D) with C ∩ D = ∅, where an element of C is called a condition attribute, C is called a condition attribute set, an element
of D is called a decision attribute, and D is called a decision attribute set. Each nonempty subset B ⊆ C determines an
equivalence relation in the following way:

R B = {
(x, y) ∈ U × U | a(x) = a(y), ∀a ∈ B

}
,

where a(x) and a(y) denote the values of objects x and y under a condition attribute a, respectively. This equivalence
relation R B partitions U into some equivalence classes given by

U/R B = {[x]B | x ∈ U
}
, for simplicity, U/R B will be replaced by U/B,

where [x]B denotes the equivalence class determined by x with respect to B , i.e., [x]B = {y ∈ U | (x, y) ∈ R B}.
Assume the objects are partitioned into r mutually exclusive crisp subsets {Y1, Y2, . . . , Yr} by the decision attributes D .

Given any subset B ⊆ C and R B is the equivalence relation induced by B , then one can define the lower and upper approx-
imations of the decision attributes D as{

R B D = {R B Y1, R B Y2, . . . , R B Yr},
R B D = {R B Y1, R B Y2, . . . , R B Yr}.

Denoted by POSB(D) = ⋃r
i=1 R B Yi , it is called the positive region of D with respect to the condition attribute set B .

We define a partial relation � on the family {B | B ⊆ C} as follows: P � Q (or Q � P ) if and only if, for every Pi ∈
U/P , there exists Q j ∈ U/Q such that Pi ⊆ Q j , where U/P = {P1, P2, . . . , Pm} and U/Q = {Q 1, Q 2, . . . , Q n} are partitions
induced by P , Q ⊆ C , respectively [40]. In this case, we say that Q is coarser than P , or P is finer than Q . If P � Q and
U/P �= U/Q , we say Q is strictly coarser than P (or P is strictly finer than Q ), denoted by P ≺ Q (or Q 
 P ).

It becomes clear that P ≺ Q if and only if, for every X ∈ U/P , there exists Y ∈ U/Q such that X ⊆ Y , and there exists
X0 ∈ U/P , Y0 ∈ U/Q such that X0 ⊂ Y0.

3. Positive approximation and its properties

A partition induced by an equivalence relation provides a granulation world for describing a target concept [38]. Thus,
a sequence of granulation worlds stretching from coarse to fine granulation can be determined by a sequence of attribute
sets with granulations from coarse to fine in the power set of attributes, which is called a positive granulation world. If the
granulation worlds are arranged from the fine to the coarse one, then the sequence is called converse granulation worlds
[27,40].

In this section, we introduce a new set-approximation approach called positive approximation and investigate some of
its important properties, in which a given set (also called a target concept in rough set theory) is approximated by a positive
granulation world. Given a decision table S = (U , C ∪ D), U/D = {Y1, Y2, . . . , Yr} is called a target decision, in which each
equivalence class Yi (i � r) can be regarded as a target concept. These concepts and properties will be helpful to understand
the notion of a granulation order and set approximation under a granulation order.

Definition 1. Let S = (U , C ∪ D) be a decision table, X ⊆ U and P = {R1, R2, . . . , Rn} a family of attribute sets with R1 �
R2 � · · · � Rn (Ri ∈ 2C ). Given Pi = {R1, R2, . . . , Ri}, we define Pi-lower approximation Pi(X) and Pi -upper approximation

Pi(X) of Pi -positive approximation of X as{
Pi(X) = ⋃i

k=1 Rk Xk,

Pi(X) = Ri X,

where X1 = X and Xk = X − ⋃k−1
j=1 R j X j , k = 2,3, . . . ,n, i = 1,2, . . . ,n.

Correspondingly, the boundary of X is given as

BNPi (X) = Pi(X) − Pi(X).

Theorem 1. Let S = (U , C ∪ D) be a decision table, X ⊆ U and P = {R1, R2, . . . , Rn} a family of attribute sets with R1 � R2 � · · · �
Rn (Ri ∈ 2C ). Given Pi = {R1, R2, . . . , Ri}, then ∀Pi (i = 1,2, . . . ,n), we have

Pi(X) ⊆ X ⊆ Pi(X),

P1(X) ⊆ P2(X) ⊆ · · · ⊆ Pi(X).

Fig. 1 visualizes the mechanism of the positive approximation.
In Fig. 1, let P1 = {R1} and P2 = {R1, R2} with R1 � R2 be two granulation orders. R1 X1 is the lower approximation

of X1 obtained by the equivalence relation R1, and R2 X2 is the lower approximation of X2 obtained by the equivalence
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Fig. 1. Sketch map of the positive approximation.

relation R2. Hence, P2(X) = R1 X1 ∪ R2 X2 = R2 X . The mechanism characterizes the structure of a rough set approximation,
which can be used to gradually compute the lower approximation of a target concept/decision.

Theorem 2. Let S = (U , C ∪ D) be a decision table, X ⊆ U and P = {R1, R2, . . . , Rn} a family of attribute sets with R1 � R2 � · · · �
Rn (Ri ∈ 2C ). Given Pi = {R1, R2, . . . , Ri}, then ∀Pi (i = 1,2, . . . ,n), we have

αP1(X) � αP2(X) � · · · � αPi (X),

where αPi (X) = |Pi(X)|
|Pi(X)| is the approximation measure of X with respect to P .

In order to illustrate that the essence of the positive approximation is concentrated on the changes in the construction of
the target concept X (equivalence classes in the lower approximation of X with respect to Pi), one can redefine Pi -positive
approximation of X by using some equivalence classes on U . The structures of Pi -lower approximation Pi(X) and Pi-upper

approximation Pi(X) of Pi -positive approximation of X can be represented as follows{
S(Pi(X)) = {[x]Rk | [x]Rk ⊆ Rk Xk, k � i, X1 = X, Xk+1 = Rk Xk},
S(Pi(X)) = {[x]Ri | [x]Ri ∩ X �= ∅},

where [x]Ri represents the equivalence class including x in the partition U/Ri .

Example 1. Let U = {e1, e2, e3, e4, e5, e6, e7, e8}, X = {e1, e2, e3, e4, e7, e8} and U/R1 = {{e1}, {e2}, {e3, e4}, {e5, e6, e7, e8}},
U/R2 = {{e1}, {e2}, {e3, e4}, {e5, e6}, {e7, e8}} be two partitions on U .

Obviously, R1 � R2 holds. Thus, one can construct two granulation orders (a family of equivalence relations) P1 = {R1}
and P2 = {R1, R2}.

By computing the positive approximation of X , one can easily obtain that

S
(

P1(X)
) = {{e1}, {e2}, {e3, e4}

}
,

S
(

P1(X)
) = {{e1}, {e2}, {e3, e4}, {e5, e6, e7, e8}

}
,

S
(

P2(X)
) = {{e1}, {e2}, {e3, e4}, {e7, e8}

}
and

S
(

P2(X)
) = {{e1}, {e2}, {e3, e4}, {e7, e8}

}
.

That is to say, the target concept X can be described by using granulation orders P1 = {R1} and P2 = {R1, R2}, respectively.

Definition 2. Let S = (U , C ∪ D) be a decision table, Pi = {R1, R2, . . . , Ri} a family of attribute sets with R1 � R2 � · · · Ri
(Ri ∈ 2C ) and U/D = {Y1, Y2, . . . , Yr}. Lower approximation and upper approximation of D with respect to Pi are defined as{

Pi D = {Pi(Y1), Pi(Y2), . . . , Pi(Yr)},
Pi D = {Pi(Y1), Pi(Y2), . . . , Pi(Yr)}.

Pi D is also called the positive region of D with respect to the granulation order Pi , denoted by POSU
Pi

(D) = ⋃r
k=1 Pi Yk .
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Theorem 3 (Recursive expression principle). Let S = (U , C ∪ D) be a decision table, X ⊆ U and P = {R1, R2, . . . , Rn} a family of
attribute sets with R1 � R2 � · · · � Rn (Ri ∈ 2C ). Given Pi = {R1, R2, . . . , Ri}, we have

POSU
Pi+1

(D) = POSU
Pi

(D) ∪ POS
Ui+1
Ri+1

(D),

where U1 = U and Ui+1 = U − POSU
Pi

(D).

Example 2. Let S = (U , C ∪ D) be a decision table, where U = {e1, e2, e3, e4, e5, e6, e7, e8}, C = {a1,a2}, U/D = {{e1, e2,

e3, e4, e7, e8}, {e5, e6}} and U/{a1} = {{e1}, {e2}, {e3, e4}, {e5, e6, e7, e8}}, U/C = {{e1}, {e2}, {e3, e4}, {e5, e6}, {e7, e8}} be two
partitions on U .

Obviously, {a1} � C holds. Thus, one can construct two granulation orders (a family of equivalence relations) P1 = {a1}
and P2 = {a1,a2}.

By computing the positive approximation of D , one can easily obtain that

POSU
P1

(D) = POSU1
P1

(D) = {e1, e2, e3, e4}, where U1 = U ,

U2 = U − POSU
P1

(D) = {e5, e6, e7, e8},
POSU2

P2
(D) = {e5, e6}.

Hence,

POSU
P2

(D) = {e1, e2, e3, e4, e5, e6} = POSU
P1

(D) ∪ POSU2
P2

(D).

That is to say, the target decision D can be positively approximated by using granulation orders P1 and P2 on the gradually
reduced universe, respectively. This mechanism implies the idea of the accelerator proposed in this paper for improving the
computing performance of a heuristic attribute reduction algorithm.

The dependency function (or level of consistency [5]) is used to characterize the dependency degree of an attribute
subset with respect to a given decision [8,33]. Given a decision table S = (U , C ∪ D), the dependency function of condition
attributes C with respect to the decision attribute D is formally defined as γC (D) = |POSU

C (D)|/|U |. Using this notation, we
give the definition of dependency function of a granulation order P with respect to D in the following.

Definition 3. A dependency function involving a granulation order P and D is defined as

γP (D) = |POSU
P (D)|

|U | ,

where | · | denotes the cardinality of a set and 0 � γP (D) � 1.

The dependency function reflects the granulation order P ’s power to dynamically approximate D . When γ = 1, one says
D completely depends on the granulation order P . It means that the decision can be precisely described by the information
granules generated by the granulation order P . This dependency function can be used to measure the significance of cate-
gorical attributes relative to the decision and construct a heuristic function for designing an attribute reduction algorithm.

4. FSPA: feature selection based on the positive approximation

Each feature selection method preserves a particular property of a given information system, which is based on a certain
predetermined heuristic function. In rough set theory, attribute reduction is about finding some attribute subsets that have
the minimal attributes and retain some particular properties. For example, the dependency function keeps the approxima-
tion power of a set of condition attributes. To design a heuristic attribute reduction algorithm, three key problems should be
considered, which are significance measures of attributes, search strategy and stopping (termination) criterion. As there are
symbolic attributes and numerical attributes in real-world data, one needs to proceed with some preprocessing. Through
attribute discretization, it is easy to induce an equivalence partition. However, the existing heuristic attribute reduction
methods are computationally intensive which become infeasible in case of large-scale data. As already noted, we do not
reconstruct significance measures of attributes and design new stopping criteria, but improve the search strategies of the
existing algorithms by exploiting the proposed concept of positive approximation.

4.1. Forward attribute reduction algorithms

In rough set theory, to support efficient attribute reduction, many heuristic attribute reduction methods have been de-
veloped, in which forward greedy search strategy is usually employed, cf. [19,20,22,25,26,39,52]. In this kind of attribute
reduction approaches, two important measures of attributes are used for heuristic functions, which are inner importance
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Fig. 2. The process of forward greedy attribute reduction algorithm.

measure and outer importance measure. The inner importance measure is applicable to determine the significance of every
attribute, while the outer importance measure can be used in a forward feature selection. It is deserved to point out that
each kind of attribute reduction tries to preserve a particular property of a given decision table.

In each forward greedy attribute reduction approach, starting with the attribute with the maximal inner importance,
we take the attribute with the maximal outer significance into the attribute subset in each loop until this feature subset
satisfies the stopping criterion, and then we can get an attribute reduct. Formally, a forward greedy attribute reduction
algorithm can be written as follows.

Algorithm 1. A general forward greedy attribute reduction algorithm.

Input: Decision table S = (U , C ∪ D);
Output: One reduct red.
Step 1: red ← ∅; //red is the pool to conserve the selected attributes;
Step 2: Compute Siginner(ak, C, D), k � |C |; //Siginner(ak, C, D) is the inner importance measure of the attribute ak;
Step 3: Put ak into red, where Siginner(ak, C, D, U ) > 0;
Step 4: While EF(red, D) �= EF(C, D) Do //This provides a stopping criterion.

{red ← red ∪ {a0}, where Sigouter(a0, red, D) = max{Sigouter(ak, red, D),ak ∈ C − red}}; //Sigouter(ak, C, D)

is the outer importance measure of the attribute ak;
Step 5: Return red and end.

This algorithm can obtain an attribute reduct from a given decision table. Fig. 2 displays the process of attribute re-
duction based on the forward greedy attribute reduction algorithm in rough set theory, which is helpful for more clearly
understanding the mechanism of the algorithm.

Remark. Given any definition of attribute reduct and heuristic function, using the above attribute reduction framework,
one can heuristically find an attribute reduct (a feature subset) that preserves a particular property of a decision table. If
we survey the attribute reduct from the viewpoint of rough classifiers, these attribute reduction algorithms may lead to
overfitting in the approximation of concepts, which will weaken the generalization ability of rough classifiers induced by
the attribute reducts obtained. This problem could be caused by two cases. One is that the attribute subset induced by
an attribute reduction algorithm with forward greedy searching strategy may be redundant. That is to say, there are some
redundant attributes in the attribute subset obtained from the definition of a given attribute reduct. The other is that the
definition of each of attribute reductions does not take into account the generalization ability of the rough classifier induced
by the attribute reduct obtained. These two situations yield the same overfitting problem as a decision tree does when the
tree has too long paths. Hence, it is very desirable to solve the overfitting problem of feature selection for learning a rough
classifier in the framework of rough set theory. This issue will be addressed in future work.

4.2. Four representative significance measures of attributes

For efficient attribute reduction, many heuristic attribute reduction methods have been developed in rough set theory,
see [19,20,22,25,26,39,52,54–56]. For convenience, as was pointed out in the introduction part of this paper, we only focus
on the four representative attribute reduction methods here.

Given a decision table S = (U , C ∪ D), one can obtain the condition partition U/C = {X1, X2, . . . , Xm} and the decision
partition U/D = {Y1, Y2, . . . , Yn}. Through these notations, in what follows we review four types of significance measures of
attributes.

The idea of attribute reduction using positive region was first originated by Grzymala-Busse in Refs. [9] and [10], and the
corresponding algorithm ignores the additional computation of choice of significant attributes. Hu and Cercone proposed
a heuristic attribute reduction method, called positive-region reduction (PR), which remains the positive region of target
decision unchanged [19]. In this method, the significance measures of attributes are defined as follows.
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Definition 4. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ B . The significance measure of a in B is defined as

Siginner
1 (a, B, D) = γB(D) − γB−{a}(D),

where γB(D) = |POSB (D)|
|U | .

Definition 5. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B . The significance measure of a in B is defined as

Sigouter
1 (a, B, D) = γB∪{a}(D) − γB(D).

As Shannon’s information entropy was introduced to search reducts in classical rough set model [52], Wang et al. used its
conditional entropy to calculate the relative attribute reduction of a decision information system [54]. In fact, several authors
also have used variants of Shannon’s entropy to measure uncertainty in rough set theory and construct heuristic algorithm of
attribute reduction. Here we only select the attribute reduction algorithm in the literature [54] as their representative. This
reduction method remains the conditional entropy of target decision unchanged, denoted by SCE, in which the conditional
entropy reads as

H(D|B) = −
m∑

i=1

p(Xi)

n∑
j=1

p(Y j |Xi) log
(

p(Y j|Xi)
)
,

where p(Xi) = |Xi ||U | and p(Y j |Xi) = |Xi∩Y j |
|Xi | . Using the conditional entropy, the definitions of the significance measures are

expressed in the following way.

Definition 6. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ B . The significance measure of a in B is defined as

Siginner
2 (a, B, D) = H

(
D|B − {a}) − H(D|B).

Definition 7. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B . The significance measure of a in B is defined as

Sigouter
2 (a, B, D) = H(D|B) − H

(
D|B ∪ {a}).

As was pointed out in [25], Shannon’s entropy is not a fuzzy entropy, and cannot measure the fuzziness of a rough
decision in rough set theory. Hence, Liang et al. defined another information entropy and its conditional entropy to measure
the uncertainty of an information system and applied the proposed entropy to reduce redundant features [25,26]. This
reduction method can preserve the conditional entropy of a given decision table, denoted here by LCE. The conditional
entropy used in the study is defined as

E(D|C) =
m∑

i=1

n∑
j=1

|Y j ∩ Xi|
|U |

|Y c
j ∩ Xc

i |
|U | .

The corresponding significance measures are listed as follows.

Definition 8. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ B . The significance measure of a in B is defined as

Siginner
3 (a, B, D) = E

(
D|B − {a}) − E(D|B).

Definition 9. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B . The significance measure of a in B is defined as

Sigouter
3 (a, B, D) = E(D|B) − E

(
D|B ∪ {a}).

Based on the intuitionistic knowledge content nature of information gain, Qian and Liang in [39] presented the concept
of combination entropy for measuring the uncertainty of information systems and used its conditional entropy to obtain
a feature subset. This reduction method can obtain an attribute subset that possesses the same number of pairs of the
elements which can be distinguished each other as the original decision table, denoted here by CCE. The following definition
of the conditional entropy is considered

CE(D|C) =
m∑

i=1

(
|Xi |
|U |

C2|Xi |
C2|U |

−
n∑

j=1

|Xi ∩ Y j|
|U |

C2|Xi∩Y j |
C2|U |

)
,

where C2|Xi | = |Xi |×(|Xi |−1)
2 denotes the number of the pairs of the objects which are not distinguishable each other in the

equivalence class Xi .
The conditional entropy also can be used to construct the corresponding significance measures of attributes in decision

tables.
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Fig. 3. The relationship between the core and all attribute reducts.

Definition 10. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ B . The significance measure of a in B is defined as

Siginner
4 (a, B, D) = CE

(
D|B − {a}) − CE(D|B).

Definition 11. Let S = (U , C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B . The significance measure of a in B is defined as

Sigouter
4 (a, B, D) = CE(D|B) − CE

(
D|B ∪ {a}).

All the definitions used above are used to select an attribute in a heuristic attribute reduction algorithm. For a given
decision table, the intersection of all attribute reducts is said to be indispensable and is called the core. Each attribute in
the core must be in every attribute reduct of the decision table. The core may be an empty set. The relationship between
the core and all attribute reducts can be displayed by Fig. 3.

The above four kinds of significance measures can be used to find the core attributes. The following theorem is of interest
with this regard.

Theorem 4. (See [26,33,39,54].) Let S = (U , C ∪ D) be a decision table and a ∈ C. If Siginner
� (a, C, D) > 0 (� = {1,2,3,4}), then a is

a core attribute of S in the context of type �.

From the definition of the core, one can see that each attribute in the core must be in every attribute reduct of the
decision table. It is well known that, if Siginner

� (a, C, D) = 0 (� = {1,2,3,4}), then one still can find at least one attribute
reduct when a is deleted. If Siginner

� (a, C, D) > 0 (� = {1,2,3,4}), then the attribute a is indispensable in all attribute
reducts. Therefore, the attribute a must be a core attribute of S in the context of type �.

In a heuristic attribute reduction algorithm, based on the above theorem, one can find an attribute reduct by gradually
adding selected attributes to the core attributes.

4.3. Rank preservation of significance measures of attributes

As mentioned above, each of significance measures of attributes provides some heuristics to guide the mechanism of
forward searching a feature subset. Unlike the discernibility matrix, the computational time of the heuristic algorithms has
been largely reduced when only one attribute reduct is needed. Nevertheless, these algorithms still could be very time
consuming. To introduce an improved strategy of heuristic attribute reductions, we concentrate on the rank preservation of
the four significance measures of attributes based on the positive approximation encountered in a decision table.

Firstly, we investigate the rank preservation of significance measures of attributes based on the dependency measure. For
more clear representation, we denote the significance measure of an attribute by Sigouter

� (a, B, D, U ) (� = {1,2,3,4}), which
denotes the value of the significance measure on the universe U . One can prove the following theorem of rank preservation.

Theorem 5. Let S = (U , C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a,b ∈ C − B, if Sigouter

1 (a, B, D, U ) �
Sigouter

1 (b, B, D, U ), then Sigouter
1 (a, B, D, U ′) � Sigouter

1 (b, B, D, U ′).

Proof. From the definition of Sigouter
1 (a, B, D) = γB∪{a}(D)−γB(D), we know that its value only depends on the dependency

function γB(D) = |POSB (D)|
|U | . Since U ′ = U − POSU

B (D), one can know POSU ′
B (D) = ∅ and POSU ′

B∪{a}(D) = POSU
B∪{a}(D)− POSU

B (D).
Therefore, we have

Sigouter
1 (a, B, D, U )

Sigouter
1 (a, B, D, U ′)

= γ U
B∪{a}(D) − γ U

B (D)

γ U ′
B∪{a}(D) − γ U ′

B (D)
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= |U ′|
|U |

|POSU
B∪{a}(D)| − |POSU

B (D)|
|POSU ′

B∪{a}(D)| − |POSU ′
B (D)|

= |U ′|
|U |

|POSU
B∪{a}(D)| − |POSU

B (D)|
|POSU

B∪{a}(D)| − |POSU
B (D)|

= |U ′|
|U | .

Because |U ′|
|U | � 0 and if Sigouter

1 (a, B, D, U ) � Sigouter
1 (b, B, D, U ), then Sigouter

1 (a, B, D, U ′) � Sigouter
1 (b, B, D, U ′). This com-

pletes the proof. �
Secondly, we research the rank preservation of significance measures of attributes based on the Shannon’s conditional

entropy. The following theorem elaborates on the rank preservation of this measure.

Theorem 6. Let S = (U , C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a,b ∈ C − B, if Sigouter

2 (a, B, D, U ) �
Sigouter

2 (b, B, D, U ), then Sigouter
2 (a, B, D, U ′) � Sigouter

2 (b, B, D, U ′).

Proof. Let U/B = {X1, X2, . . . , X p, X p+1, . . . , Xm}, U/D = {Y1, Y2, . . . , Yn}, where X p+1, X p+2, . . . , Xm ⊆ POSU
B (D). Since for

each equivalence class X ⊆ POSB(D), there exists a decision class Y such that X ∩Y = X . Let us denote Shannon’s conditional
entropy in the universe U by HU (D|B). Then it follows that

HU (D|B) = −
m∑

i=1

p(Xi)

n∑
j=1

p(Y j|Xi) log
(

p(Y j|Xi)
)

= −
( p∑

i=1

p(Xi)

n∑
j=1

p(Y j|Xi) log
(

p(Y j|Xi)
) +

m∑
i=p+1

p(Xi)

n∑
j=1

p(Y j|Xi) log
(

p(Y j |Xi)
))

= −
( p∑

i=1

|Xi|
|U |

n∑
j=1

|Xi ∩ Y j|
|Xi | log

|Xi ∩ Y j|
|Xi | +

m∑
i=p+1

|Xi |
|U |

n∑
j=1

|Xi ∩ Y j|
|Xi | log

|Xi ∩ Y j|
|Xi |

)

= −
( p∑

i=1

|Xi|
|U |

n∑
j=1

|Xi ∩ Y j|
|Xi | log

|Xi ∩ Y j|
|Xi | +

m∑
i=p+1

|Xi |
|U |

n∑
j=1

|Xi |
|Xi | log

|Xi |
|Xi |

)

= −
p∑

i=1

|Xi|
|U |

n∑
j=1

|Xi ∩ Y j|
|Xi | log

|Xi ∩ Y j|
|Xi |

= −|U ′|
|U |

p∑
i=1

|Xi|
|U ′|

n∑
j=1

|Xi ∩ Y j|
|Xi | log

|Xi ∩ Y j|
|Xi |

= |U ′|
|U | HU ′

(D|B).

Therefore, we have that
Sigouter

2 (a,B,D,U )

Sigouter
2 (a,B,D,U ′) = |U ′ |

|U | . Thus, if Sigouter
2 (a, B, D, U ) � Sigouter

2 (b, B, D, U ), ∀a,b ∈ C − B , then

Sigouter
2 (a, B, D, U ′) � Sigouter

2 (b, B, D, U ′). This completes the proof. �
Then, we obtain the rank preservation of significance measures of attributes based on Liang’s conditional entropy, which

is given by the following theorem.

Theorem 7. Let S = (U , C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a,b ∈ C − B, if Sigouter

3 (a, B, D, U ) �
Sigouter

3 (b, B, D, U ), then Sigouter
3 (a, B, D, U ′) � Sigouter

3 (b, B, D, U ′).

Proof. Suppose U/B = {X1, X2, . . . , X p, X p+1, . . . , Xm}, U/D = {Y1, Y2, . . . , Yn}, where X p+1, X p+2, . . . , Xm ⊆ POSU
B (D). For

each equivalence class X ⊆ POSB(D), there exists a decision class Y such that X ∩ Y = X , i.e., X ⊆ Y . We denote the Liang’s
conditional entropy in the universe U by EU (D|B). Then, one has
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EU (D|B) =
m∑

i=1

n∑
j=1

|Y j ∩ Xi |
|U |

|Y c
j − Xc

i |
|U |

=
m∑

i=1

n∑
j=1

|Y j ∩ Xi |
|U |

|Xi − Y j|
|U |

=
p∑

i=1

n∑
j=1

|Y j ∩ Xi |
|U |

|Xi − Y j|
|U | +

m∑
i=p+1

n∑
j=1

|Y j ∩ Xi |
|U |

|Xi − Y j|
|U |

=
p∑

i=1

n∑
j=1

|Y j ∩ Xi |
|U |

|Xi − Y j|
|U | +

m∑
i=p+1

n∑
j=1

|Y j ∩ Xi |
|U |

|∅|
|U |

=
p∑

i=1

n∑
j=1

|Y j ∩ Xi |
|U |

|Xi − Y j|
|U |

= |U ′|2
|U |2

p∑
i=1

n∑
j=1

|Y j ∩ Xi|
|U ′|

|Xi − Y j|
|U ′|

= |U ′|2
|U |2 EU ′

(D|B).

Hence, we have
Sigouter

3 (a,B,D,U )

Sigouter
3 (a,B,D,U ′) = |U ′ |2

|U |2 . Therefore, for any a,b ∈ C − B , if Sigouter
3 (a, B, D, U ) � Sigouter

3 (b, B, D, U ), then

Sigouter
3 (a, B, D, U ′) � Sigouter

3 (b, B, D, U ′). This completes the proof. �
Finally, similar to the above three theorems, one can show that significance measures of attributes based on the condi-

tional combination entropy also possesses the property of rank preservation, which is shown as follows.

Theorem 8. Let S = (U , C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a,b ∈ C − B, if Sigouter

4 (a, B, D, U ) �
Sigouter

4 (b, B, D, U ), then Sigouter
4 (a, B, D, U ′) � Sigouter

4 (b, B, D, U ′).

Proof. Suppose U/B = {X1, X2, . . . , X p, X p+1, . . . , Xm}, U/D = {Y1, Y2, . . . , Yn}, where X p+1, X p+2, . . . , Xm ⊆ POSU
B (D).

Hence, for any equivalence class X ⊆ POSB(D), there exists a decision class Y such that X ∩ Y = X , i.e., X ⊆ Y . Denote
the conditional combination entropy in the universe U by CEU (D|B). Then, one has

CEU (D|B) =
m∑

i=1

(
|Xi|
|U |

C2|Xi |
C2|U |

−
n∑

j=1

|Xi ∩ Y j|
|U |

C2|Xi∩Y j |
C2|U |

)

=
p∑

i=1

(
|Xi|
|U |

C2|Xi |
C2|U |

−
n∑

j=1

|Xi ∩ Y j|
|U |

C2|Xi∩Y j |
C2|U |

)
+

m∑
i=p+1

(
|Xi |
|U |

C2|Xi |
C2|U |

−
n∑

j=1

|Xi ∩ Y j|
|U |

C2|Xi∩Y j |
C2|U |

)

=
p∑

i=1

(
|Xi|
|U |

C2|Xi |
C2|U |

−
n∑

j=1

|Xi ∩ Y j|
|U |

C2|Xi∩Y j |
C2|U |

)
+

m∑
i=p+1

(
|Xi |
|U |

C2|Xi |
C2|U |

−
n∑

j=1

|Xi |
|U |

C2|Xi |
C2|U |

)

=
p∑

i=1

(
|Xi|
|U |

C2|Xi |
C2|U |

−
n∑

j=1

|Xi ∩ Y j|
|U |

C2|Xi∩Y j |
C2|U |

)

= |U ′|C2
|U ′|

|U |C2|U |

p∑
i=1

(
|Xi |
|U ′|

C2|Xi |
C2

|U ′|
−

n∑
j=1

|Xi ∩ Y j|
|U ′|

C2|Xi∩Y j |
C2

|U ′|

)

= |U ′|C2
|U ′|

|U |C2|U |
CEU ′

(D|B).

In the sequel we obtain
Sigouter

4 (a,B,D,U )

Sigouter
4 (a,B,D,U ′) = |U ′ |C2

|U ′ |
|U |C2|U |

. Therefore, for any a,b ∈ C − B , if Sigouter
4 (a, B, D, U ) � Sigouter

4 (b, B, D, U ),

then Sigouter
4 (a, B, D, U ′) � Sigouter

4 (b, B, D, U ′). This completes the proof. �
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From Theorems 5–8, one can see that they can be uniformly represented by the following theorem.

Theorem 9 (Rank preservation). Let S = (U , C ∪ D) be a decision table, B ⊆ C and U ′ = U − POSU
B (D). For ∀a,b ∈ C − B, if

Sigouter
� (a, B, D, U ) � Sigouter

� (b, B, D, U ) (� = {1,2,3,4}), then Sigouter
� (a, B, D, U ′) � Sigouter

� (b, B, D, U ′).

From this theorem, one can see that the rank of attributes in the process of attribute reduction will remain unchanged af-
ter reducing the lower approximation of positive approximation. This mechanism can be used to improve the computational
performance of a heuristic attribute reduction algorithm, while retaining the same selected feature subset.

Besides the above four kind attribute reducts, as we know, there are many other different kind of attribute reducts. We
do not discuss the rank preservation of each existing reducts taking into account the compact of the paper. In fact, rank
preservation of attributes selected is based on the monotonicity of positive region of target decision in a heuristic feature
selection process. In other words, the rank of attributes selected will be unchanged when the scale of positive region of
target decision increases as the number of selected attributes becomes bigger.

4.4. Attribute reduction algorithm based on the positive approximation

The objective of rough set-based feature selection is to find a subset of attributes which retains some particular proper-
ties as the original data and without redundancy. In fact, there may be multiple reducts for a given decision table. It has
been proven that finding the minimal reduct of a decision table is a NP hard problem. When only one attribute reduct is
needed, based on the significance measures of attributes, some heuristic algorithms have been proposed, most of which are
greedy and forward search algorithms. These search algorithms start with a nonempty set, and keep adding one or several
attributes of high significance into a pool each time until the dependence has not been increased.

From the discussion in the previous subsection, one knows that the rank preservation of attributes in the context of
the positive approximation. Hence, we can construct an improved forward search algorithm based on the positive approx-
imation, which is formulated as follows. In this general algorithm framework, we denote the evaluation function (stop
criterion) by EFU (B, D) = EFU (C, D). For example, if one adopts Shannon’s conditional entropy, then the evaluation function
is HU (B, D) = HU (C, D). That is to say, if EFU (B, D) = EFU (C, D), then B is said to be an attribute reduct.

Algorithm Q1. A general improved feature selection algorithm based on the positive approximation (FSPA).

Input: Decision table S = (U , C ∪ D);
Output: One reduct red.
Step 1: red ← ∅; //red is the pool to conserve the selected attributes;
Step 2: Compute Siginner(ak, C, D, U ), k � |C |;
Step 3: Put ak into red, where Siginner(ak, C, D, U ) > 0;// These attributes form the core of the given decision table;
Step 4: i ← 1, R1 = red, P1 = {R1} and U1 ← U ;
Step 5: While EFUi (red, D) �= EFUi (C, D) Do

{Compute the positive region of positive approximation POSU
Pi

(D),
Ui = U − POSU

Pi
(D),

i ← i + 1,
red ← red ∪ {a0}, where Sigouter(a0, red, D, Ui) = max{Sigouter(ak, red, D, Ui),ak ∈ C − red},
Ri ← Ri ∪ {a0},
Pi ← {R1, R2, . . . , Ri}};

Step 6: Return red and end.

Computing the significance measure of an attribute Siginner(ak, C, D, U ) is one of the key steps in FSPA. Xu et al.
in [57] gave a quick algorithm with time complexity O (|U |). Hence, the time complexity of computing the core in
Step 2 is O (|C ||U |). In Step 5, we begin with the core and add an attribute with the maximal significance into the
set in each stage until finding a reduct. This process is called a forward reduction algorithm whose time complexity is
O (

∑|C |
i=1 |Ui |(|C | − i + 1)). Thus the time complexity of FSPA is O (|U ||C | + ∑|C |

i=1 |Ui |(|C | − i + 1)). However, the time com-

plexity of a classical heuristic algorithm is O (|U ||C |+∑|C |
i=1 |U |(|C |− i + 1)). Obviously, the time complexity of FSPA is much

lower than that of each of classical heuristic attribute reduction algorithms. Hence, one can draw a conclusion that the gen-
eral feature selection algorithm based on the positive approximation (FSPA) may significantly reduce the computational time
for attribute reduction from decision tables. To stress these findings, the time complexity of each step in original algorithms
and FSPA is shown as Table 1.

To support the substantial contribution of the general improved attribute reduction algorithm based on the positive
approximation, we summarize three factors of speedup of this accelerator as follows.

(1) One can select the same attribute in each loop of the improved algorithm and that of the original one. This provides a
restriction of keeping the result of an attribute reduction algorithm.
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Table 1
The complexities description.

Algorithms Step 2 Step 3 Step 5 Other steps

Each of original algorithms O (|C ||U |) O (|C |) O (
∑|C |

i=1 |U |(|C | − i + 1)) Constant
FSPA O (|C ||U |) O (|C |) O (

∑|C |
i=1 |Ui |(|C | − i + 1)) Constant

Table 2
Data sets description.

Data sets Cases Features Classes

1 Mushroom 5644 22 2
2 Tic-tac-toe 958 9 2
3 Dermatology 358 34 6
4 Kr-vs-kp 3196 36 2
5 Breast-cancer-wisconsin 683 9 2
6 Backup-large.test 376 35 19
7 Shuttle 58000 9 7
8 Letter-recognition 20000 16 26
9 Ticdata2000 5822 85 2

(2) Computational time of significance measures of attributes is significantly reduced, which is because that it is only
considered on the gradually reduced universe. It is one key factor of the accelerated algorithm.

(3) Time consumption of computing the stopping criterion is also significantly reduced via gradually decreasing the size of
data set. This is the other important factor of the improved algorithm.

Based on the above three speedup factors, we draw such a conclusion that: the general modified algorithm can signif-
icantly reduce the computational time of each existing attribute reduction algorithm while producing the same attribute
reducts and classification accuracies as those coming from the original ones.

It is deserved to point out that each of these modified algorithms can not solve the overfitting problem in the approxi-
mation of concepts and improve the generalization ability of the rough classifier induced by the obtained attribute reduct.
The general improved algorithm only devotes to largely reducing the computational time of original attribute reduction
algorithms (see Algorithm 1).

4.5. Time efficiency analysis of algorithms

Many heuristic attribute reduction methods have been developed for symbolic data [19,20,22,25,26,39,52,54–56]. The
four heuristic algorithms mentioned in Section 4.2 are very representative. The objective of the following experiments
is to show the time efficiencies of the proposed general framework for selecting a feature subset. The data used in the
experiments are outlined in Table 2, which were all downloaded from UCI Repository of machine learning databases.

In this subsection, in order to compare the above four representative attribute reduction algorithms (PR, SCE, LCE and
CCE) with the modified ones, we employ nine UCI data sets from Table 2 to verify the performance of time reduction
of the modified algorithms, which are all symbolic data (Shuttle and Ticdata2000 are preprocessed by discretization with
entropy). In these nine data sets, Mushroom and Breast-cancer-wisconsin are two data sets with missing values. For uniform
treatment of all data sets, we remove the objects with missing values.

From the rank preservation of significance measures of attributes, we know that each modified attribute reduction algo-
rithm can obtain the same attribute reduct as its original version. Therefore, in the following experiments, we only consider
attribute reducts obtained and computational time, and do not compare their classification accuracies.

For any heuristic attribute reduction algorithm in rough set theory, the computation of classification is the first key
step. To date, many quick classification algorithms have been proposed for improving the efficiency of attribute reduction.
However, the computation of classification is only the pretreatment of data in any heuristic attribute reduction algorithm.
Hence, for convenient comparison, we will adopt the classification algorithm with the time complexity O (|C ||U |) [58]. In
what follows, we apply each of the original algorithms along with its modified version for searching attribute reducts. To
distinguish the computational times, we divide each of these nine data sets into twenty parts of equal size. The first part
is regarded as the 1st data set, the combination of the first part and the second part is viewed as the 2nd data set, the
combination of the 2nd data set and the third part is regarded as the 3rd data set, . . . , the combination of all twenty parts
is viewed as the 20th data set. These data sets can be used to calculate time used by each of the original attribute reduction
algorithms and the corresponding modifications one and show it vis-a-vis the size of universe. These algorithms are run
on a personal computer with Windows XP and Inter(R) Core(TM)2 Quad CPU Q9400, 2.66 GHz and 3.37 GB memory. The
software being used is Microsoft Visual Studio 2005 and Visual C#.



Author's personal copy

610 Y.H. Qian et al. / Artificial Intelligence 174 (2010) 597–618

Table 3
The time and attribute reduction of the algorithms PR and FSPA-PR.

Data sets Original features PR algorithm FSPA-PR algorithm

Selected features Time (s) Selected features Time (s)

Mushroom 22 3 24.8750 3 20.4531
Tic-tac-toe 9 8 0.3594 8 0.3125
Dermatology 34 10 0.8438 10 0.4375
Kr-vs-kp 36 29 28.0313 29 21.5781
Breast-cancer-wisconsin 9 4 0.1250 4 0.0938
Backup-large.test 35 10 0.6563 10 0.4219
Shuttle 9 4 906.0625 4 712.2500
Letter-recognition 16 11 282.6406 11 112.6250
Ticdata2000 85 24 886.4531 24 296.3750

Fig. 4. Times of PR and FSPA-PR versus the size of data.

4.5.1. PR and FSPA-PR
In the sequence of experiments, we compare PR with FSPA-PR on the nine real world data sets shown in Table 2. The

experimental results of these nine data sets are shown in Table 3 and Fig. 4. In each of these sub-figures, the x-coordinate
pertains to the size of the data set (the 20 data sets starting from the smallest one), while the y-coordinate concerns the
computing time. Table 2 shows the comparisons of selected features and computational time with original algorithm PR
and the accelerated algorithm FSPA-PR on nine data sets. While Fig. 4 displays more detailed change trend of each of two
algorithms with size of data set becoming increasing.

It is easy to note from Table 3 and Fig. 4 that the computing time of each of these two algorithms increases with
the increase of the size of data. Nevertheless this relationship is not strictly monotonic. For example, as the size of data set
varies from the 18th to the 19th in sub-figure (f), the computing time dropped. We observe the same effect in sub-figures (c)
and (e). One could envision that this situation must have occurred because different numbers of features selected.
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As one of the important advantages of the FSPA, as shown in Table 3 and Fig. 4, we see that the modified algorithms are
much more faster than their original counterparts on the basis of selecting the same feature subset. Sometimes, the effect
of this reduction can reduce over half the computational time. For example, the reduced time achieves 170.0156 seconds
on the data set Letter-recognition, while the reduced time is 590.0781 seconds on the data set Ticdata200. Furthermore the
differences are profoundly larger when the size of the data set increases. Owing to the rank preservation of significance
measures of attributes, the feature subset obtained by each of the modified algorithm is the same as the one produced by
the original algorithm.

4.5.2. SCE and FSPA-SCE
It is well known that, the attribute reduct induced by Shannon’s information entropy keeps the probabilistic distribution

of original data set, which is based on a more strict definition of attribute reduct. Hence, the attribute reduct obtained by
this approach is often much longer than one induced by the positive-region reduction.

In what follows, we compare SCE with FSPA-SCE on those nine real world data sets shown in Table 2 from computational
time and selected feature subsets. Table 4 presents the comparisons of selected features and computational time with
original algorithm SCE and the accelerated algorithm FSPA-SCE on nine data sets. While Fig. 5 gives more detailed change
trendline of each of two algorithms with size of data set becoming increasing.

From Table 4 and Fig. 5, it is easy to see that the modified algorithms is consistently faster than their original coun-
terparts. Sometimes, the reduced time can almost achieves seven-eighths of the original computational time. For example,
the reduced time achieves 4275.4531 seconds on the data set Letter-recognition, and the reduced time achieves 7109.7657
seconds on the data set Ticdata2000. In particular, the feature subset obtained by each of the modified algorithm is the
same as the one produced by the original algorithm, which benefits from the rank preservation of significance measures of
attributes based on the positive approximation. Furthermore the differences are profoundly larger when the size of the data
set increases. Hence, attribute reduction based on the accelerator should be a good solution.

4.5.3. LCE and FSPA-LCE
The attribute reduct induced by Liang’s information entropy also keeps the probabilistic distribution of original data set,

which is based on a more strict definition of attribute reduct. The attribute reduct obtained by this approach is often much
longer than one induced by the positive-region reduction.

In the following experiments, we will compare LCE with FSPA-LCE on the nine real world data sets shown in Table 2.
The comparisons of selected features and computational time with original algorithm SCE and the accelerated algorithm
FSPA-SCE on nine data sets are shown in Table 5, and more detailed change trendline of each of two algorithms with size
of data set becoming increasing are given in Fig. 6.

As one of the important advantages of the FSPA, as shown in Table 5 and Fig. 6, we see that the modified algorithms
are much more faster than their original counterparts. Furthermore the differences are profoundly larger when the size of
the data set increases. Sometimes, the computational time of the modified algorithm only is almost one-fifteenths of the
computational time of algorithm LCE. On the data set Ticdata2000, for example, FSPA-LCE only needs 1805.5625 seconds,
while LCE uses 27962.6250 seconds. Like FSPA-PR and FSPA-SCE, the attribute reduct obtained by the modified algorithm
FSPA-LCE is the same as the one proceed by the original algorithm LCE owing to the rank preservation of significance
measures of attributes.

4.5.4. CCE and FSPA-CCE
Finally, we compare CCE with FSPA-CCE on the nine real world data sets shown in Table 2. In Table 6, it is shown that

the comparisons of selected features and computational time with original algorithm SCE and the accelerated algorithm
FSPA-SCE on nine data sets. In Fig. 7, we display more detailed change trendline of each of two algorithms with size of data
set becoming increasing. Similarly, in each of these sub-figures (a)–(i), the x-coordinate pertains to the size of the data set
(the 20 data sets starting from the smallest one), while the y-coordinate concerns the computing time.

From Table 6 and Fig. 7, it is easy to see that the modified algorithm is consistently faster than its original counterpart.
Sometimes, the reduced time can be over seven-eighths of the original computational time. For example, the reduced time
achieves 7213.4688 seconds on the data set Ticdata2000 and the reduced time achieves 4507.9062 seconds on the data set
Letter-recognition. In particular, the feature subset obtained by the modified algorithm is the same as the one produced by
the original algorithm, which is guaranteed by the rank preservation of significance measures of attributes based on the
positive approximation. Furthermore the differences are profoundly larger when the size of the data set increases. One can
say that attribute reduction based on the accelerator should be a good solution.

As one of the important advantages of the FSPA, as shown in Table 6 and Fig. 7, we see that the modified algorithm is
much faster than its original counterpart. Furthermore the differences are profoundly larger when the size of the data set
increases. Owing to the rank preservation of significance measures of attributes, the feature subset obtained by each of the
modified algorithm is the same as the one produced by the original algorithm.

4.6. Stability analysis of algorithms

The stability of a heuristic attribute reduction algorithm determines the stability of its classification accuracy. The ob-
jective of this suite of experiments is to compare the stability of the computing time and attribute reduction of each of
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Table 4
The time and attribute reduction of the algorithms SCE and FSPA-SCE.

Data sets Original features SCE algorithm FSPA-SCE algorithm

Selected features Time (s) Selected features Time (s)

Mushroom 22 4 162.6406 4 159.5938
Tic-tac-toe 9 8 4.5000 8 3.1094
Dermatology 34 11 5.3125 11 1.9844
Kr-vs-kp 36 29 149.6250 29 105.9844
Breast-cancer-wisconsin 9 4 1.3438 4 0.8438
Backup-large.test 35 10 4.3594 10 1.7656
Shuttle 9 4 12665.3906 4 10153.1719
Letter-recognition 16 11 7015.7031 11 2740.2500
Ticdata2000 85 24 8153.6563 24 1043.8906

Fig. 5. Times of SCE and FSPA-SCE versus the size of data.

the modified algorithms with those obtained when running the original methods, We use the nine real-world data sets as
shown in Table 2.

In the experiments, in order to evaluate the stability of feature subset selected with 10-fold cross validation, we introduce
several definitions and necessary notations. Let X1, X2, . . . , X10 be the 10 data sets coming from a given universe U . We
denote the reduct induced by the universe U by C0. The reducts induced by the data set Xi will be denoted by Ci (i � 10),
respectively. To measure the difference of two reducts Ci and C j , we use the following distance:

D(Ci, C j) = 1 − |Ci ∩ C j|
|Ci ∪ C j| .
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Table 5
The time and attribute reduction of the algorithms LCE and FSPA-LCE.

Data sets Original features LCE algorithm FSPA-LCE algorithm

Selected features Time (s) Selected features Time (s)

Mushroom 22 4 300.2188 4 294.0000
Tic-tac-toe 9 8 8.7344 8 5.7813
Dermatology 34 10 10.4531 10 3.7500
Kr-vs-kp 36 29 1156.1250 29 191.1250
Breast-cancer-wisconsin 9 5 3.1250 5 1.6719
Backup-large.test 35 10 9.8438 10 3.2188
Shuttle 9 4 24883.6250 4 20228.3906
Letter-recognition 16 12 15176.7656 12 5558.7813
Ticdata2000 85 24 27962.6250 24 1805.5625

Fig. 6. Times of LCE and FSPA-LCE versus the size of data.

Next we calculate the mean value of the 10 distances:

μ = 1

10

10∑
i=1

(
1 − |Ci ∩ C0|

|Ci ∪ C0|
)

,

where C0 is the reduct induced by the universe U .
This standard deviation

σ =
√√√√ 1

10

10∑
i=1

(
D(Ci, C0) − μ

)2
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Table 6
The time and attribute reduction of the algorithms CCE and FSPA-CCE.

Data sets Original features CCE algorithm FSPA-CCE algorithm

Selected features Time (s) Selected features Time (s)

Mushroom 22 4 166.9219 4 159.6406
Tic-tac-toe 9 8 6.7656 8 3.1406
Dermatology 34 10 5.8281 10 2.2656
Kr-vs-kp 36 29 149.7500 29 105.7500
Breast-cancer-wisconsin 9 4 1.3594 4 0.8906
Backup-large.test 35 9 4.5781 9 1.9844
Shuttle 9 4 13718.8750 4 10948.9219
Letter-recognition 16 11 7118.2656 11 2610.3594
Ticdata2000 85 24 8262.0469 24 1048.5781

Fig. 7. Times of CCE and FSPA-CCE versus the size of data.

is used to characterize the stability of the reduct result induced by a heuristic attribute reduction algorithm. The lower the
value of the standard deviation, the higher the stability of the algorithm. Similarly, we also can use the standard deviation
to evaluate the stability of the computing time.

As before we used the same heuristic attribute reduction algorithms along with their modifications. The results reported
in Tables 7–10 are obtained using the 10-fold cross validation.

Table 7 reveals that FSPA-PR comes with a far lower mean time and the standard deviation than the ones produced by
the original PR. The FSPA-PR’s stability is the same as the one reported for the PR. In other words, as an accelerator for
attribute reduction, the positive approximation can be used to significantly reduce the time consumption of the algorithm
PR. The much smaller standard deviation implies that the modified algorithm FSPA-PR exhibits a far better robustness than
the original PR. We also note that the modified algorithm has not affected the stability of reducts induced by the original
method (we obtained the same attribute reduct on the same data set). The mechanism can be well interpreted by the
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Table 7
The stabilities of the time and attribute reduction of algorithms PR and FSPA-PR.

Data sets PR’s time FSPA-PR’s time PR’s stability FSPA-PR’s stability

Mushroom 16.8359 ±0.2246 14.8438 ±0.2130 0.0000±0.0000 0.0000±0.0000
Tic-tac-toe 0.3234 ±0.0222 0.2391 ±0.0262 0.0000±0.0000 0.0000±0.0000
Dermatology 0.8234 ±0.0494 0.3922 ±0.0109 0.2142±0.1692 0.2142 ±0.1692
Kr-vs-kp 25.0781 ±4.3400 16.2438 ±0.2232 0.0675 ±0.0652 0.0675 ±0.0652
Breast-cancer-wisconsin 0.1156 ±0.0104 0.0813 ±0.0094 0.1733±0.2736 0.1733 ±0.2736
Backup-large.test 0.6344 ±0.0788 0.3891 ±0.0331 0.4187±0.1830 0.4187 ±0.1830
Shuttle 778.6959 ±29.4587 551.6750 ±10.6770 0.0250±0.0750 0.0250±0.0750
Letter-recognition 224.1219 ±7.3887 90.5797 ±1.5252 0.2222±0.2020 0.2222 ±0.2020
Ticdata2000 698.1016 ±54.8386 248.8391 ±6.5261 0.2058 ±0.0862 0.2058 ±0.0862

Table 8
The stabilities of the time and attribute reduction of algorithms SCE and FSPA-SCE.

Data sets SCE’s time FSPA-SCE’s time SCE’s stability FSPA-SCE’s stability

Mushroom 130.6234 ±0.9870 126.1625 ± 0.8873 0.0000±0.0000 0.0000±0.0000
Tic-tac-toe 3.8359 ±0.0614 2.5045 ± 0.0617 0.1111 ±0.1111 0.1111 ±0.1111
Dermatology 4.0500±0.3197 1.6266 ± 0.0422 0.5312 ±0.1000 0.5312 ±0.1000
Kr-vs-kp 126.7734 ±15.7752 83.2891 ± 0.9501 0.0675 ±0.0652 0.0675 ±0.0652
Breast-cancer-wisconsin 1.2156 ±0.0894 0.7500± 0.0677 0.3562 ±0.3099 0.3562 ±0.3099
Backup-large.test 3.7234 ±0.3919 1.4188 ± 0.0655 0.3599 ±0.2521 0.3599 ±0.2521
Shuttle 9749.1705 ±308.8128 8158.8490 ± 209.5685 0.0250±0.0750 0.0250±0.0750
Letter-recognition 5891.5906 ±181.0442 2282.8141 ± 73.0362 0.1689 ±0.1823 0.1689 ±0.1823
Ticdata2000 7107.3904 ±105.7970 861.2000 ± 9.7081 0.2485 ±0.0830 0.2485 ±0.0830

Table 9
The stabilities of the time and attribute reduction of algorithms LCE and FSPA-LCE.

Data sets LCE’s time FSPA-LCE’s time LCE’s stability FSPA-LCE’s stability

Mushroom 241.9891 ±1.3425 236.0313 ±1.6868 0.0000± 0.0000 0.0000±0.0000
Tic-tac-toe 7.3328 ±0.0601 4.7531 ±0.1007 0.1778± 0.0889 0.1778±0.0889
Dermatology 8.2875 ±0.6289 3.0938 ±0.0617 0.1852± 0.1783 0.1852±0.1783
Kr-vs-kp 228.9547 ±27.4934 154.4984 ±2.0417 0.0675± 0.0652 0.0675 ±0.0652
Breast-cancer-wisconsin 2.5969 ±0.0493 1.4031 ±0.0554 0.2333± 0.1528 0.2333±0.1528
Backup-large.test 7.9094 ±0.4949 2.7109±0.1746 0.1617± 0.1630 0.1617±0.1630
Shuttle 17717.9594 ±391.4628 14392.4496 ±99.2163 0.0250± 0.0750 0.0250±0.0750
Letter-recognition 12334.2729 ±80.6504 4252.5578 ±71.4054 0.1914± 0.1436 0.1914±0.1436
Ticdata2000 19582.6515 ±385.2873 1463.7391 ±14.5646 0.1744± 0.1192 0.1744±0.1192

Table 10
The stabilities of the time and attribute reduction of algorithms CCE and FSPA-CCE.

Data sets CCE’s time FSPA-CCE’s time CCE’s stability FSPA-CCE’s stability

Mushroom 133.9672 ±0.9331 129.3531 ±1.2343 0.0000±0.0000 0.0000±0.0000
Tic-tac-toe 3.8391 ±0.0297 2.5172 ±0.0439 0.1778 ±0.0889 0.1778±0.0889
Dermatology 4.6469 ±0.3029 1.8016 ±0.0335 0.2735 ±0.1698 0.2735±0.1698
Kr-vs-kp 130.0047±17.5668 86.3641 ±0.9297 0.0733 ±0.0780 0.0733 ±0.0780
Breast-cancer-wisconsin 1.1969 ±0.0865 0.7406±0.0298 0.1200±0.1600 0.1200±0.1600
Backup-large.test 3.8016 ±0.3155 1.5875 ±0.1018 0.3426 ±0.1780 0.3426±0.1780
Shuttle 9564.8752 ±68.5368 7440.3281 ±25.0001 0.0250±0.0750 0.0250±0.0750
Letter-recognition 5956.0833 ±43.7866 2171.0000 ±36.5273 0.1370 ±0.1450 0.1370 ±0.1450
Ticdata2000 6726.4778 ±42.1287 859.4672 ±10.7790 0.1742 ±0.0894 0.1742±0.0894

rank preservation of the significance measures of attributes used in the algorithms PR and FSPA-PR (see Theorem 5 and
Theorem 6). From Tables 8–10, one draw the same conclusions.

4.7. Related discussion

In this subsection, we summarize the advantages of the accelerator-positive approximation for attribute reduction and
offer some explanatory comments. Based on the experimental evidence, we can affirm that:

• Each of the accelerated algorithms preserves the attribute reduct induced by the corresponding original one.
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In Section 4.3, we have proved the rank preservation of the four significance measures of attributes, which implies that
one selects the same attribute in each loop of each of modified algorithms and that of the corresponding original one.
Naturally, one can obtain the same attribute reduct on the same data set. Hence, each of the accelerated algorithms does
not affect the attribute reduct induced by the corresponding method.

• Each of the accelerated algorithms usually comes with a substantially reduced computing time when compared with
amount of time used by the corresponding original algorithm.

Through using the accelerator-positive approximation, the size of data set could be reduced in each loop of each of
modified algorithms. Therefore, the computational time for determining partitions, significance measures of attributes and
judging stopping criterion in the reduced data set would be much smaller than that encountered for the entire data set.
Evidently, these modified algorithms outperform the previous methods.

• The performance of these modified algorithms is getting better in presence of larger data sets; the larger the data set,
the more profound computing savings.

The stopping criterion of attribute reduction will be stricter when the data set becomes larger, and the number of
attributes in the reduct induced by a heuristic attribute reduction algorithm usually is much bigger. In this situation, each
of the modified algorithms can delete much more objects from the data set in all loops, and hence can take far less time for
attribute reduction. The greater the size of the data set is, the larger the number of attributes selected, and the better the
performance of these modified algorithms becomes when it comes to computing time. Hence, these accelerated algorithms
are particularly suitable for dealing with attribute reduction in large-scale data sets with high dimensions.

5. Conclusions

To overcome the limitations of the existing heuristic attribute reduction schemes, in this study, a theoretic framework
based on rough set theory have been proposed, called the positive approximation, which can be used to accelerate algo-
rithms of heuristic attribute reduction. Based on this framework, a general heuristic feature selection algorithm (FSPA) has
been presented. Several representative heuristic attribute reduction algorithms encountered in rough set theory have been
revised and modified. Note that each of the modified algorithms can choose the same feature subset as the original at-
tribute reduction algorithm. Experimental studies pertaining to nine UCI data sets show that the modified algorithms can
significantly reduce computing time of attribute reduction while producing the same attribute reducts and classification
accuracies as those coming from the original methods. The results show that the attribute reduction based on the positive
approximation is an effective accelerator and can efficiently obtain an attribute reduct.
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