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1. Introduction

The study of interconnection networks has been an important research area for parallel and distributed computer sys-
tems. It is well known that an interconnection network is usually represented by an undirected simple graph G. We denote
the vertex set and the edge set of G by V(G) and E(G), respectively. As failures are inevitable, fault-tolerance of interconnec-
tion networks has become an important issue and has been extensively studied (see, for example, [4,6,8,10,12-14]).

The fault tolerance of interconnection networks is generally measured by how much of the network structure is preserved
in the presence of a given number of vertex and/or edge failures. Parallel algorithms running on the networks utilize
the topological properties of these networks. Obviously, in the presence of component failures, the entire interconnection
network is not available. Thus the natural question is how large of a subnetwork (defined as a smaller network but with
the same topological properties as the original one) is still available in the faulty network. Under this consideration, Becker
and Simon [4] studied the minimum number of faults, necessary for an adversary to destroy each (n — k)-dimensional
subcube in an n-dimensional hypercube. Latifi [10] presented a bound on the number of faulty vertices to make every
(n—k)-dimensional substar faulty in an n-dimensional star graph and also determined the exact value for some special cases.
Wang and Yang [12] investigated the minimum number of faulty vertices to make every (n —k)-dimensional sub-bubble-sort
graph faulty in an n-dimensional bubble-sort graph. Subsequently, this problem was also studied by Wang et al. [13] for
k-ary n-cube networks.
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Fig. 2. A5.1 and A4.2.

The interconnection network considered in this paper is the arrangement graph, denoted by Ajj, which was proposed
by Day and Tripathi [7] as a generalization of the star graph. It is more flexible in its size than the star graph. Since
the arrangement graph has been proved to possess many attractive properties such as regularity, vertex symmetry and
edge symmetry, it has drawn considerable research attentions recently [5,6,9,11,14]. In this paper, we are interested in the
minimum number fp of faulty vertices to make every sub-arrangement graph A,_p x—m faulty in Aj , under vertex-failure

model. We prove that fo=1, fi =n, fa_z =n!/2, and n!/(n —m)! < fim < (,f;l])n!/(n —m)! — 2(;‘;21)11!/(11 —m+ 1)! for
2 <m < k—1. The rest of this paper is organized as follows. In Section 2, we introduce the arrangement graph and some of

its properties. In Section 3, we prove the main results. Conclusions are covered in Section 4.
2. Preliminaries

In the remainder of this paper, we follow [3] for the graph-theoretical terminology and notation not defined here. A graph
is called a balanced bipartite graph if its vertex set can be partitioned into two subsets X and Y with |X|=|Y| so that every
edge has one end in X and one end in Y; such a partition (X,Y) is called a bipartition of the graph. Fig. 1 shows the
diagram of a balanced bipartite graph. Let G and H be two graphs. G and H are distinct if their vertex sets are different.
G and H are disjoint if their vertex sets have no common vertex. Two edges in E(G) are independent if they are nonadjacent
in G. Given a positive integer n, let (n) denote the set {1,2,...,n}.

Assume that n and k are two positive integers with n > 2 and 1 <k <n — 1. The vertex set of the arrangement graph
Anj V(An) ={u: u=uquy...up withu; € (n) for 1 <i <k and u; # u; if i # j}, and two vertices u = uquy...u, and
vV =V1Vy... Vg are adjacent if they differ in exactly one position j, where j € (k). Such an edge (u,v) is called a j-edge.
By definition, A is a regular graph of degree k(n — k) with n!/(n — k)! vertices. Moreover, A1 is isomorphic to the
complete graph Kj. Indeed, A, n—1 is isomorphic to the n-dimensional star graph S, [1], and A, ,—» is isomorphic to the
n-alternating group graph AG, [5]. As 1 and A4 are shown in Fig. 2.

A standard way to view Ay is via its recursive structure. Let i and j be two positive integers with 1 <i <k and
1< j <n. Let H;; be the subgraph of A, induced by the vertex set {u: u=uquy...ux € V(A, ) and u; = j}. Then
H; j is isomorphic to A;_1 r—1. Thus, A, can be recursively constructed from n copies of A;_1 ,—1, and we say that it is a
decomposition via the i-th position. Every vertex v =vqv;,... vy in H; j has exactly n—k neighbors outside of H; j; moreover,
its n —k neighbors belong to distinct H;;’s, where I € (n)\{v1, v2, ..., vi}. We call these neighbors the external neighbors of v.
It is easy to see that the edges whose end-vertices belong to distinct H; j's are i-edges. For a given pair of H; j and H;
with j #1, there are (n—2)!/(n—k —1)! i-edges between them; moreover, these i-edges are independent. For example, A4 >
can be decomposed into Hy 1, Hz 2, H2 3, Hz 4 via the 2-nd position. For any j € (4), Hy ; is isomorphic to A3 1; moreover,
Hy 1, Hy2, Hy 3 and Hj 4 are the triangles (21,31, 41, 21), (12,32,42,12), (13,23, 43,13) and (14, 24, 34, 14), respectively
(see Fig. 2).

Given two integers n > 2 and 1 <k <n — 1, for any integer m (0 < m < k — 1), let iy,iy,...,iy be m inte-
gers with 1 <iy <ip <--- <ip <k and let q,,a;,...,qa;, be m pairwise distinct integers in (n). Denote M =
{b1ba...bi,—10ai,bi, 41 ...bi,—1ai,biy 41 ... Qi biy 41 .. brt b1, bo, ... bi—1,bi; 1, ..., biy—1, biy+1, .- Bip41, .- b € (M\{a;,,
aj,, ..., 0qj,} and they are pairwise distinct}. In particular, biby...b;;_1 and bj,41...b; are empty strings if iy =1 and
im = k, respectively. Obviously, the subgraph of Apj induced by M is isomorphic to A;_pk—m. Let X be a don't care
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symbol and let X' = XX...X. For the convenience of representation, we denote by a k-length string of symbols
t
Xi=1g X2==1q; .. a; X¥~in the subgraph induced by M in A,j. In particular, when m =0, X1~ 1q;, X271 1q;, .. .q;
Xk=im s just XX, ie., Apg.
In addition, we can obtain the following lemma.

m

Lemma 1. An Ap_p k_m in Ay can be uniquely denoted by X1 —1a;, X2=1=1q, .. .a; Xk—im,
Proof. We first prove the following claim.

Claim. For any Ap_kyss (1 < s < k) in Apy, there exist pairwise distinct t1,t,...,ts € (k) such that Ap_k4s s contains only
ti,ta,...,ts-edges.

By induction on s. We first consider the case that s = 1. Note that A;_y1 1 is isomorphic to the complete graph Kj_j41.
Any two vertices in Ap_k4+1,1 are adjacent. Suppose that A,_jy1 1 contains iq,iz-edges, where iy, i € (k) and iy # i2.
Without loss of generality, assume that iy < ip. Let (a...q; ...a;,...0k, a1. a,] ...Qjy...0q;) and (by...bj, ...b;,...by,
bi...bj ...b;z ...bx) be an ij-edge and an iy-edge in Aj_gy1.1, respectlvely. Clearly, either a;, # b;, or a;] # bj,, with-
out loss of generality, assume that a;, # b;,. Similarly, either b;, # a;, or b;z # aj,, assume that b;, # a;,. By definition, the
vertices ay...aj, ...aj,...ax and by...b;, ...b;, ...by are nonadjacent in A,_y41,1, a contradiction. Thus, the claim holds
when s =1.

Assume that the claim is true for s > 1. We shall show that the claim holds for s+ 1. For any Ap_i(s+1),s+1 in Apk
E(An—k+(s+1),s+1) # 9. Without loss of generality, assume that the Ap_i(s4+1),s+1 contains i-edges. Note that Ap_g(s+1),s5+1

can be decomposed into Hi j,, Hi j,. ..., Hi j,_,. ., via the i-th position. For any jt € {j1,j2,...,jn_k+(5+1>}, Hj j, is iso-
morphic to A,_ ks, By the induction hypothesis, there exist pairwise distinct p1 ,p2 ,...,pﬁf ky\{i} such that Hj j,
contains only p1 ,p2 ,...,ps ‘-edges. For any pair of H;j and Hl .jq» We claim that {p] ,p2 ,...,ps }— {p] ,p2 ,...,piq}.

Otherwise, there exists plj‘ (I € {s)) such that H; j, contains p, ‘-edges and Hi j, contains no p,j‘—edge. Then there exists
some t € (M\{j1, j2,. .-, Jn—k+s+1)} such that, for any vertex vivy...vg € V(Hi j,), vp’j, =t. For any uquy...ux € V(Hjj,),
uplj[ € {j1.J2, .-, Jn—k+s+1)} and so Upljf # t. Note that a vertex in H;j and a vertex in H;j, differ in position i
for ji # jq. We have that there is no i-edge between H;j and Hjj,, a contradiction. S0 Ap_g+(s+1),s+1 contains only
p{‘, pé’, . pff, i-edges. The proof of Claim is complete.

Next, we prove Lemma 1 by induction on m. When m =0, A, can be uniquely denoted by Xk, Assume that Lemma 1
is true for m > 0. We shall show that Lemma 1 holds for m 4 1. Note that an Ap_(n41)k—@m+1) 0 Apj must be in
some Ap_mr—m. By induction hypothesis, the A;_mx—m can be uniquely denoted by Xi1—lg; Xl2 - lai, ...q, Xk=im_
By Claim, there exist pairwise distinct j1, j2,..., jkem € (k) \ {i1,12,...,im} such that An_(m+1),k_(m+1) contams only
J1,J2+ -5 jk-m—1-edges and Ap_p k—m contains only ji,j2,..., jk—m-edges. This implies that the A,_gnt1)k—m+1)
can be obtained by decomposing X'~ la;, X271 lqy, .. .q;, Xk=im via the ji_m-th position. So there exists aj, . €
(m)\{ai,, ai,, ..., a;,} such that, for any vertex Uiy . uk € V(An—mm+1) k=m+1)» Uj_, = aj,_,- Let {t1,t2, ... . tmy1} =
{i1, ..., im, jk—m) With t; <ty < --- < t;zy1. Thus the An_(m_‘_l),k_(m_‘_]) can be uniquely denoted by X1 ~la,, X201~ 1q,, ...
Aty X¥~tm+1, The proof of Lemma 1 is complete. O

Lemma 2. There are n!/(n —m)! disjoint Ap_m k—m and ( )n'/(n —m)! distinct Ap_m k—m in Ap k.

Proof. This lemma is trivial when m = 0. In the following, assume that m > 1. By Lemma 1, an Ap_pk—m in
Apk can be uniquely denoted by Xi—1g; X’2 -1 aj, ... 4j, Xk=im where ij,iy,...,i;m are m integers with 1 <ij <
ip < <ip <k and aj,qa,,...,aq, € (n) are palrWlse distinct. According to the values of iq,iy,...,in, we di-
vide all the distinct Aj_mr—m in Ak into (r’;) sets .(21,92,...,.(2(k), where, for every p € {1,2,...,(;‘1)}, 2y =

m
{xif—1aifxi§—if—1aig ...ai%X""'%: @p.ap.....ap € (n) are pairwise distinct). Note that any two distinct Anm k-m X1
a-pX‘g_"f_]aig ...aiﬁlx"*"ﬁ1 and Xig_lbifxig‘i¥_1bi§ ...bi%Xk*'% in £, have no common vertex because there is some
le (il if,... ih} such that g # b;. So Xif*laifxigfifflaig ...air;%X"*"r"]1 and x"i’*lbifx"é’*"f”b,.g ...bir;a;lX"*"ﬁ1 are disjoint.
It follows that there are [£2,| =n!/(n —m)! disjoint Ap_p k—m in Ap .
For two distinct integers p,q € {1, 2,...,(::1)}, any two Ap_mk—m Xif—la,.fxilzj_illj‘laig ...ai%X"*igI in £, and Xiq‘laq

1

4 _ .9 _iq4 . P . . iP_ iP_ip_ _iP
X27h~1aq .. .aqe X~ in 2, are distinct, since otherwise the vertex set of X1 ~la,p X'2=1=1a,p ...a,p X*~'m and the vertex
2 m 1 2 m
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Table 1

The faulty vertices and damaged A;_q x—1 in Apk.
Faulty vertices Damaged A1 k-1
12...(k— Dk 1xk=1) xaxk=2 o xk2(k—1)X, XK1k
23...k(k+1) 2xk=1 x3xk=2 | xk-2kx, X1k +1)
nl...k=2)k—1) nxk=1 x1x%2, . xk2(k—2)X, X 1k—1)

q 4 _.q iq . . . . . . . . . e
set of X'171ag X271~ 1ag ... ag X*~m are the same, which yields that i =i, i} =i, ..., if, =i}, a contradiction. Therefore,
1 2 m

k
there are Zg”‘:)1 [$2p] = (,ﬁ)n!/(n —m)! distinct Ap_m k—m in Ay k. The proof of Lemma 2 is complete. O
3. Enumeration of faulty vertices
3.1. The lower and upper bounds

Given two integers n and k with n > 2 and 1 <k <n—1, we are interested in finding f;;, the minimum number of faulty
vertices to make every sub-arrangement graph A,_pm k—m faulty in A, under vertex-failure model, where 0 <m <k — 1.

Lemma 3.n!/(n —m)! < fn < (X)nl/(n —m)!.
Proof. By Lemma 2, A, can be divided into n!/(n —m)! disjoint A;_p k—m. To damage all the disjoint Ap_pm x—m in Apk,
we need at least one faulty vertex for each A;_pm x—m, which implies that f, >n!/(n —m)!.

The upper bound on f;; can be obtained by making a vertex faulty in each of the (;)n!/(n —m)! distinct Ap_pm k—m in
An.k- This will render: fm < (;)n!/(n —m)!. Combining this with the fact that f;; >n!/(n —m)!, the lemma holds. O

Lemma 4. (See [1].) The n-dimensional star graph is a balanced bipartite graph.
The following theorem gives the exact value of f;; for some special cases.

Theorem 1. Denote by fn, the minimum number of faulty vertices to make every sub-arrangement graph Ap_m k—m faulty in Ap k
under vertex-failure model. Then the following results hold.

(1) fo=1.
(2) fi=n.
(3) fa—2=n!/2.

Proof. (1) Since the failure of a single vertex will damage the Apk, we have fp < 1. Lemma 3 implies that fp >
nl/(n—0)!=1.So fo=1. '
(2) By Lemma 2, there are kn distinct Ay_1 x—1 in Apg. For 0<i<n—1and 1< p <k, define v} as follows:

P
vi— p+i, ifp+i<m
PT|p+i—n, ifp+i>n.
Note that the vertex vivh...vi will damage the k distinct Anp_q 1 viX*¥1, Xvixk=2 .. Xxk=2yl X and Xk-1vi.
Combining this with the fact that {v®,v],...,v]™'} = (n) for any I e (k), the vertices vOv9...vQ, vivi...v], ...,
Vit Vi (e, 12000k, 23 (k+ 1), ..., n1...(k — 1)) will damage every Ay_qk_1 in Ank, which implies that

f1 <n. See Table 1 for more details. Lemma 3 implies that f; >n!/(n—1)!=n. So f; =n.

(3) Note that f,_» is the minimum number of faulty vertices to make every A,_—2) k—m—2) faulty in Ap . We have that
k—(m—2)>1,ie, k>n— 1. Combining this with the fact that 1 <k <n —1, k=n — 1. By definition, Ap—n—2),1—1)—(n—2)
(i.e,, Az,1) is just an edge. Recall that A, ;1 is isomorphic to the n-dimensional star graph. By Lemma 4, A, n—1 is a balanced
bipartite graph. Let (X,Y) be a bipartition of A, ,—1. Then |X|=|Y|=n!/2 (see, for example, Fig. 3). Now, every failing
vertex in X will ensure every Ay 1 in A, n—1 faulty, which implies that f,—» <n!/2. By Lemma 3, f,_» >n!/(n—(n—2))! =
n!/2.So fp—p=n!/2. O

Note that for some special cases the exact value of f; coincides with the lower bound. But there is a large gap between
the lower bound n!/(n —m)! and the upper bound (,ﬁ)n!/(n —m)! in Lemma 3. In the following, we shall improve the upper
bound on fp.
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12, 31, 23,

135 2* 30 ¥

Fig. 3. A bipartition of As .

Table 2

The faulty vertices and damaged A, x—» in ©1.
Faulty vertices Damaged A,_2 k—2
123...(k— Dk 12xk-2, 1x3xk3, . 1xk-2k
134...k(k+1) 13xk-2, 1X4X3, L 1Xk 23+ 1)
m2...k=2)(k—1) 1nxk2, 1x2x%3, . 1xk2(k—1)
213...(k— Dk 21Xk2, 2X3Xk3, L, 2xk2k
234...k(k+1) 23xk=2, 2X4xk3, L 2xXk2(k+ 1)
nl...(k—2)(k—1) 2nxk=2, 2X1XK3, L 2xk2(k—1)
n2...k—=2)k—1) n1xk-2, nX2xk3, ... onxk2k—1)
n23...(k— 1k n2xk-2, nX3xk3, ..., nxk2k
nn—11...(k—=3)(k—2) nn—1DX2, nx1x%3, ..., nxk¥2(k-2)

3.2. A better upper bound on fp,

We first present a better upper bound on f; by giving a set of faulty vertices that damage all A;_; x—» in A, k, which
yields that k —2 > 1, i.e., k> 3.

For any u =uquy...ux € V(A k) and i € (k—1), define a mapping &®; as follows: ®;(u) = {ujuy ... uj—1uijlljq1 ... U, u}u;
n—2, n—2 n—2 n—2 n-2. 1,,2 n—2

1 01 1,22 2 2 2 4 ) . a
ceudquiudg g vjud g u ey e ™ wufuf L uf ™ s a cyclic permutation
of 12...n missing u; for every I € (k)\{i}}. We denote the vertices ujuy...uj_quiltisq...u and ujug...uj quu] ,...u;

(j € (n—2)) by ¢; o(u) and ¢; j(u), respectively. For example, let u = 1234 € V (As 4), then &, (u) = {1234, 3245, 4251, 5213}
(1345, 3451 and 4513 are cyclic permutations of 12345 missing up = 2), and ¢z o(u) = 1234, ¢, 1(u) = 3245, ¢, 2(u) = 4251,
¢2,3(u) =5213.

Lemma5. fo < (7" — 1) —2(*7)n for k > 3.

Proof. By Lemma 2, there are (lz‘)n(n — 1) distinct Ap_3—2 in Apg. Divide all the distinct Ay_3_2 in Apg into k — 1
sets ©1,O;, ..., O_1, where, forie (k—1), ©; = {Xi‘lain‘i_lan"‘j: i+1<j<kanda,aje (n) are distinct}. Clearly,
|©;] = (kl’l)n(n —1) =k —i)n(n—1) for i € (k — 1). For any two integers 1 < p <k —1 and 1 < q < n, define the vertex
Upg=UiUp...Up_1qQUp41 ... Uk as follows:

(@) when 1 <q<k—p, ujuy...up_q is the permutation (n — p+2)(n—p+3)...n and upy1...u, is the permutation
12...(k — p + 1) missing q. In particular, ujuy...up_1 is an empty string if p=1;

(b) when k—p+1<q<n—p+1, ujuy...up_q is the permutation (n —p+2)(n—p+3)...n and up4q...ui is the
permutation 12...(k — p);

(c) whenn—p+2<q<n,ujuy...up_q is the permutation (n —p+1)(n — p +2)...n missing q and up4q...uy is the
permutation 12...(k — p).

Then the vertex set ®1(uq,1) U®@1(u12)U---UPq(ug,) can damage all the A, x—» in ©1. See Table 2 for more details.
Note that |®1(u1,1) U®1(ug2)U---UPq(ur )| =n(n —1). Now we find n(n — 1) faulty vertices to damage all the A, x>
in ®.

The vertex set @ (uz,1) U P2(uz2)U---UPy(uz ) can damage all the A, in ©. See Table 3 for more details. Note
that |@2(uz,1) UPa(up2)U---UDy(uyn)| =n(n—1). Now we find n(n — 1) faulty vertices to damage all the A,_5 x> in ;.

For 3 <i<k—1, the vertex set ®;(u; 1)U P;(ujz)U---UP;(u;5) can damage all the A,_,_» in ®;, and so we find
n(n — 1) faulty vertices to damage all the A,_; x—> in ;. See Table 4 for more details about &_.

For any integer 2 < j <k — 1, it is not hard to verify that the following results hold.
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Table 3
The faulty vertices and damaged A, x—2 in @;.
Faulty vertices Damaged Ap_3 k-2
n123...(k—1) X12xk-3, X1x3xk4, ... x1x¥3k—-1)
2134.. .k X13xk3, X1X4axk=4, . X1xk3k
n—D1n2...(k—2) X1nxk=3, X1x2xk4, ... X1x¥3k-2)
n213...(k—1) X21x%3, x2x3xk4, . x2xk3k—-1)
1234...k X23xk3, X2x4xk=4, .. Xx2xk3k
n—12n1...(k—=2) X2nxk-3, X2X1Xk=4, ..., X2X¥ 3k -2)
n—"1nl12...(k—2) Xn1xk-3, xnX2xk4, ..., Xnx*¥3k—2)
m23...(k—1) Xn2xk-3, XnX3xk=4, ..., XnX*3@k—-1)
n—2)nm—11...(k—3) Xnn—1)Xk3, Xnx1xk4, ..., Xnxk¥3k—-3)
Table 4
The faulty vertices and damaged Ap_j k2 in O_1.
Faulty vertices Damaged A,_2 k2
(n—k+3)(n—k+4)...n12 xk-212
n—k+4(n—-k+5)...213 xk-213
n—k+2)(n—k+3)...(n—1)1n xk=21n
m—k+3)(n—k+4)...n21 Xxk=221
nm—k+4)Mn—k+5)...123 xk=223
n—k+2)(n—k+3)...(n—1)2n Xxk=22p
nm—k+2)(n—k+3)...(n—nl Xk2p1
m—k+3)(n—k+4)...1n2 xk=2n2
m—k+1)(n—k+2)...m—2)n(n—1) Xk’zn(nfl)

(a) ¢jo(uj1) € @j1(uj_1,n) and ¢;j1(uj1) € Pj_1(Uj_12).

(b) For any integer 2 <i<n—2, ¢ji—1(uji) € ®j_1(uj_1-1) and ¢;;(uj;) € ®j_1(Uj_1,i+1)-
(€) jn—2jn-1)€Pj1(Uj-1,n-2) and ¢joUjn-1) € Pj_1(Uj1,n).

(d) ¢joujn) € Pj_1(uj_1n-1) and ¢j1(ujn) € Pj_1(Uj_1,1)-

So, given an integer 2 < j < k—1, there exist at least two vertices in both @;(u; ;) and @;_1(uj_1,1)UP;_1(uj_12)U---U
®j_1(uj_1,) for every i € (n). Thus we have found |U’]‘;} (PjujNUPjuj)U---UPjujn)l < (k—Dnmn—1)—2(k—-2)n
faulty vertices to damage all the Ay —2 in ®1 U &2 U--- U O,_q, which implies that fo, < (k—Dnn—1) —2(k —2)n=

(k;])n(n -1 - 2(";2)n. The proof is complete. O
More generally, we give a better upper bound on f;;. The following lemma is useful.
Lemma 6. (See [2].) Let s, t be two nonnegative integers with s > t. Then (i:}) + (;:f) +o (;:}) = ().

Theorem 2. Denote by fr, the minimum number of faulty vertices to make every sub-arrangement graph Ap_m k—m faulty in Ay
under vertex-failure model, where 2 <m < k — 1. Then fi; < (:,‘17_11)11!/(11 —m)! — 2(r’;:21)n!/(n —m+ 1! fork>3.

Proof. We prove the theorem by induction on m. By Lemma 5, the theorem holds for m = 2. Assume the theorem holds for
m—1(m>3)ie, fii—1 < (k_1)n!/(n —m+1! - Z(k_z)n!/(n —m+2)! for k > 3. We shall show that the theorem holds

m—2 m—2



70 S. Wang, K. Feng / Theoretical Computer Science 533 (2014) 64-71

for m. By Lemma 2, there are (,’;)n!/(n —m)! distinct Ap_m k—m in Ap k. Divide all the distinct Ay_m k—m in Ak into k—m+1

sets @1, Oy, ..., Ox_my1, Where, for every i € (k—m+1), ©; = (X" Tg; X2 1q, X372 gy . a; XK7m: i 41 <y <iy <

- <im<kand g, a,,ai,,...,a, € (n) are pairwise distinct} and |©;| = (rﬁ ’1)n'/(n —m)!. By Lemma 6, |®1| + |@3] +---+
|Ok_mi1] = ((]l;1 11) + (,l; 21) +o 4 (27}))n'/(n —m)! = (k)n‘/(n —m)!. For every i € (k —m 4 1), denote by W; the set of
faulty vertices with the minimum cardinality to damage all Ap,_pk—m in @;. For some r € (n) and every i € (k —m+ 1),
we denote by ©;(r) the set {X'~'rx2=i-1g; XB3-2-1g; .. .a; X¥7im: 1<i<iy <i3<---<im<kanda,,a,,...,aq, €

(n)\{r} are pairwise distinct}, and denote by W, (r) the set of faulty vertices with the minimum cardinality to damage all
An—mk—m in ©;(r). Clearly, for any i € (k —m+ 1), |J'_; Wi(r) = W; and W;(r) N W;(") =@, where r,1’" € {n) and r # 7.

First, we shall determine the value of |W;|. Denote @} = {X"272a;, X327 a;, ...q;, XK"m: 2 <ip < i3 < -+ <
im <k and a;,,a;,, ..., a;, € (n)\{r} are pairwise distinct}. Note that @] is the set of all the Ay_1)—m—1),k-1)—m-1) in
An_1,k—1- By the induction hypothesis, there exists a set W} of faulty vertices to damage all the A—1)—m—1),(k=1)—m-1)
in Ap_q k-1 with [W]| < (T’T‘;zz)(n - Dl/(n —m)! — 2(,’;1?’2)(n — D!/(n —m + 1)!. Thus the faulty vertices in W{ damage
all the Agu_1)—m—1),k=1)—m—1) in OF. Let W (r) = {raxas...ax € V(Apk): a2a3...a, € W1} be a set of faulty vertices.
Then |W (r)| = |[W/|. Recall that ©;(r) = {rX"2~2a;, X372 a;, ...q;, X¥"™m: 2 <y <iz <--- <im <k and aj,,aj,, ..., a5, €
(nm)\{r} are pairwise distinct}. The faulty vertices in W (r) damage all the A,y x—m in O1(r). Therefore |W1(r)| < W] ()| =
|W;\<( )n—l)'/(n m)!l —2 (m 2) n—1)!/(n—m+1)!. Note that for any r’ € (n) \ {r}, |[W1()| = |W1()|. It follows that
Wil = X0 Wil <n((3) (= DY/ (1 —m)! = 2(575) (= DY/ = m+ 1Y) = (x=5)n!/ (0 —m)! = 2(375)nt/ (1 = m + D).

Next, we shall determine the value of |W,|. Denote @, = {X"2=3a;, X372 1q;, ... a;, X¥"Im: 3<ip <iz <~ <im <k
and a;,, aj,, ..., a;, € (n)\{r} are pairwise distinct}. Note that @) is the set of all the Ay_1)—m—1),(k=2)—m—-1) in An_1k_2.
By the induction hypothesis, there exists a set W/ of faulty vertices to damage all the Ag_1)—m—1),k—2)—m—1) in
An_1k—2 with |W}| < (ﬁ;é)(n —D!/(n —m)! — 2(1ﬁ:§)(n — D!/(n —m + 1)!. Thus the faulty vertices in W} damage
all the Ag_1)—m—1),k=2—m—1) in @5. Let W3 (r) = {arasas...ax € V(Ay): azas...ax € W) and a is some integer in
(M\{r,as,as, ..., a}} be a set of faulty vertices. Then |[W3(r)| = |W)|. Recall that ©,(r) = {XrX23a;, X327 1q;, ... q;,
Xk—tm: 3 iy <iz<---<ip<kand i, iy, ..., Gj, € (n)\{r} are pairwise distinct}. The faulty vertices in W (r) damage all
the Ap_mk—m in ©(r). Therefore |W(r)| < W3 ()| = |W}| < (k 3) -1/ (n—m)! -2 (k74)(n—1)’/(n m+1)!. Note that
for any r’ € (n)\ {r}, [W2(r)| = |W2(r)|. It follows that |W3| =Y _ l|w2(r)|<n(( 3)—1)/(n—m)!— ( j‘g)(n—i)!/(n—
m+1!) = (*3)n/m—my —2(5)n/—m+ 1L,

We proceed in a similar way until we get [Wy_n| < (m:;)n!/(n —m)! — 2($:§)n!/(n —m+1.

Now, we consider the remaining &y_n11 = {X"‘mak_m+1ak_m+2 v Okt Qg—m+1, Qk—m—+2, - - - » Ak € (n) are pairwise distinct}.
There are n!/(n —m)! disjoint Ap_m k—m in Ok_m41. By making a vertex faulty in each of the n!/(n —m)! disjoint Ap_m k—m
in Op_mi1, we have |Wy_miq|=n!/(n—m)! = (m_z)n!/(n —m)!. Therefore,

m—2

fm = Wil +Wa|+ -+ [Wi_m| + [Wi—mi1]

<<k_2)n‘/(n—m)'—2<k_3)n'/(n—m+1)'
“\m-2/" | m-—2) |

+(k_3>n!/(n—m)!—2<k_4>n!/(n—m+1)!+--~
m-—2 m-—2
+(m_1)n!/(n—m)!—2<m_2>n!/(n—m+l)!+(m_z)n!/(n—m)!
m-—2 m-—2 m-—2
(e i
m-—2 m-—2 m—2
—2<<k_3>+(k_4>+~--+(m_2)>n!/(n—m+l)!.
m-—2 m-—2 m-—2

By Lemma 6, fi < (k*])n!/(n —m)! — (m 1)n'/(n —m+ 1)!. The proof is complete. O

m—1
4. Conclusions

In this paper, we investigate fy;, the minimum number of failing vertices which make every sub-arrangement graph
Apn—_mk-m faulty in an arrangement graph A, j under vertex-failure model. We present the lower and upper bounds on
fm, and determine the exact value of f;; for some special cases. The results can be used in the reliability analysis of the
subnetworks in the arrangement graphs. Determination of the exact value of f; remains an open problem for the general
case.
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