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The Bayesian decision-theoretic rough sets propose a framework for studying rough set

approximations using probabilistic theory, which can interprete the parameters from exist-

ing forms of probabilistic approaches to rough sets. Exploring rough sets in the viewpoint

of multigranulation is becoming one of desirable directions in rough set theory, in which

lower/upper approximations are approximated by granular structures induced by multiple

binary relations. Through combining these two ideas, the objective of this study is to develop

a newmultigranulation rough setmodel, called amultigranulation decision-theoretic rough

set. Many existing multigranulation rough set models can be derived from the multigranu-

lation decision-theoretic rough set framework.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Rough set theory, originated by Pawlak [24,25], has become a well-established theory for uncertainty management in a

wide variety of applications related to pattern recognition, image processing, feature selection, neural computing, conflict

analysis, decision support, datamining and knowledge discovery [3,5,10,11,15,16,28–31,34,36,41,55]. In the past ten years,

several extensions of the rough set model have been proposed in terms of various requirements, such as the decision-

theoretic rough set model (see [51]), the variable precision rough set (VPRS) model (see [56,58]), the rough set model based

on tolerance relation (see [12–14]), the Bayesian rough set model (see [37]), the Dominance-based rough setmodel (see [4]),

game-theoretic rough set model (see [6,7]), the fuzzy rough set model and the rough fuzzy set model (see [2]).

Recently, the probabilistic rough sets have been paid close attentions [8,45,48,50,52]. A special issue on probabilistic

rough setswas set up in International Journal ofApproximateReasoning, inwhich six relativepaperswerepublished [48]. Yao

presented a newdecisionmakingmethod based on the decision-theoretic rough set, which is constructed by positive region,

boundary region and negative region, respectively [52]. In the literature [50], the author further emphasized the superiority

of three-way decisions in probabilistic rough set models. In fact, the probabilistic rough sets are developed based on the

Bayesian decision principle, in which its parameters can be learned from a given decision table. Three-way decisions are

most of superiorities of probabilistic rough set models. The decision-theoretic rough sets can derive various existing rough

set models through setting the thresholds α and β . Since the decision-theoretic rough sets was proposed by Yao [49], it have

attractedmore andmore concerns. AzamandYao [1] proposed a threshold configurationmechanism for reducing the overall

uncertainty of probabilistic regions in the probabilistic rough sets. Jia et al. [9] developed an optimization representation of

decision-theoretic rough setmodel, and gave a heuristic approach and a particle swarm optimization approach for searching

an attribute reduction with a minimum cost. Liu et al. [23] combined the logistic regression and the decision-theoretic

rough set into a new classification approach, which can effectively reduce the misclassification rate. Yu et al. [53] applied

decision-theoretic rough set model for automatically determining the number of clusters with much smaller time cost.
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In the view of granular computing (proposed by Zadeh [54]), in existing rough set models, a general concept described

by a set is always characterized via the so-called upper and lower approximations under a single granulation, i.e., the

concept is depicted by known knowledge induced from a single relation (such as equivalence relation, tolerance relation

and reflexive relation) on the universe [17,18,51]. Conveniently, this kind of rough set models is called single granulation

rough sets, just SGRS. In many circumstances, we often need to describe concurrently a target concept throughmulti binary

relations according to a user’s requirements or targets of problem solving. Based on this consideration, Qian et al. [26–28]

introduced multigranulation rough set theory (MGRS) to more widely apply rough set theory in practical applications, in

which lower/upper approximations are approximated by granular structures induced by multi binary relations. From the

viewpoint of rough set’s applications, themultigranulation rough set theory is very desirable inmany real applications, such

as multi-source data analysis, knowledge discovery from data with high dimensions and distributive information systems.

Since the multigranulation rough set was proposed by Qian in 2006 [26], the theoretical framework have been largely

enriched, and many extended multigranulation rough set models and relative properties and applications have also been

proposed and studied [27–32]. Wu and Leung [39] proposed a formal approach to granular computing withmulti-scale data

measured at different levels of granulations, and studied theory andapplications of granular labelledpartitions inmulti-scale

decision information systems. Tripathy et al. [38] developed an incomplete multigranulation rough sets in the context of

intuitionistic fuzzy rough sets and gave some important properties of the new rough set model. Raghavan and Tripathy [33]

first researched the topological properties of multigranulation rough sets. Based on the idea of multigranulation rough sets,

Xu et al. [42–44] developed a variable multigranulation rough set model, a fuzzy multigranulation rough set model and an

orderedmultigranulation rough setmodel.Wu [40] extended classical multigranualtion rough sets to the version based on a

fuzzy relation, and proposed a newmultigranulation fuzzy rough set (MGFRS). Zhang et al. [57] defined a variable precision

multigranulation rough set, in which the optimistic multigranulation rough sets and the pessimistic one can be regarded

as two extreme cases. Through introducing some membership parameters, this model becomes a multigranulation rough

set with dynamic adaption according to practical acquirements. Yang et al. [46,47] examined the fuzzy multigranulation

rough set theory, and revealed the hierarchical structure properties of themultigranulation rough sets. Liu andMiao [21,22]

established amultigranulation rough set approach in covering contexts. Liang et al. [19] presented a kind of efficient feature

selection algorithms for large scale data with a multigranulation strategy. She et al. [35] explored the topological structures

and the properties of multigranulation rough sets. Lin et al. [20] gave a neighborhood multigranulation rough set model for

multigranulation rough data analysis in the context of hybrid data. In the murigranulation rough set theory, each of various

binary relation determines a corresponding information granulation, which largely impacts the commonality between each

of the granulations and the fusion among all granulations. As one of very important rough setmodels, the decision-theoretic

rough sets (DTRS) are still not be researched in the context of multigranulation, which limits its further applications in

many problems, such as multi-source data analysis, knowledge discovery from data with high dimensions and distributive

information systems.

In what follows, besides those motivations mentioned in first multigranulation rough set paper (see Cases 1–3 in the

literature [29]), we further emphasize the specific interest of multigranulation rough sets, which can be illustranted from

the following three aspects.

• Multigranulation rough set theory is a kind of of information fusion strategies through single granulation rough sets.

Optimistic version and pessimistic version are only two simple methods in these information fusion approaches, which

are used to easily introduce multigranulation ideas to rough set theory.
• In fact, there are some other fusion strategies [20,39–41,43]. For instance, in the literature [39], Xu et al. introduced a

supporting characteristic function and a variable precision parameter β , called an information level, to investigate a

target concept under majority granulations.
• With regard to some special information systems, such as multi-source information systems, distributive information

systems and groups of intelligent agents, the classical rough sets can not be used to data mining from these information

systems, but multigranulation rough sets can.

In this study, our objective is to develop a new multigranulation rough decision theory through combining the multi-

granulation idea and the Bayesian decisoin theory, called multigranulation decision-theoretic rough sets (MG-DTRS). We

mainly give three common forms, themeanmultigranulation decision-theoretic rough sets, the optimistic multigranulation

decision-theoretic rough sets, and the pessimistic multigranulation decision-theoretic rough sets.

The study is organized as follows. Some basic concepts in classical rough sets andmultigranulation rough sets are briefly

reviewed in Section 2. In Section 3,we first analyze the loss function and the entire decision risk in the context ofmultigranu-

lation. Then, we propose three multigranulation decision-theoretic rough set forms that include the meanmultigranulation

decision-theoretic rough sets, the optimisticmultigranulationdecision-theoretic rough sets, and thepessimisticmultigranu-

lation decision-theoretic rough sets. When the thresholds have a special constraint, themultigranulation decision-theoretic

rough sets will produce one of various variables of multigranulation rough sets. In Section 4, we establish the relation-

ships among multigranulation decision-theoretic rough sets (MG-DTRS), other MGRS models, single granulation decision-

theoretic rough sets (SG-DTRS) and other SGRS models. Finally, Section 5 concludes this paper by bringing some remarks

and discussions.
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2. Preliminary knowledge on rough sets

In this section, we review some basic concepts such as information system, Pawlak’s rough set, and optimistic multigran-

ulation rough set. Throughout this paper, we assume that the universe U is a finite non-empty set.

2.1. Pawlak’s rough set

Formally, an information system can be considered as a pair I = 〈U, AT〉, where

• U is a non-empty finite set of objects, it is called the universe;
• AT is a non-empty finite set of attributes, such that ∀a ∈ AT , Va is the domain of attribute a.

∀x ∈ U, we denote the value of x under the attribute a (a ∈ AT) by a(x). Given A ⊆ AT , an indiscernibility relation IND(A)
can be defined as

IND(A) = {(x, y) ∈ U × U : a(x) = a(y), a ∈ A}. (1)

The relation IND(A) is reflexive, symmetric and transitive, then IND(A) is an equivalence relation. By the indiscernibility

relation IND(A), one can derive the lower and upper approximations of an arbitrary subset X of U. They are defined as

A(X) = {x ∈ U : [x]A ⊆ X} and A(X) = {x ∈ U : [x]A ∩ X �= ∅} (2)

respectively, where [x]A = {y ∈ U : (x, y) ∈ IND(A)} is the A–equivalence class containing x. The pair [A(X), A(X)] is

referred to as the Pawlak’s rough set of X with respect to the set of attributes A.

2.2. Multigranulation rough sets

The multigranulation rough set (MGRS) is different from Pawlak’s rough set model because the former is constructed on

the basis of a family of indiscernibility relations instead of single indiscernibility relation.

In optimistic multigranulation rough set approach, the word “optimistic” is used to express the idea that in multi inde-

pendent granular structures, we need only at least one granular structure to satisfy with the inclusion condition between

equivalence class and the approximated target. The upper approximation of optimisticmultigranulation rough set is defined

by the complement of the lower approximation.

Definition 1 [32]. Let I be an information system in which A1, A2, . . . , Am ⊆ AT , then ∀X ⊆ U, the optimistic multigranu-

lation lower and upper approximations are denoted by
∑m

i=1 Ai
O(X) and

∑m
i=1 Ai

O
(X), respectively,

m∑
i=1

Ai

O

(X) = {x ∈ U : [x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]Am ⊆ X}; (3)

m∑
i=1

Ai

O

(X) =∼
(

m∑
i=1

Ai

O

(∼X)

)
; (4)

where [x]Ai (1 ≤ i ≤ m) is the equivalence class of x in terms of set of attributes Ai, and ∼X is the complement of X .

By the lower approximation
∑m

i=1 Ai
O(X) and upper approximation

∑m
i=1 Ai

O
(X), the optimisticmultigranulation bound-

ary region of X is

BNO∑m
i=1 Ai

(X) =
m∑
i=1

Ai

O

(X) −
m∑
i=1

Ai

O

(X). (5)

Proposition 1. Let I be an information system in which A1, A2, . . . , Am ⊆ AT, then ∀X ⊆ U, we have

m∑
i=1

Ai

O

(X) = {x ∈ U : [x]A1 ∩ X �= ∅ ∧ [x]A2 ∩ X �= ∅ ∧ · · · ∧ [x]Am ∩ X �= ∅}. (6)
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Proof. By Definition 1, we have

x ∈
m∑
i=1

Ai

O

(X) ⇔ x /∈
m∑
i=1

Ai

O

(∼X)

⇔ [x]A1 � (∼X) ∧ [x]A2 � (∼X) ∧ · · · ∧ [x]Am � (∼X)

⇔ [x]A1 ∩ X �= ∅ ∧ [x]A2 ∩ X �= ∅ ∧ · · · ∧ [x]Am ∩ X �= ∅. �
From Proposition 1, it can be seen that though the optimistic multigranulation upper approximation is defined by the

complement of the optimisticmultigranulation lower approximation, it can also be considered as a set inwhich objects have

non–empty intersection with the target in terms of each granular structure.

Based on the SCED strategy, the following definition gives the formal representation of lower/upper approximation in

the context of multi granular structures.

Definition 2. Let I be an information system inwhich A1, A2, . . . , Am ⊆ AT , then ∀X ⊆ U, the pessimistic multigranulation

lower and upper approximations are denoted by
∑m

i=1 Ai
P(X) and

∑m
i=1 Ai

P
(X), respectively,

m∑
i=1

Ai

P

(X) = {x ∈ U : [x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X}; (7)

m∑
i=1

Ai

P

(X) = ∼
(

m∑
i=1

Ai

P

(∼X)

)
. (8)

By the lower approximation
∑m

i=1 Ai
P(X) andupper approximation

∑m
i=1 Ai

P
(X), thepessimisticmultigranulationbound-

ary region of X is

BNP∑m
i=1 Ai

(X) =
m∑
i=1

Ai

P

(X) −
m∑
i=1

Ai

P

(X). (9)

Proposition 2. Let I be an information system in which A1, A2, . . . , Am ⊆ AT, then ∀X ⊆ U, we have

m∑
i=1

Ai

P

(X) = {x ∈ U : [x]A1 ∩ X �= ∅ ∨ [x]A2 ∩ X �= ∅ ∨ · · · ∨ [x]Am ∩ X �= ∅}. (10)

Proof. By Definition 2, we have

x ∈
m∑
i=1

Ai

P

(X) ⇔ x /∈
m∑
i=1

Ai

P

(∼X)

⇔ [x]A1 � (∼X) ∨ [x]A2 � (∼X) ∨ · · · ∨ [x]Am � (∼X)

⇔ [x]A1 ∩ X �= ∅ ∨ [x]A2 ∩ X �= ∅ ∨ · · · ∨ [x]Am ∩ X �= ∅. �
Different from the upper approximation of optimisticmultigranulation rough set, the upper approximation of pessimistic

multigranulation rough set is represented as a set in which objects have non–empty intersection with the target in terms of

at least one granular structure.

3. MG-DTRS: multigranulation decision-theoretic rough sets

Probabilistic approaches to rough setshavemany forms, suchas thedecision-theoretic rough setmodel (DTRS) [49,52,50],

the variable precision rough set model [58], the Bayesian rough set model [37], and other related studies. Specially, the

decision-theoretic roughsetsproposedbyYao [49,50,52]hasvery strong theoretical basis andsoundsemantic interpretation.

Through giving special thresholds, the decision-theoretic rough set model can degenerate into the classical Pawlak rough

sets, the variable precision rough set, the 0.5-probabilistic rough set, and soon. Inmany real applications such asmulti-source

data analysis, knowledge discovery from data with high dimensions and distributive information systems, if one applies the

decision-theoretic rough sets in these cases, the multigranulation version of DTRS will be very desirable. In this section, we

will establish a multigranulation decision-theoretic rough set framework.
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3.1. Decision-theoretic rough sets

In this subsection, we briefly review some basic concepts in decision-theoretic rough sets.

In the Bayesian decision procedure, a finite set of states can be written as � = {ω1, ω2, . . . , ωs}, and a finite set of m

possible actions can be denoted by A = {a1, a2, · · · , ar}. Let P(ωj|x) be the conditional probability of an object x being in

state ωj given that the object is described by x. Let λ(ai|ωj) denote the loss, or cost, for taking action ai when the state is ωj ,

the expected loss associated with taking action ai is given by

R(ai|x) =
s∑

j=1

λ(ai|ωj)P(ωj|x).

In classical rough set theory, theapproximationoperatorspartition theuniverse into threedisjoint classesPOS(A),NEG(A),
and BND(A). Through using the conditional probability P(X|[x]), the Bayesian decision precedure can decide how to assign

x into these three disjoint regions [50,52]. The expected loss R(ai|[x]) associated with taking the individual actions can be

expressed as

R(a1|[x]) = λ11P(X|[x]) + λ12P(X
c|[x]),

R(a2|[x]) = λ21P(X|[x]) + λ22P(X
c|[x]),

R(a3|[x]) = λ31P(X|[x]) + λ32P(X
c|[x]),

where λi1 = λ(ai|X), λi2 = λ(ai|Xc), and i = 1, 2, 3. When λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12, the Bayesian decision

procedure leads to the following minimum-risk decision rules:

(P) If P(X|[x]) ≥ γ and P(X|[x]) ≥ α, decision POS(X);
(N) If P(X|[x]) ≤ β and P(X|[x]) ≤ γ , decision NEG(X);
(B) If β ≤ P(X|[x]) ≤ α, decide BND(X);

where

α = λ12 − λ32

(λ31 − λ32) − (λ11 − λ12)
, γ = λ12 − λ22

(λ21 − λ22) − (λ11 − λ12)
, β = λ32 − λ22

(λ21 − λ22) − (λ31 − λ32)
.

If a loss function with λ11 ≤ λ31 < λ21 and λ22 ≤ λ32 < λ12 further satisfies the condition:

(λ12 − λ32)(λ21 − λ31) ≥ (λ31 − λ11)(λ32 − λ22),
then α ≥ γ ≥ β .

When α > β , we have α > γ > β . The decision-theoretic rough set has the decision rules:

(P1) If P(X|[x]) ≥ α, decide POS(X);
(N1) If P(X|[x]) ≤ β , decide NEG(X);
(B1) If β < P(X|[x]) < α, decide BND(X).

Using these three decision rules, we get the probabilistic approximation:

apr
α
(X) = {x : P(X|[x]) ≥ α, x ∈ U},

aprβ(X) = {x : P(X|[x]) > β, x ∈ U}.
When α = β , we have α = γ = β . The decision-theoretic rough set has the following decision rules:

(P2) If P(X|[x]) > α, decide POS(X);
(N2) If P(X|[x]) < α, decide NEG(X);
(B2) If P(X|[x]) = α, decide BND(X).

Using the above three decision rules, we get the probabilistic approximation:

apr
α
(X) = {x : P(X|[x]) > α, x ∈ U},

aprα(X) = {x : P(X|[x]) ≥ α, x ∈ U}.
In the framework of decision-theoretic rough sets, the Pawlak rough set model, the variable precision rough set model,

the Bayesian rough set model and the 0.5-probabilisitc rough set model can be pooled together and studied based on the

notions of conditional functions.
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3.2. Theoretical foundation in multigranulation decision-theoretic rough sets

The multigranulation rough set (MGRS) is different from Pawlak’s rough set model because the former is constructed on

the basis of a family of indiscernibility relations instead of single indiscernibility relation.

Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U, the lower/upper approximation in a multigranulation

rough set can be formally represented as two fusion functions, respectively,

m∑
i=1

Ri(X) = fl(R1, R2, . . . , Rm),

m∑
i=1

Ri(X) = fu(R1, R2, . . . , Rm),

where fl is called a lower fusion function, and fu is called an upper fusion function. These two functions are used to compute

the lower/upper approximation of a multigranulation rough set through fusingm granular structures.

Inpractical applicationsofmultigranulation roughsets, the fusion functionhasmany formsaccording tovarious semantics

and requirements. Conveniently, letλk(ai|ωj)denote the loss, or cost, for taking action ai when the state isωj by k-th granular

structures. Let P(ωj|xk) be the conditional probability of an object x being in state ωj given that the object is described by

xk under k-th granular structures. The expected loss associated with taking action ai is given by

R(ai|x1, x2, . . . , xm) =
m∑

k=1

s∑
j=1

λk(ai|ωj)P(ωj|xk). (11)

The expected lossR(ai|x1, x2, . . . , xm) is a conditional risk. τ(x1, x2, . . . , xm) specifieswhich action to take, and its value

is one of the actions a1, a2, . . . , ar . The overall riskR is the expected loss associatedwith the decision rule τ(x1, x2, . . . , xm),
the overall risk is defined by

R = ∑
x1,x2,...,xm

R(τ (x1, x2, . . . , xm)|x1, x2, . . . , xm)P(x1, x2, . . . , xm), (12)

where P(x1, x2, . . . , xm) is a joint probability, which is calculated through fusing (P(x1), P(x2), . . . , P(xm)) induced by m

granular structures induced by the same universe.

Given multiple granular structures R1, R2, . . . , Rm ⊆ R, the multigranulation decision-theoretic rough sets aim to select

a series of actions for which the overall risk is as small as possible, in which the actions include deciding positive region,

deciding negative region and deciding boundary region.

In the multigranulation decision-theoretic rough sets, there are two kinds of assumptions. One assumes that the values

of λk(ai|ωj), k ≤ m, are all equal each other, and the other assumes that they are not equivalent, in which each granular

structure has its independent loss (or cost) functions itself. In order to introduce the idea of multigranulation decision-

theoretic rough sets, this paper only deals with the first assumption. Hence, the determined procedure of the parameters α,

β and γ is consistent with that of classical decision-theoretic rough sets, and the value of each parameter in every granular

structure is also equal each other. The multigranulation decision-theoretic rough sets for the second assumption will be

established in future work.

3.3. Three cases of multigranulation decision-theoretic rough sets

Given m granular structures R1, R2, . . . , Rm ⊆ R, when λk(ai|ωj) = λl(ai|ωj), k, l ∈ {1, 2, . . . ,m}, the expected loss

associated with taking action ai can be given by

R(ai|x1, x2, . . . , xm) =
m∑

k=1

s∑
j=1

λ(ai|ωj)P(ωj|xk). (13)

In this case, the information fusion in multigranulation decision-theoretic rough sets can be simplified as the fusion of

a set of probabilities under the same universe. In this subsection, we give three multigranulation decision-theoretic rough

set models, which are a mean multigranulation decision-theoretic rough set (MMG-DTRS), an optimistic multigranulation

decision-theoretic rough set (OMG-DTRS) and a pessimistic multigranulation decision-theoretic rough set (PMG-DTRS),

respectively.
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3.3.1. Mean multigranulation decision-theoretic rough sets

In multigranulation decision-theoretic rough sets, when the loss function is fixed, judging the conditional probability of

an object x within a target concept in m granular structures can be computed by its mathematic expectation. That is to say,

E(P(X|x)) = P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m. (14)

The joint probability is estimated by the mean value of m conditional probabilities. Based on this idea, hence we give a

kind ofmultigranulation decision-theoretic rough set, calledmeanmultigranulation decision-theoretic rough sets. Its formal

definition is as follows.

Definition 3. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U, the mean multigranulation lower and upper

approximations are denoted by
∑m

i=1 Ri
M, α(X) and

∑m
i=1 Ri

M, β
(X), respectively,

m∑
i=1

Ri

M, α

(X) = {x : (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≥ α, x ∈ U}; (15)

m∑
i=1

Ri

M, β

(X) = U − {x : (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≤ β, x ∈ U}; (16)

where [x]Ri (1 ≤ i ≤ m) is the equivalence class of x induced by Ri, P(X|[x]Ri) is the conditional probability of the equivalent

class [x]Ri with respect to X , and α, β are two probability constraints.

By the lowerapproximation
∑m

i=1 Ri
M, α(X)andupperapproximation

∑m
i=1 Ri

M, β
(X), themeanmultigranulationbound-

ary region of X is

BNM∑m
i=1 Ri

(X) =
m∑
i=1

Ri

M, β

(X) −
m∑
i=1

Ri

M, α

(X). (17)

Similar to the classical decision-theoretic rough sets, when the thresholds α > β , we can obtain the decision rules

tie-broke:

(MP1) If (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≥ α, decide POS(X);
(MN1) If (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m ≤ β , decide NEG(X);
(MB1) If β < (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m < α, decide BND(X).

When α = β , we have α = γ = β . The mean multigranulation decision-theoretic rough set has the following decision

rules:

(MP2) If (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m > α, decide POS(X);
(MN2) If (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m < α, decide NEG(X);
(MB2) If (P(X|[x]R1) + P(X|[x]R2) + · · · + P(X|[x]Rm))/m = α, decide BND(X).

3.3.2. Optimistic multigranulation decision-theoretic rough sets

In existing optimistic multigranulation rough set approaches, the word “optimistic” is used to express the idea that in

multi independent granular structures, its multigranulation lower approximation only needs at least one granular structure

to satisfy with the inclusion condition between an equivalence class and the approximated target. While the upper approxi-

mation of an optimistic multigranulation rough set is defined by the complement of the lower approximation. Based on this

idea, in this part, we develop an optimistic multigranulation decision-theoretic rough set.

In this optimistic multigranulation decision-theoretic rough set, its lower approximation collects those objects in which

each object has at least one granular structure satisfying the probability constraint (≥α) between its equivalence class and

the approximate target, while its upper approximation collects those objects inwhich each object has all granular structures

satisfying the probability constraint (≤β) between its equivalence class and the approximate target.

Definition 4. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U, the optimistic multigranulation lower and

upper approximations are denoted by
∑m

i=1 Ri
O, α(X) and

∑m
i=1 Ri

O, β
(X), respectively,
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m∑
i=1

Ri

O,α

(X) = {x : P(X|[x]R1) ≥ α ∨ P(X|[x]R2) ≥ α ∨ · · · ∨ P(X|[x]Rm) ≥ α, x ∈ U}; (18)

m∑
i=1

Ri

O,β

(X) = U − {x : P(X|[x]R1) ≤ β ∧ P(X|[x]R2) ≤ β ∧ · · · ∨ P(X|[x]Rm) ≤ β, x ∈ U}; (19)

where [x]Ri (1 ≤ i ≤ m) is the equivalence class of x induced by Ri, P(X|[x]Ri) is the conditional probability of the equivalent

class [x]Ri with respect to X , and α, β are two probability constraints.

By the lower approximation
∑m

i=1 Ri
O, α(X) and upper approximation

∑m
i=1 Ri

O, β
(X), the optimistic multigranulation

boundary region of X is

BNO∑m
i=1 Ri

(X) =
m∑
i=1

Ri

O, β

(X) −
m∑
i=1

Ri

O, α

(X). (20)

From the definition of optimistic multigranulation decision-theoretic rough sets, one can obtain the following three

propositions.

Proposition 3. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

(1)
∑m

i=1 Ri
O, α(X) ⊇ Riα(X), i ≤ m;

(2)
∑m

i=1 Ri
O, β

(X) ⊆ Riβ(X), i ≤ m;

where Riα(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.
Proposition 4. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

(1)
∑m

i=1 Ri
O, α(X) = ⋃m

i=1 Riα(X);

(2)
∑m

i=1 Ri
O, β

(X) = ⋂m
i=1 Riβ(X);

where Riα(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.
Proposition 5. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X1 ⊆ X2 ⊆ U. Then, the following properties hold

(1)
∑m

i=1 Ri
O, α(X1) ⊆ ∑m

i=1 Ri
O, α(X2);

(2)
∑m

i=1 Ri
O, β

(X1) ⊆ ∑m
i=1 Ri

O, β
(X2).

Similar to the classical decision-theoretic rough sets, when the thresholds α > β , we can obtain the decision rules

tie-broke:

(OP1) If ∃i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) ≥ α, decide POS(X);
(ON1) If ∀i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) ≤ β , decide NEG(X);
(OB1) Otherwise, decide BND(X).

When α = β , we have α = γ = β . The optimisitc multigranulation decision-theoretic rough set has the following

decision rules:

(OP2) If ∃i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) > α, decide POS(X);
(ON2) If ∀i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) < α, decide NEG(X);
(OB2) Otherwise, decide BND(X).

3.3.3. Pessimistic multigranulation decision-theoretic rough sets

In decision making analysis, “Seeking common ground while eliminating differences" (SCED) is one of usual decision

strategies. This strategy argues that one reserves common decisions while deleting inconsistent decisions, which can be

seen as a conservative decision strategy. Based on this consideration, Qian et al. [31] proposed a so-called pessimistic
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multigranulationroughset. In this subsection,wewill combinepessimisticmultigranulationroughsetanddecision-theoretic

rough set into an entire decision framework together.

In the pessimisticmultigranulation decision-theoretic rough sets, its lower approximation collects those objects inwhich

its equivalence class from all granular structures satisfying the probability constraint (≥α) between its equivalence class and

the approximate target, while its upper approximation collects those objects in which each object has at least one granular

structure satisfying the probability constraint (≤β) between its equivalence class and the approximate target.

Definition 5. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U, the pessimistic multigranulation lower and

upper approximations are denoted by
∑m

i=1 Ri
P, α(X) and

∑m
i=1 Ri

P, β
(X), respectively,

m∑
i=1

Ri

P, α

(X) = {x : P(X|[x]R1) ≥ α ∧ P(X|[x]R2) ≥ α ∧ · · · ∧ P(X|[x]Rm) ≥ α, x ∈ U}; (21)

m∑
i=1

Ri

P, β

(X) = U − {x : P(X|[x]R1) ≤ β ∨ P(X|[x]R2) ≤ β ∨ · · · ∨ P(X|[x]Rm) ≤ β, x ∈ U}; (22)

where [x]Ri (1 ≤ i ≤ m) is the equivalence class of x induced by Ri, P(X|[x]Ri) is the conditional probability of the equivalent

class [x]Ri with respect to X , and α, β are two probability constraints.

By the lower approximation
∑m

i=1 Ai
P, α(X) and upper approximation

∑m
i=1 Ai

P, β
(X), the pessimistic multigranulation

boundary region of X is

BNP∑m
i=1 Ri

(X) =
m∑
i=1

Ri

P, β

(X) −
m∑
i=1

Ri

P, α

(X). (23)

From the definition of pessimistic multigranulation decision-theoretic rough set, the following three propositions can be

easily induced.

Proposition 6. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

(1)
∑m

i=1 Ri
P, α(X) ⊆ Riα(X), i ≤ m;

(2)
∑m

i=1 Ri
P, β

(X) ⊇ Riβ(X), i ≤ m;

where Riα(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.
Proposition 7. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

(1)
∑m

i=1 Ri
P, α(X) = ⋂m

i=1 Riα(X);

(2)
∑m

i=1 Ri
P, β

(X) = ⋃m
i=1 Riβ(X);

where Riα(X) = {x : P(X|[x]Ri) ≥ α, x ∈ U}, and Riβ(X) = {x : P(X|[x]Ri) ≥ β, x ∈ U}.
Proposition 8. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X1 ⊆ X2 ⊆ U. Then, the following properties hold

(1)
∑m

i=1 Ri
P, α(X1) ⊆ ∑m

i=1 Ri
P, α(X2);

(2)
∑m

i=1 Ri
P, β

(X1) ⊆ ∑m
i=1 Ri

P, β
(X2).

Similar to the classical decision-theoretic rough sets, when the thresholds α > β , we can obtain the decision rules

tie-broke:

(PP1) If ∀i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) ≥ α, decide POS(X);
(PN1) If ∃i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) ≤ β , decide NEG(X);
(PB1) Otherwise, decide BND(X).
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When α = β , we have α = γ = β . The pessimistic multigranulation decision-theoretic rough set has the following

decision rules:

(PP2) If ∀i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) > α, decide POS(X);
(PN2) If ∃i ∈ {1, 2, . . . ,m} such that P(X|[x]Ri) < α, decide NEG(X);
(PB2) Otherwise, decide BND(X).

The following proposition establishes the relationships among themeanmultigranulation decision-theoretic rough sets,

theoptimisticmultigranulationdecision-theoretic rough sets, and thepessimisticmultigranulationdecision-theoretic rough

sets.

Proposition 9. Given R1, R2, . . . , Rm ⊆ R m granular structures and ∀X ⊆ U. Then, the following properties hold

(1)
∑m

i=1 Ri
P, α(X) ⊆ ∑m

i=1 Ri
M, α(X) ⊆ ∑m

i=1 Ri
O, α(X);

(2)
∑m

i=1 Ri
P, β

(X) ⊇ ∑m
i=1 Ri

M, β
(X) ⊇ ∑m

i=1 Ri
O, β

(X).

4. Relationships between MG-DTRS and other MGRS models

4.1. Classical multigranulation rough sets

In the decision-theoretic rough sets, the probability value, the thresholds α and β decide its detailed form of rough sets.

From Yao’s work [50,52], it follows that when α = 1 and β = 0, the decision-theoretic rough sets will degenerate into the

standard rough sets. In this case, we have that

P(X|[x]R) = |[x]R ∩ X|
|[x]R| = 1 ⇔ [x]R ⊆ X,

P(X|[x]R) = |[x]R ∩ X|
|[x]R| = 0 ⇔ [x]R ∩ X = Ø.

Hence,

m∑
i=1

Ri

O, α

(X) = {x : P(X|[x]R1) ≥ 1 ∨ P(X|[x]R2) ≥ 1 ∨ · · · ∨ P(X|[x]Rm) ≥ 1, x ∈ U}

⇒
m∑
i=1

Ri

O, α

(X) = {x : [x]R1 ⊆ X ∨ [x]R2 ⊆ X ∨ · · · ∨ [x]Rm ⊆ X, x ∈ U},

and

m∑
i=1

Ri

O, β

(X) = U − {x : P(X|[x]R1) ≤ 0 ∧ P(X|[x]R2) ≤ 0 ∧ · · · ∧ P(X|[x]Rm) ≤ 0, x ∈ U}

⇒
m∑
i=1

Ri

O, β

(X) = {x : [x]R1 ∩ X �= Ø ∧ [x]R2 ∩ X �= Ø ∧ · · · ∧ [x]Rm ∩ X �= Ø, x ∈ U}.

Themultigranulation lower approximation andmultigranulation upper approximation are consistent with those in clas-

sical optimistic multigranulation rough sets (OMGRS) [32]. Hence, when α = 1 and β = 0, the optimistic multigranulation

decision-theoretic rough sets (OMG-DTRS) will degenerate into the optimistic multigranulation rough sets (OMGRS).

Similarly, one has that

m∑
i=1

Ri

P, α

(X) = {x : P(X|[x]R1) ≥ 1 ∧ P(X|[x]R2) ≥ 1 ∧ · · · ∧ P(X|[x]Rm) ≥ 1, x ∈ U}

⇒
m∑
i=1

Ri

P, α

(X) = {x : [x]R1 ⊆ X ∧ [x]R2 ⊆ X ∧ · · · ∧ [x]Rm ⊆ X, x ∈ U},
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and

m∑
i=1

Ri

P, β

(X) = U − {x : P(X|[x]R1) ≤ 0 ∨ P(X|[x]R2) ≤ 0 ∨ · · · ∨ P(X|[x]Rm) ≤ 0, x ∈ U}

⇒
m∑
i=1

Ri

P, β

(X) = {x : [x]R1 ∩ X �= Ø ∨ [x]R2 ∩ X �= Ø ∨ · · · ∨ [x]Rm ∩ X �= Ø, x ∈ U}.

Themultigranulation lower approximation andmultigranulation upper approximation are equivalent to those in classical

pessimistic multigranulation rough sets (PMGRS) [31]. Thus, pessimistic multigranulation decision-theoretic rough sets

(PMG-DTRS) will degenerate into the pessimistic multigranulation rough sets (PMGRS).

4.2. Variable multigranulation rough sets

When α + β = 1 and 0 ≤ β ≤ 0.5 < α ≤ 1, the decision-theoretic rough sets become the variable precision rough

sets. The condition 0 ≤ β ≤ 0.5 < α ≤ 1 follows that the lower approximation is a subset of the upper approximation.

Hence,

m∑
i=1

Ri

O, α

(X) = {x : P(X|[x]R1) ≥ α ∨ P(X|[x]R2) ≥ α ∨ · · · ∨ P(X|[x]Rm) ≥ α, x ∈ U},

m∑
i=1

Ri

O, β

(X) = U − {x : P(X|[x]R1) ≤ β ∧ P(X|[x]R2) ≤ β ∧ · · · ∧ P(X|[x]Rm) ≤ β, x ∈ U},

⇒
m∑
i=1

Ri

O, α

(X) = {x : P(X|[x]R1) ≥ α ∨ P(X|[x]R2) ≥ α ∨ · · · ∨ P(X|[x]Rm) ≥ α, x ∈ U},

m∑
i=1

Ri

O, β

(X) = {x : P(X|[x]R1) > 1 − α ∧ P(X|[x]R2) > 1 − α ∧ · · · ∧ P(X|[x]Rm) > 1 − α, x ∈ U}.

The multigranulation lower approximation and multigranulation upper approximation are consistent with those in the

optimistic variable precision multigranulation rough sets (OVMGRS) proposed by [57]. Hence, when α + β = 1 and 0 ≤
β ≤ 0.5 < α ≤ 1, OMG-DTRSwill degenerate into the optimistic variable precisionmultigranulation rough sets (OVMGRS).

Similarly, the pessimistic multigranulation decision-theoretic rough sets have the following properties.

m∑
i=1

Ri

P, α

(X) = {x : P(X|[x]R1) ≥ α ∧ P(X|[x]R2) ≥ α ∧ · · · ∧ P(X|[x]Rm) ≥ α, x ∈ U},

m∑
i=1

Ri

P, β

(X) = U − {x : P(X|[x]R1) ≤ β ∨ P(X|[x]R2) ≤ β ∨ · · · ∨ P(X|[x]Rm) ≤ β, x ∈ U},

⇒
m∑
i=1

Ri

P, α

(X) = {x : P(X|[x]R1) ≥ α ∧ P(X|[x]R2) ≥ α ∧ · · · ∧ P(X|[x]Rm) ≥ α, x ∈ U},

m∑
i=1

Ri

P, β

(X) = {x : P(X|[x]R1) > 1 − α ∨ P(X|[x]R2) > 1 − α ∨ · · · ∨ P(X|[x]Rm) > 1 − α, x ∈ U}.

The multigranulation lower approximation and multigranulation upper approximation are equivalent to those in the

pessimistic variable precision multigranulation rough sets (PVMGRS) developed by Zhang et al. [57]. Thus, PMG-DTRS will

degenerate into the pessimistic variable precision multigranulation rough sets (PVMGRS).

When the thresholds α and β have other constrain relationships, the multigranulation decision-theoretic rough sets will

produce various variables of multigranulation rough sets, which can be applied in many practical applications.

Based on the above discussions, we can obtain the relationships among MG-DTRS, other MGRS models, SG-DTRS and

other SGRS models, which is shown as Fig. 1. In this figure, MG-PRS means a multigranulation probabilistic rough set, MG-

VRS is amultigranulation variable precision rough set, andMG-0.5PRSmeans amultigranulation 0.5-probabilistic rough set,
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(a) Relationship between MG-DTRS and other
MGRS models

(b) Relationship between MG-DTRS and SG-
DTRS

Fig. 1. Relationships among MG-DTRS, other MGRS models, SG-DTRS and other SGRS models.

while SG-PRS means a MG-PRS means a multigranulation probabilistic rough set, probabilistic rough set, SG-VRS is a single

granulation variable precision rough set, andMG-0.5PRSmeans a single granulation 0.5-probabilistic rough set, respectively.

5. Conclusions

Multigranulation rough set theory (MGRS) is one of desirable directions in rough set theory, in which lower/upper

approximations are approximated by granular structures induced bymultiple binary relations. It provides a new perspective

for decision making analysis based on the rough set theory. In this paper, we have first proposed a new multigranulation

roughsetmodel throughcombiningMGRSand thedecision-theoretic roughsets together, calledamultigranulationdecision-

theoretic rough set model. In this framework, we have given three forms of MG-DTRS, which are mean multigranulation

decision-theoretic rough sets, optimistic multigranulation decision-theoretic rough sets, and pessimistic multigranulation

decision-theoretic roughsets. These formsofMG-DTRScanderivemanyexistingmultigranulation roughsetmodelswhenthe

parameters satisfy special constraints. Finally, we have also established the relationships amongmultigranulation decision-

theoretic rough sets, multigranulation rough sets and single granulation rough sets.

This study only develops a framework of multigranulation decision-theoretic rough sets, in which there are still many

interesting issues to be explored. Its future direction has four aspects: (1) model extension of multigranulation decision-

theoretic rough sets in other types of data sets; (2) information fusion based onmultiple granular structures; (3) information

granule selection and granulation selection; and (4) applications of multigranulation decision-theoretic rough sets. It is

deserved to point out that the multigranulation decision-theoretic rough set and standard decision-theoretic rough set can

be combined to data mining and decision making in real applications, such as multi-source information systems, data with

high dimensions, distributive information systems.
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