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• A network model is proposed for generating networks with nonuniform communities.
• Rumor propagation on the generated networks is investigated.
• Bridge hubs have outstanding performance in propagation speed and propagation size.
• Larger modularity can reduce rumor propagation.
• When the decay rate is large, a rumor from a larger community spreads more widely.
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a b s t r a c t

In this paper, based on growth and preferential attachment mechanism, we give a network
generation model aiming at generating networks with community structure. There are
three characteristics for the networks generated by the generation model. The first is that
the community sizes can be nonuniform. The second is that there are bridge hubs in each
community. The third is that the strength of community structure is adjustable. Next, we
investigate rumor propagation behavior on the generated networks by performing Monte
Carlo simulations to reveal the influence of bridge hubs, nonuniformity of community
sizes and the strength of community structure on the dynamic behavior of the rumor
propagation.We find that bridge hubs have outstanding performance in propagation speed
and propagation size, and larger modularity can reduce rumor propagation. Furthermore,
when the decay rate of rumor spreading β is large, the final density of the stiflers is larger if
the rumor originates in larger community. Additionally, when on networks with different
strengths of community structure, rumor propagation exhibits greater difference in the
density of stiflers and in the peak prevalence if the decay rate β is larger.

© 2017 Published by Elsevier B.V.

1. Introduction

Rumor propagation is an important communication form in our life. Complex network is the main medium for rumor
propagation. Traditionally, rumor spreads by word of mouth in social network. In the Internet Age, rumor spreads on
SNS (Social Networking Service). The underlying networks on which rumor spreads exhibit a number of characteristics
which include the small-world property [1], scale-free degree distributions [2,3], and clustering [1,4,5]. Another crucial
characteristic is community structure [4,6,7] and generally, community sizes are nonuniform [8]. It is important to reveal
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how the networks with nonuniform communities affect the propagation dynamics of rumors for the prevention and control
of the large-scale spread of the rumor and the maintenance of social stability.

Because the rumor propagation is similar to the epidemic spreading in many ways, the methods and results of epidemic
dynamics on complex networks are often used to study rumor propagation on complex networks. Simulation modeling is
one way to study the propagation dynamics on complex networks and it contains two aspects: network generation and
analysis of propagation dynamics on networks.

To reveal the effect of community structure on propagation dynamics, lots of network models which can generate
community structure have been proposed [9–19] and dynamics of epidemic spreading on these networks have been
studied [11–18]. In [9], starting from an initial network, at each time step, a node is added and enters to a community
randomly. The newly added node connects with nodes in the same community based on inner-degree and connects with
nodes in the other communities based on inter-degree. The analysis results show the networks generated are scale free
networks with communities whose sizes are nearly uniform. The networks generated by the networkmodel in [9] are called
SFcN (Scale-free Networks with Communities) in [14]. By the switching algorithm, Huang et al. obtained the networks called
SFN (Scale-free Networks without Communities) having the same degree distribution to SFcN’s but without community
structure. On the networks SFcN and SFN, Huang et al. [14] studied epidemic spreading based on the Susceptible-Infected
(SI) epidemic model. Comparing the results in these two kinds of networks, it is found that strong community structure
can reduce epidemic danger. The network generation model in [10] is different from the one in [9]. The newly added
node connects with nodes in the same community and nodes in different communities both by preferential attachment
mechanism based on total-degree. The weights of edges are express by nodes’ degrees, and the internal edges and external
edges are weighed by two exponents. It is shown that the networks generated by network model in [10] are weighted
scale free networks with communities whose sizes are nearly uniform. Based on the SI epidemic model, Chu et al. [10]
found that the external weighting exponent plays a much more important role in slackening the epidemic spreading and
reducing the danger brought by the epidemic than the internal weighting exponent. Moreover, they found that the strong
community structure is no longer helpful for slackening the danger brought by the epidemic in the weighted cases. In [11],
each community has the same number of nodes. Intra-community links are generated at higher probability than that for
generating inter-community links. Liu et al. [11] discussed the epidemic spreading on such random networks based on
Susceptible-Infected-Susceptible (SIS) model. They found that the epidemic threshold will increase with the decrease of the
degree of community. Wu et al. [12] gave a model with adjustable clustering coefficient and degree of community, and they
discovered the final size of infected nodes depends mainly on the degree of community. Huang et al. [13] investigated the
dynamics of information propagation on modular networks. They found the life span of information can be maximized by
the number of modules.

Of course, there are also differences between epidemic models and rumor models−most obviously in the mechanism
of removal, i.e., the event that a spreader ceases to spread the rumor. In the standard models of rumor spread called
Daley−Kendal (DK) model [20] and Maki−Thompson (MT) model [21], the mechanism of removal is that the spreaders
are removed with some probability if they contact other spreaders or stiflers. While in epidemic models, the spreaders are
removedwith someprobabilitywhether they contact other spreaders or stiflers or not. Recently,many researches investigate
rumor propagation on complex networks based on MT rumor model to reveal the influence of complex network topology
on dynamics of rumor propagation. Zanette investigated the rumor propagation on both static [22] and dynamic [23]
small-world networks by numerical analysis. His studies showed that at a finite randomness of the underlying small-world
network, the rumorpropagation exhibits a critical transition between a regimewhere the rumor dies in a small neighborhood
of its origin, and a regime where it spreads over a finite fraction of the whole population. Moreno et al. studied the rumor
propagation on SF networks [24,25]. Their studies revealed the network topology interact with the rules of the rumormodel
and highlighted the great impact of network heterogeneity on the dynamics of rumor propagation. There are also many
researches analyzing the mechanisms of rumor propagation. Nekovee et al. [26] considered a forgetting mechanism which
leads to presence of propagation threshold on Small world network and finite SF networks. Han et al. [27] proposed energy
model to study the dynamics of rumor spreading on synthetic networks and real-world social networks.

The researches [9–19] pay close attention to the influence of networks with uniform communities on dynamics of
epidemic spreading. The influence of nonuniformity of community sizes on propagation dynamics is neglected. For dynamics
of rumor propagation, there is little work taking into account the impact of community structure on rumor propagation.

Considering these scenarios, in this paper,we investigate rumor propagation on networkswith nonuniform communities.
Firstly, we propose a network generation model which can describe social networks realistically. Next, we explore how
the network characteristics, such as bridge hubs and the community structure, influence the dynamic behavior of rumor
spreading. Additionally, we investigate how the influence will be affected by the value of the propagation parameters.

The rest of this paper is organized as follows. In Section 2, we propose a network evolving model. We analyze the
properties of the networks in Section 3. Based on rumor propagation model, we perform Monte Carlo simulations on
networks with community structure and analyze the effect of community structure on rumor propagation in Section 4.
Finally, we conclude the paper in Section 5.

2. Network generation model

In this section, based on growth and preferential attachment mechanism, we propose a network evolving model aiming
at generating networks with nonuniform communities. The generation algorithm for the model is described below:
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(i) Initialization
The network is initialized with M communities denoted by C1, C2, . . . , CM . In each community, there are m0 fully

connected nodes. Additionally, for any two communities, there is an inter-community link between two nodes selected
from the two communities respectively.

(ii) Growth
At each time step, a new node is added into the network. The newly added node enters community Cj with probability pj

and
∑

jpj = 1. The newly added node will connect to m (1 ≤ m ≤ m0) nodes in community Cj according to the preferential
attachmentmechanism,whichmeans the probability

∏
j(l) that the newly added nodewill connect to node l (l ∈ Cj) depends

on the degree klj of node l in the community Cj. That is
∏

j(l) =
klj∑
r krj

. At the same time, n (1 ≤ n ≤ m) operations will be
executed with probability α so that the newly added node will connect to the other M − 1 communities through inter-
community links. In each operation, first, community Ch is chosen with probability ph, and then the newly added node will
connect to a node in community Ch following the preferential attachment mechanism referred above for h ̸= j and will not
connect to nodes in community Ch for h = j.

In our model, growth and preferential attachment are two main evolution mechanisms which lead to a scale-free
feature of networks [2]. In addition, we give the probability distribution p1, p2, . . . , pM and a new node is added to
the community Cj with probability pj (j = 1, 2, . . . ,M). In this way, the community-size distribution of the generated
network can approximate the expected distribution p1, p2, . . . , pM which can be either nonuniform or uniform. Finally, the
given probability distribution p1, p2, . . . , pM plays another role. When a newly added node in community Cj emits inter-
community links, whether it will connect to the community Ch is also determined by the probability ph (h ̸= j) corresponding
to the community Ch (h ̸= j). So, for links emitting from a node in community Cj, the probability ph (h ̸= j) can be regarded
as the rate of attraction to community Ch(h ̸= j). This is the case in reality that the larger community can attract more
inter-community links. Thus, based on our model, the generated networks can display some generic features of a number of
real-world networks. In existing models in Refs. [9–19], however, a new node is added to a randomly selected community.
By that way, the community-size distribution of the generated network can only approximate a uniform distribution. So our
model can describe social networks realistically.

In the following, we will perform numerical simulations to show that we can generate networks with community
structure by the proposed model.

Example. Consider the case of M = m0 = m = 3, p1 =
1
6 , p2 =

1
3 , p3 =

1
2 , α = 0.1, n = 1 and a total of N = 500 nodes.

Show that the generated network exhibits community structure.
According to the given conditions, the initial network has three communities denoted by C1, C2, C3. In each initial

community, there are three nodes which are fully connected and for each two communities, there is an inter-community
link to connect them. Starting from the initial network, at each time step, a new node with 3 intra-community links is added
into a community selected by the above probability distribution. In detail, for example, a new node enters community C1
with probability p1 =

1
6 . Then, it connects to 3 nodes in community C1. At the same time, if the random number is smaller

than α = 0.1, then we execute 1 operation. That is the newly added node connects to a node in community C2 with the
probability p2 =

1
3 and connects to a node in community C3 with the probability p3 =

1
2 and it will not connect with the

probability p1 =
1
6 . We repeat the process until the size of the network is up to 500.

As showed in Fig. 1, the generated network exhibits community structure.
In the next section, we will study other important properties of the generated networks.

3. Topological properties of the generated networks

In this section, we mainly investigate three important properties: degree distribution, network modularity [28], and
average shortest path length. Firstly, we use the mean-field method [29] to analyze the degree distributions including the
degree distribution that is defined in [9] for any community and the degree distribution of the generated networks. Secondly,
we analyze how the strength of community structure of the generated network varies with the network configuration
parameter α. Finally, we discuss the influence of the network configuration parameter α on the average shortest path length.

3.1. Degree distribution

Let kij(t) be the degree of the node i in community Cj at tth time step. Let Pj(k, t) be the degree distribution of the
community Cj at tth time step.

Theorem 3.1. For each community Cj (j = 1, 2, . . . ,M), its steady-state degree distribution exists, and is given by

Pj(k) = lim
t→∞

Pj(k, t) = 2[m + (1 − pj)αn]2k−3 (k ≥ m).
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Fig. 1. A network generated by the proposed model: N = 500, M = 3, m0 = 3, m = 3, p1 =
1
6 , p2 =

1
3 , p3 =

1
2 , n = 1, α = 0.1. (a) Graph representation

for the generated network. (b) Sparsity pattern of the adjacent matrix for the generated network.

Proof. Assume kij(t) is continuous, then the rate of the change of kij(t) can be written as

∂kij(t)
∂t

= pjm
kij∑
l klj

+ αn
∑
h̸=j

phpj
kij∑
l klj

. (1)

Since
∑

lklj = m0(m0 − 1)+ 2pjmt + 2pj(1− pj)αnt , when t is enough large,
∑

lklj ≈ 2pjmt + 2pj(1− pj)αnt . Thus we have

∂kij(t)
∂t

=
kij
2t

. (2)

Note that the node i is added to the community Cj at time tij with degreem+ (1−pj)αn, so the initial condition of the Eq. (2)
is kij(tij/pj) = m + (1 − pj)αn. Solving (2) with its initial condition, we obtain that

kij(t) = [m + (1 − pj)αn]
(
pjt
tij

) 1
2

. (3)

From Eq. (3), the probability that the node i in community Cj has degree kij smaller than k is

Pj(kij(t) < k) = Pj

(
tij >

[m + (1 − pj)αn]2pjt
k2

)
. (4)

We assume that we add the nodes at equal time intervals to the community Cj, then the probability density of tij is given by

Pj(tij) =
1

m0 + pjt
. (5)

From (4) and (5), we have

Pj

(
tij >

[m + (1 − pj)αn]2pjt
k2

)
= 1 − Pj

(
tij ≤

[m + (1 − pj)αn]2pjt
k2

)
= 1 −

[m + (1 − pj)αn]2pjt
k2(m0 + pjt)

. (6)

Computing the derivatives of the functions on both sides of Eq. (6) with respect to k, we can obtain the probability density

Pj(k, t) =
2[m + (1 − pj)αn]2pjt

m0 + pjt
k−3. (7)

Taking limits on both sides of Eq. (7), it is easy to get Pj(k) = limt→∞Pj(k, t) = 2[m + (1 − pj)αn]2k−3. The proof is
completed.

From (7), we can see that the degree distribution of each community obeys a power law distribution Pj ∼ k−γ , where
γ = 3 independent ofM and m.

It is difficult to analyze the degree distribution of the global network by the mean-field method. We predict that it is a
power-law distribution P(k) ∼ k−3 and verify it by numerical simulation.
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Fig. 2. (a) Log–log representation of the degree distribution of the community C3 . The straight line is plotted according to Eq. (7) but power exponent of
‘‘k’’ is −2.9. (b) Log–log representation of the degree distribution of the network. The slope of the straight line is −2.9.

In the following, we perform numerical simulations for the degree distributions. For a network with M = m0 = m = 3,
p1 =

1
6 , p2 =

1
3 , p3 =

1
2 , n = 1, α = 0.1 and N = 5000, we calculate the distributions of the community C3 and the degree

distribution of the total network, then display them in Fig. 2.
From Fig. 2, we can see there is small deviation between numerical simulations and analytical solutions. It is due to the

mathematical approximation of the boundary conditions and the effect of the finite network size in the simulations [28].

3.2. Modularity measure

In [28], Newman et al. have proposedmodularity tomeasure the strength of community structure for complex networks.
It is defined as

Q =

M∑
i=1

(eii − a2i ),

where eij is the fraction of all edges in the network that link nodes in community i to nodes in community j and ai =
∑

jeij.
According to our network generation model, we have

eii =
pim

m + (1 −
∑M

i=1 p
2
i )αn

,

and

ai =
pi[m + (1 − pi)αn]

m + (1 −
∑M

i=1 p
2
i )αn

.

So we can obtain

Q =
m

m + (1 −
∑M

i=1 p
2
i )αn

−

M∑
i=1

p2i [m + (1 − pi)αn]2

[m + (1 −
∑M

i=1 p
2
i )αn]2

. (8)

Then we can obtain the following theorem:

Theorem 3.2. The modularity Q of the network generated by the generation model is a decreasing function of variable α.

Proof. Computing the derivatives of the functions on both sides of Eq. (8) with respect to α, we have

∂Q
∂α

= −
mn

[m + (1 −
∑M

i=1 p
2
i )αn]3

[(
m +

(
1 −

M∑
i=1

p2i

)
αn

)(
1 −

M∑
i=1

p2i

)

+ 2(m + αn)

(
M∑
i=1

p2i

M∑
i=1

p2i −

M∑
i=1

p3i

)
− 2

(
M∑
i=1

p2i

M∑
i=1

p3i −

M∑
i=1

p4i

)
αn

]
.
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Fig. 3. Average shortest path length versus network configuration parameter α.

For the fixed m and n, and any given α, the partial derivative function ∂Q
∂α

is continuous on the domain {(p1, p2, . . . , pM )|∑M
i=1pi = 1, pi ≥ 0(i = 1, 2, . . . ,M)}. So ∂Q

∂α
has maximum and minimum on the domain. Applying the Lagrange multiplier

method, ∂Q
∂α

can take minimumwhen p1 = p2 = · · · = pM =
1
M and take maximumwhen some pi(i = 1, 2, . . . ,M) is 1 and

the others are 0. Thus, for any α ∈ [0, 1], ∂Q
∂α

≤ 0. That is the modularity Q is a decreasing function of variable α. The proof
is completed.

3.3. Average shortest path length

Average shortest path length is an important characteristic. Small average shortest path length shows small-world
property of the network [3]. In the following, we will show the dependence of average shortest path length on the variable
α (from 0 to 1).

Setting N = 3000, M = 3, m = 3, p1 =
1
6 , p2 =

1
3 and p3 =

1
2 , we generate 50 networks whose sizes are 3000 and

take the average of the average shortest path lengths of the 50 generated networks. Fig. 3 shows that the average shortest
path length decreases with increasing α. And the average shortest path length is smaller than 4.8. This indicates that the
networks show small-world property.

Overall, because of preferential attachment mechanism, in each community, there is a node that achieves more intra-
community links and inter-community links than the others. It plays a dual role, community hub [30] and community
bridge [31,32]. So it is called bridge hub [32]. It is important for epidemic spreading between communities [32,33]. In rumor
propagation, we will pay additional attention to bridge hubs. We can generate networks with nonuniform communities by
setting the probability distribution p1, p2, . . . , pM . Additionally, we can adjust the strength of community structure by vary
the probability α.

In the following section, we will reveal the influence of bridge hubs, nonuniformity of community sizes and the strength
of community structure on dynamic behavior of rumor propagation.

4. Simulations and results of rumor propagation on the generated networks

In this section,we performextensiveMonte Carlo simulations to reveal how the network topology influences the dynamic
behavior of rumor propagation. In detail, we set network configuration parameters p1 =

1
6 , p2 =

1
3 , p3 =

1
2 , m = 3, n = 1

and M = 3, and vary values of network configuration parameter α to generate networks, then let a rumor spread on these
networks. By comparing the results, we reveal the influence of bridge hubs and the strength of community structure on
dynamic behavior of rumor propagation. Additionally, let network configuration parameters p1 =

1
10 , p2 =

1
10 , p3 =

8
10 ,

m = 3, n = 1,M = 3 and α = 0.2. We generate networks whose communities’ size is very nonuniform. On these networks,
when a rumor originates from different communities, we observe the influence of nonuniformity of community sizes on
rumor spreading.

The rumor model is defined as in [25]. Each node in networks plays one of three roles: ignorant, spreader, and stifler. The
ignorant is one who has not heard the rumor. The spreader is active to spread the rumor and the stifler is an individual who
knows the rumor but loses interest in spreading it. At the beginning, only one node is a spreader and all the other are ignorant.
At each time step, each spreader contacts his(her) neighbors. When an ignorant meets a spreader, the ignorant turns into a
spreaderwith probabilityλ;when a spreader encounters another spreader or a stifler, the spreader loses interest in spreading
the rumor and becomes a stifler with probability β . Until there is no spreader, the propagation progress terminates.
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Fig. 4. The time evolutions of (a) the average density of stiflers and (b) the average density of spreaders for rumor propagation with spreading rate λ = 0.2
and the decay rate β = 0.2.

Fig. 5. The time evolutions of (a) the average density of stiflers and (b) the average density of spreaders for rumor propagation with spreading rate λ = 0.2
and the decay rate β = 1.

In a rumor spreading process, we mainly pay attention to three quantities: the final density of stiflers (the final rumor
size), the maximum density of spreaders at some point in the process (the peak prevalence), and the number of time steps
that rumor propagation takes from the first infected case to the peak prevalence case. In the following, we reveal the effect
of network topology on rumor propagation by these three quantities.

To quantify the importance of bridge hubs on the dynamics of rumor spreading when the spreading originates in a single
node, we compare spreading ability of the bridge hub located in each community, nodeswith 30 connections and nodeswith
minimum degree 3 in networks. Firstly, let p1 =

1
6 , p2 =

1
3 , p3 =

1
2 ,m = 3, n = 1,M = 3 and α = 0.2, we generate 10 scale-

free networkswhose size are all 3000. In each network, there are three communities C1, C2, and C3. In each community, there
is a nodewithmaximumdegree and it is a bridge hub.We denote thembyH1,H2 andH3 respectively. Next, for each network,
we choose H1, H2, H3, a node with 30 connections, and a node with 3 connections to be infected seed nodes individually. For
each infected seed node, simulations are implemented for 100 times. So there are 1000 realizations for each of H1, H2, H3,
node with 30 connections and node with 3 connections. We average over the results of the 1000 realizations respectively
to be spreading ability of H1, H2, H3, node with 30 connections and node with 3 connections. From Figs. 4 and 5, we can
find that if the infected seed node is a bridge hub, the rumor size is higher compared with the case when the infected seed
is a node with 30 connections or a node with 3 connections. We also find that the rumor size is higher when the degree
of bridge hub is larger. The same is true for the peak prevalence. Furthermore, if the infected seed node is a bridge hub,
the peak prevalence is reached faster. The phenomenon coincides with what was observed in epidemic models like the SIR
model in [34,35], where the final prevalence depends on the degree of the initially infected individuals, but opposes what
was observed in rumor propagation in [25,36], where the final influence of rumor reaches the same level irrespective of the
degree of the first spreader.

However, in networks with uniform communities, if the rumor originates from the hub with largest degree in different
communities, there is little difference for both propagation size and propagation speed. It is shown in Figs. 6 and 7.
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Fig. 6. The time evolutions of (a) the average density of stiflers and (b) the average density of spreaders for rumor propagation with spreading rate λ = 0.2
and the decay rate β = 0.2 on generated networks with p1 = p2 = p3 = 1/3.

Fig. 7. The time evolutions of (a) the average density of stiflers and (b) the average density of spreaders for rumor propagation with spreading rate λ = 0.2
and the decay rate β = 1 on generated networks with p1 = p2 = p3 = 1/3.

Generally, the community sizes are nonuniform [37]. Some communities are large, but some are small. When a rumor
originates from different communities, whether the final density of stiflers is same is a neglected question. In the following,
we will reveal the influence of nonuniform communities on rumor propagation.

Let network configuration parameters p1 =
1
10 , p2 =

1
10 , p3 =

8
10 , m = 3, n = 1, M = 3 and α = 0.2, we generate 10

networks where the sizes of the largest community and the smallest one differ nearly by an order of magnitude. On each
network, from each community, we select 5% nodes and let each of these nodes to be infected seed to spread a rumor 100
times. We average results of rumor spreading originating in each community on the 10 networks and display in Fig. 8. It can
be seen that when the decay rate is small, there is no difference in the final densities, but when the decay rate is large, the
final density of stiflers is larger if the rumor originates in larger community.

To inspect the role of the strength of community structure on rumor spreading, we set parameters of network p1 =
1
6 ,

p2 =
1
3 , p3 =

1
2 , M = m0 = m = 3 and λ = 0.2. Let the network configuration parameter α and the decay rate for

rumor spreading β vary. Due to computation cost, simulations were implemented averaging over 10 different network
configurations, and for each configuration we took 100 different realizations with exactly one randomly chosen node
infected. Figs. 9–11 all show the time evolutions of average densities of stiflers and spreaders on networks with different
network configuration parameter α and same β . Form Figs. 9 to 11, each figure indicates that larger α leads to higher rumor
size, larger peak prevalence and shorter time it take for rumor spreading from beginning to peak prevalence needs. Making a
comprehensive survey, the influence of α on rumor spreading is affected by the decay rate β . With fixed λ, increasing β will
exaggerate the influence of α on rumor spreading. It is an interesting and reasonable phenomenon. Note that the process of
rumor spreading is composed of spreader generation and spreader decay. When β is larger, i.e. the spreaders decay faster,
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Fig. 8. The average density of stiflers. (a) The spreading rate λ = 0.5. The decay rate β = 0.1 (main figure) and the decay rate β = 1 (inset). (b) The
spreading rate λ = 0.8. The decay rate β = 0.1 (main figure) and the decay rate β = 1 (inset).

Fig. 9. The time evolutions of average densities of stiflers and spreaders on networks with different network configuration parameter α. The spreading rate
is λ = 0.2 and the decay rate is β = 0.3.

then the spreaders have few time to spread the rumor. It indicates they can only spread the rumor to relative near nodes.
Note that, increasing α can lead to decreasing of average length of shortest path lengths. So in this case, increasing α can
promote rumor spreading.

5. Conclusions

Community structure and the heterogeneity of community size are prevalent phenomena in the real-world social
networks, such as the friendship network, collaboration network of scientists [4,6–8]. Many researches have shown that
networks with uniform communities have large influence on dynamic behavior of epidemic spreading. However, the issue
whether networks with nonuniform communities have the same influence on dynamic behavior is neglected.

In this paper, to provide insights to the question, we first give a network evolving model. The networks generated by
the model exhibit community structure and the community sizes can be nonuniform. In each community, there is a node
which is not only a hub node but also a bridge node. It is so called bridge hub. And the strength of community structure is
decreasingwhen increasing only the values of network configuration parameter α. Additionally, the proposedmodelmay be
applied in reality. By sampling from a real-world network with an appropriate scale, we can get some characteristics of the
network, such as the empirical distribution of community-size, network configuration parameterα, and so on. By using these
parameters in the proposedmodel, wemay produce a large-scale simulated network resembling the real-world network. On
the generated networks, we can study the dynamic behavior to provide guidance for designing strategy to control disease
and rumor spreading or enhance information spreading.

Based on the network model, we perform Monte Carlo Simulations to display dynamic behavior of rumor spreading on
the generated networks. Our main purpose is to reveal how the network characteristics, the bridge hubs, nonuniformity of
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Fig. 10. The time evolutions of average densities of stiflers and spreaders on networks with different network configuration parameter α. The spreading
rate is λ = 0.2 and the decay rate is β = 0.5.

Fig. 11. The time evolutions of average densities of stiflers and spreaders on networks with different network configuration parameter α. The spreading
rate is λ = 0.2 and the decay rate is β = 0.7.

communities and the strength of community structure, influence the dynamic behavior of rumor propagation. Additionally,
we reveal how the influence is affected by the propagation mechanism, in fact, the propagation parameters. From the
simulations, we have the following conclusions:

(1) As an infected seed, a bridge hub has outstanding performance in propagation speed and propagation size.
(2) When the community sizes are nonuniform obviously, then if the decay rate of rumor spreading is large, the rumor

originates from the larger community, the final density of stiflers is larger.
(3) When the strength of community structure decreases, the rumor size and the peak prevalence increase, and the time

which the rumor propagation process from the first infected case to the peak prevalence case take decreases.
(4) when on networks with different strengths of community structure, rumor propagation exhibits greater difference in

the density of stiflers and the peak prevalence when the decay rate of rumor propagation is large.

From the aforementioned conclusions, we can gain an insight into rumor spreading on networks with community
structure and we can choose effective control strategies and targeted immunization methods (see [33,38] and references
therein). Further, the results inspire us to understand other social phenomena such as the spreading of new ideas or the
design of efficient marketing campaigns.
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