Fault tolerance in k-ary n-cube networks ${ }^{\text {* }}$

Shiying Wang ${ }^{\text {a,* }}$, Guozhen Zhang ${ }^{\text {a }}$, Kai Feng ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, PR China
${ }^{\mathrm{b}}$ School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, PR China

A R T I C L E I N F O

Article history:

Received 1 December 2011
Accepted 14 June 2012
Communicated by C. Kaklamanis

Keywords:

Fault tolerance
Interconnection networks
Node-failure
k-ary n-cubes

Abstract

The k-ary n-cube Q_{n}^{k} is one of the most commonly used interconnection topologies for parallel and distributed computing systems. Let $f(n, m)$ be the minimum number of faulty nodes that make every $(n-m)$-dimensional subcube Q_{n-m}^{k} faulty in Q_{n}^{k} under node-failure models. In this paper, we prove that $f(n, 0)=1, f(n, 1)=k$ for odd $k \geq 3, f(n, n-1)=$ k^{n-1} for odd $k \geq 3$, and $k^{m} \leq f(n, m) \leq\binom{ n-1}{m-1} k^{m}-\binom{n-2}{m-1} k^{m-1}$ for odd $k \geq 3$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In many parallel computer systems, processors are connected based on an interconnection network. Popular instances of interconnection networks include hypercubes [2,5,7], star graphs [8,10,16], bubble-sort graphs [17], and k-ary n-cubes $[1,11,15,18]$. It is well known that an interconnection network is usually represented by an undirected simple graph G. We denote the node set and the link set of G by $V(G)$ and $E(G)$, respectively.

In a large-scale multiprocessor system, failures of components are inevitable. Thus, fault tolerance of interconnection networks has become an important issue and has been extensively studied (see, for example, [1,2,5-8,10-12,15-18]). Fault tolerance of interconnection networks is usually measured by how much of the network structure is preserved in the presence of a given number of component failures. Obviously, in the presence of component failures, the complete interconnection network is not available. Under this consideration, Becker and Simon [2] investigated a problem of what is the maximum number of dimensions that would be lost if the network contained a given number of faulty processors or links. They studied $f_{H}(n, k)$, the minimum number of faults, necessary for an adversary to destroy each ($n-k$)-dimensional subcube in an n-dimensional hypercube. Latifi [10] proposed a similar natural question of how large a part of a subnetwork, a smaller network but with the same topological properties as the original one, is still available in the network in the presence of component failures. He presented a bound on $F_{S}(n, k)$, the number of faulty nodes to make every ($n-k$)-dimensional substar faulty in an n-dimensional star graph and also determined the exact value of $F_{S}(n, k)$ when n is prime and $k=2$ or when $n-2 \leq k \leq n$. Wang and Yang [17] studied $F_{B}(n, k)$, the minimum number of faulty nodes to make every ($n-k$)-dimensional sub-bubble-sort graph faulty in an n-dimensional bubble-sort graph. They determined the exact value of $F_{B}(n, k)$ for some special cases and gave the lower and upper bounds on $F_{B}(n, k)$.

The interconnection network considered in this paper is the k-ary n-cube, denoted by Q_{n}^{k}, which has been proved to possess many attractive properties such as regularity, node transitivity and edge transitivity. Moreover, many interconnection networks can be viewed as the subclasses of Q_{n}^{k}, including the cycle, the torus and the hypercube. A number

[^0]

Fig. 1. Q_{1}^{6} and Q_{2}^{4}.
of distributed memory multiprocessors have been built with a k-ary n-cube forming the underlying topology, such as the iWarp [14], the J-machine [13] and the Cray T3D [9]. In this paper, we are interested in the minimum number $f(n, m)$ of faulty nodes to make every $(n-m)$-dimensional subcube Q_{n-m}^{k} faulty in Q_{n}^{k}. We prove that $f(n, 0)=1, f(n, 1)=k$ for odd $k \geq 3, f(n, n-1)=k^{n-1}$ for odd $k \geq 3$, and $k^{m} \leq f(n, m) \leq\binom{ n-1}{m-1} k^{m}-\binom{n-2}{m-1} k^{m-1}$ for odd $k \geq 3$.

2. Preliminaries

In the remainder of this paper, we follow [3] for the graph-theoretical terminology and notation not defined here.
The k-ary n-cube $Q_{n}^{k}(k \geq 2$ and $n \geq 1)$ is a graph consisting of k^{n} nodes, each of which has the form $u=u_{n-1} u_{n-2} \ldots u_{0}$, where $0 \leq u_{i} \leq k-1$ for $0 \leq i \leq n-1$. Two nodes $u=u_{n-1} u_{n-2} \ldots u_{0}$ and $v=v_{n-1} v_{n-2} \ldots v_{0}$ are adjacent if and only if there exists an integer $j, 0 \leq j \leq n-1$, such that $u_{j}=v_{j} \pm 1(\bmod k)$ and $u_{i}=v_{i}$, for every $i \in\{0,1, \ldots, n-1\} \backslash\{j\}$. Such a link (u, v) is called a j-dimensional link. For clarity of presentation, we omit writing " $(\bmod k)$ " in similar expressions for the remainder of the paper. Note that each node has degree $2 n$ when $k \geq 3$, and n when $k=2$. Obviously, Q_{1}^{k} is a cycle of length k, and Q_{n}^{2} is an n-dimensional hypercube. We say that Q_{n}^{k} is divided into $Q_{n}^{k}[0], Q_{n}^{k}[1], \ldots, Q_{n}^{k}[k-1]$ (abbreviated as $Q[0], Q[1], \ldots, Q[k-1]$, if there are no ambiguities) along dimension d for some $0 \leq d \leq n-1$, where $Q[p]$, for every $0 \leq p \leq k-1$, is a subgraph of Q_{n}^{k} induced by $\left\{u=u_{n-1} u_{n-2} \ldots u_{d} \ldots u_{0} \in V\left(Q_{n}^{k}\right): \bar{u}_{d}=p\right\}$. It is clear that each $Q[p]$ is isomorphic to Q_{n-1}^{k} for $0 \leq p \leq k-1$. Q_{1}^{6} and Q_{2}^{4} are shown in Fig. 1 .

Let G and H be two graphs. G and H are distinct if their node sets are different, and disjoint if they have no common node. The Cartesian product of G and H, denoted by $G \times H$, is defined as follows: $V(G \times H)=V(G) \times V(H)$, two nodes $u_{1} u_{0}$ and $v_{1} v_{0}$ are adjacent in $G \times H$ if and only if $\left(u_{1}, v_{1}\right) \in E(G)$ and $u_{0}=v_{0}$ or $\left(u_{0}, v_{0}\right) \in E(H)$ and $u_{1}=v_{1}$. Let C_{k} be a cycle of length k. Then the Cartesian product of $n C_{k}$'s $C_{k} \times C_{k} \times \cdots \times C_{k}$ and Q_{n}^{k} are obviously isomorphic. For two sets of nodes X and Y of G, denote by $[X, Y]$ the set of links with one end in X and the other end in Y. Let N_{k-1} be the set $\{0,1,2, \ldots, k-1\}$ for an arbitrary integer $k \geq 2$.

Given two integers $n \geq 1$ and $k \geq 2$, for any integer $m(0 \leq m \leq n-1)$, let $i_{1}, i_{2}, \ldots, i_{m}$ be m integers with $0 \leq i_{m}<$ $i_{m-1}<\cdots<i_{1} \leq n-1$ and let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}} \in N_{k-1}$. Denote $M=\left\{b_{n-1} b_{n-2} \ldots b_{i_{1}+1} a_{i_{1}} b_{i_{1}-1} b_{i_{1}-2} \ldots b_{i_{2}+1} a_{i_{2}} \ldots a_{i_{m}} b_{i_{m}-1}\right.$ $\left.b_{i_{m}-2} \ldots b_{0}: b_{n-1}, b_{n-2}, \ldots, b_{i_{1}+1}, b_{i_{1}-1}, b_{i_{1}-2}, \ldots, b_{i_{2}+1}, \ldots, b_{i_{m-1}}, b_{i_{m}-2}, \ldots, b_{0} \in N_{k-1}\right\}$. In particular, $b_{n-1} b_{n-2} \ldots b_{i_{1}+1}$ and $b_{i_{m}-1} b_{i_{m}-2} \ldots b_{0}$ are empty strings if $i_{1}=n-1$ and $i_{m}=0$, respectively. Obviously, the subgraph of Q_{n}^{k} induced by M is isomorphic to Q_{n-m}^{k}. Let X be a don't care symbol and let $X^{t}=\underbrace{X X \ldots X}_{t}$. For convenience of representation, we denote by an n-length string of symbols $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ the subgraph induced by M in Q_{n}^{k}. For example, $X^{2} 02$ in Q_{4}^{3} denote the Q_{2}^{3} induced by $\{0002,0102,0202,1002,1102,1202,2002,2102,2202\}$. In particular, when $m=0$, $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ is just X^{n}, i.e., Q_{n}^{k}.

In addition, we can obtain the following lemma.
Lemma 1. $A Q_{n-m}^{k}$ in Q_{n}^{k} can be uniquely denoted by $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ for odd $k \geq 3$.
Proof. We first prove the following two claims.
Claim 1. Let C be a cycle of length k in Q_{n}^{k}. Then there exists $i \in\{0,1, \ldots, n-1\}$ such that C contains only i-dimensional links for odd $k \geq 3$.

By contradiction. Suppose that C contains $i_{1}, i_{2}, \ldots, i_{s}$-dimensional links, where $2 \leq s \leq n$ and $i_{1}, i_{2}, \ldots, i_{s} \in$ $\{0,1, \ldots, n-1\}$. For any $i_{t} \in\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$, we divide Q_{n}^{k} into $Q[0], Q[1], \ldots, Q[k-1]$ along dimension i_{t}. If $[V(Q[i]), V(Q[i+1])] \cap E(C) \neq \emptyset$ for every $i=0,1, \ldots, k-1$, then there exist at least k distinct i_{t}-dimensional links in C. For $i_{l} \in\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ and $i_{l} \neq i_{t}$, since C contains i_{l}-dimensional links, we have $|E(C)|>k$, a contradiction. Hence, there exists at least one element $i^{*} \in N_{k-1}$ such that $\left[V\left(Q\left[i^{*}\right]\right), V\left(Q\left[i^{*}+1\right]\right)\right] \cap E(C)=\emptyset$, say $i^{*}=k-1$. Note
that $|[V(Q[i]), V(Q[i+1])] \cap E(C)|$ must be even for every $i=0,1, \ldots, k-2$. So, the number of i_{t}-dimensional links in C is even. Furthermore, by the arbitrariness of $i_{t},|E(C)|$ is even, contrary to the fact that k is odd. The proof of Claim 1 is complete.
Claim 2. For any $Q_{s}^{k}(2 \leq s \leq n-1)$ in Q_{n}^{k}, there exists pairwise distinct $j_{1}, j_{2}, \ldots, j_{s} \in\{0,1, \ldots, n-1\}$ such that Q_{s}^{k} contains only $j_{1}, j_{2}, \ldots, j_{s}$-dimensional links for odd $k \geq 3$.

Let $C=(0,1, \ldots, k-1,0)$ be a cycle of length k. Denote the Cartesian product of $s C$'s $C \times \cdots \times C$ by H^{*}. For any two distinct nodes $u=u_{s-1} u_{s-2} \ldots u_{0}$ and $v=v_{s-1} v_{s-2} \ldots v_{0}$ in $V\left(H^{*}\right), u$ and v are joined with a j-dimensional link if and only if there exists an integer $j \in\{0,1, \ldots, s-1\}$ such that $\left(u_{j}, v_{j}\right) \in E(C)$ and $u_{l}=v_{l}$ for every $l \in\{0,1, \ldots, s-1\} \backslash\{j\}$. For $i=0,1, \ldots, s-1$, let C_{i} be a cycle of length k in H^{*}, which contains only i-dimensional links, such that the node $00 \ldots 0 \in V\left(C_{i}\right)$. Now, for any $i \in\{0,1, \ldots, s-1\}$, if H^{*} contains i-dimensional links, then there exists C_{i} such that C_{i} contains i-dimensional links. Note that H^{*} and Q_{s}^{k} are isomorphic. So there exist s pairwise distinct cycles $H_{1}, H_{2}, \ldots, H_{s}$ of length k in Q_{s}^{k} such that if Q_{s}^{k} contains i-dimensional links, then there exists an integer $j \in\{1,2, \ldots, s\}$ such that H_{j} contains i-dimensional links. By Claim 1, there exists $j_{i} \in\{0,1, \ldots, n-1\}$ such that H_{i} contains only j_{i}-dimensional links for every $i=1,2, \ldots, s$. Hence, Q_{s}^{k} contains only $j_{1}, j_{2}, \ldots, j_{s}$-dimensional links. By the definition of Q_{s}^{k}, there exists pairwise distinct $i_{1}, i_{2}, \ldots, i_{s} \in\{0,1, \ldots, n-1\}$ such that Q_{s}^{k} contains $i_{1}, i_{2}, \ldots, i_{s}$-dimensional links. So $\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$. The proof of Claim 2 is complete.

Next, we prove Lemma 1 by induction on m. When $m=0, Q_{n}^{k}$ can be uniquely denoted by X^{n}. Assume that Lemma 1 is true for m, where $m \geq 0$. We shall show that Lemma 1 holds for $m+1$. Note that a $Q_{n-(m+1)}^{k}$ in Q_{n}^{k} must be in some Q_{n-m}^{k}. By the induction hypothesis, the Q_{n-m}^{k} can be uniquely denoted by $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$. By Claim 2, there exists pairwise distinct $j_{1}, j_{2}, \ldots, j_{n-m-1}, j_{n-m} \in\{0,1, \ldots, n-1\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ such that $Q_{n-(m+1)}^{k}$ contains only $j_{1}, j_{2}, \ldots, j_{n-m-1}$-dimensional links and Q_{n-m}^{k} contains only $j_{1}, j_{2}, \ldots, j_{n-m}$-dimensional links. The $Q_{n-(m+1)}^{k}$ can be obtained by dividing $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ along dimension j_{n-m}. So there exists $a \in N_{k-1}$ such that, for any node $u_{n-1} u_{n-2} \ldots u_{0} \in V\left(Q_{n-(m+1)}^{k}\right), u_{j_{n-m}}=a$. Let $\left\{t_{1}, t_{2}, \ldots, t_{m+1}\right\}=\left\{i_{1}, \ldots, i_{m}, j_{n-m}\right\}$ with $t_{1}>t_{2}>\cdots>t_{m+1}$. Thus the $Q_{n-(m+1)}^{k}$ can be uniquely denoted by $X^{n-1-t_{1}} a_{t_{1}} X^{t_{1}-t_{2}-1} a_{t_{2}} \ldots a_{t_{m+1}} X^{t_{m+1}}$. The proof of Lemma 1 is complete.
Lemma 2. There are k^{m} disjoint Q_{n-m}^{k} 's and $k^{m}\binom{n}{m}$ distinct Q_{n-m}^{k} 's in Q_{n}^{k} for odd $k \geq 3$.
Proof. This lemma is trivial when $m=0$. In the following, we consider the case $m \geq 1$.
For odd $k \geq 3$, by Lemma 1 , a Q_{n-m}^{k} in Q_{n}^{k} can be uniquely denoted by $X^{n-1-i_{1}} a_{i_{1}} X^{\overline{i_{1}}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$, where $i_{1}, i_{2}, \ldots, i_{m}$ are m integers with $0 \leq i_{m}<i_{m-1}<\cdots<i_{1} \leq n-1$ and $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}} \in N_{k-1}$. According to the values of $i_{1}, i_{2}, \ldots, i_{m}$, we divide all the distinct Q_{n-m}^{k} 's in Q_{n}^{k} into $\binom{n}{m}$ sets $A_{1}, A_{2}, \ldots, A_{\binom{n}{m}}$, where, for every $i \in\left\{1,2, \ldots,\binom{n}{m}\right\}, A_{i}=$ $\left\{X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}: a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}} \in N_{k-1}\right\}$. Note that any two distinct Q_{n-m}^{k} 's $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ and $X^{n-1-i_{1}} b_{i_{1}} X^{i_{1}-i_{2}-1} b_{i_{2}} \ldots b_{i_{m}} X^{i_{m}}$ in A_{i} have no common node because there is some $l \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ such that $a_{l} \neq b_{l}$. So, $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ and $X^{n-1-i_{1}} b_{i_{1}} X^{i_{1}-i_{2}-1} b_{i_{2}} \ldots b_{i_{m}} X^{i_{m}}$ are disjoint. It follows that there are $\left|A_{i}\right|=k^{m}$ disjoint Q_{n-m}^{k} 's in Q_{n}^{k}. For two distinct integers $i, j \in\left\{1,2, \ldots,\binom{n}{m}\right\}$, any two Q_{n-m} 's $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ in A_{i} and $X^{n-1-j_{1}} a_{j_{1}} X^{j_{1}-j_{2}-1} a_{j_{2}} \ldots a_{j_{m}} X^{j_{m}}$ in A_{j} are distinct, since otherwise the node set of $X^{n-1-i_{1}} a_{i_{1}} X^{i_{1}-i_{2}-1} a_{i_{2}} \ldots a_{i_{m}} X^{i_{m}}$ and the node set of $X^{n-1-j_{1}} a_{j_{1}} X^{j_{1}-j_{2}-1} a_{j_{2}} \ldots a_{j_{m}} X^{j_{m}}$ are the same, which yields that $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{m}=j_{m}$, a contradiction. Therefore, there are $\sum_{i=1}^{\binom{n}{m}}\left|A_{i}\right|=k^{m}\binom{n}{m}$ distinct Q_{n-m}^{k} 's in Q_{n}^{k}. The proof is complete.

3. Enumeration of faulty nodes

3.1. The lower and upper bounds

Given two integers $n \geq 1$ and $k \geq 2$, we are interested in finding $f(n, m)$, the minimum number of faulty nodes to make every $(n-m)$-dimensional subcube Q_{n-m}^{k} faulty in Q_{n}^{k}, where $0 \leq m \leq n-1$.
Lemma 3. $k^{m} \leq f(n, m) \leq k^{m}\binom{n}{m}$ for odd $k \geq 3$.
Proof. By Lemma 2, Q_{n}^{k} can be divided into k^{m} disjoint Q_{n-m}^{k} 's. To damage all the disjoint Q_{n-m}^{k} 's in Q_{n}^{k}, we need at least one faulty node for each Q_{n-m}^{k}, which yields that $f(n, m) \geq k^{m}$.

The upper bound on $f(n, m)$ can be obtained by making a node faulty in each of the $k^{m}\binom{n}{m}$ distinct Q_{n-m}^{k} 's in Q_{n}^{k}. This will render: $f(n, m) \leq k^{m}\binom{n}{m}$. Combining this with the fact that $f(n, m) \geq k^{m}$, the lemma follows.

The following theorem gives the exact value of $f(n, m)$ for some special cases.
Theorem 1. Let Q_{n}^{k} be a k-ary n-cube. Then the following hold.
(1) $f(n, 0)=1$.

B_{1}^{00}		
B_{2}^{00}	B_{1}^{10}	
B_{2}^{10}		
B_{3}^{00}		B_{1}^{10} \vdots B_{δ}^{00} $B_{\delta+1}^{00}$
	\ldots	$B_{2}^{\delta 0}$
B_{δ}^{10}		
$B_{\delta+1}^{10}$		

Q[0]

Q[1]

$Q[\delta]$

Fig. 2. The partition of $V\left(Q_{n}^{k}\right)$ and the selection of faulty nodes which are underlined (for convenience, denote $\delta=k-1$).
(2) $f(n, 1)=k$ for odd $k \geq 3$.
(3) $f(n, n-1)=k^{n-1}$ for odd $k \geq 3$.

Proof. (1) Since the failure of a single node will damage the Q_{n}^{k}, we have $f(n, 0) \leq 1$. Lemma 3 implies that $f(n, 0) \geq k^{0}=1$. So $f(n, 0)=1$.
(2) By Lemma 2, there are $n k$ distinct Q_{n-1}^{k} 's in Q_{n}^{k}. Note that, for every $i \in N_{k-1}$, the node $i i \ldots i$ will damage the $n Q_{n-1}^{k}$'s $i X^{n-1}, X i X^{n-2}, X X i X^{n-3}, \ldots, X^{n-2} i X$ and $X^{n-1} i$. Therefore, the nodes $00 \ldots 0,11 \ldots 1, \ldots,(k-1)(k-1) \ldots(k-1)$ will damage every Q_{n-1}^{k} in Q_{n}^{k}, which yields that $f(n, 1) \leq k$. Lemma 3 implies that $f(n, 0) \geq k$. So $f(n, 1)=k$.
(3) In the following, we consider the Q_{n}^{k} for odd $k \geq 3$. If $n=1$, then, by $(1), f(n, n-1)=f(1,0)=1=k^{1-1}$. Next, assume that $n \geq 2$. We divide Q_{n}^{k} into $Q[0], Q[1], \ldots, Q[k-1]$ along dimension 0 , where $Q[p]$, for every $0 \leq p \leq k-1$, is isomorphic to Q_{n-1}^{k}. Let $u^{p}=u_{n-1} u_{n-2} \ldots u_{1} p$ be a node in $Q[p]$, then the counterpart node of u^{p} in $Q[q]$ is denoted by u^{q}, where $u^{q}=u_{n-1} u_{n-2} \ldots u_{1} q$. Let $S^{p} \subseteq V(Q[p])$, then the counterpart node set of S^{p} in $Q[q]$ is denoted by S^{q}, where $S^{q}=\left\{x^{q}: x^{p} \in S^{p}\right\}$. Next, we prove a claim.

Claim. There exists a partition $A_{1}^{0}, A_{2}^{0}, \ldots, A_{k}^{0}$ of $V(Q[0])$ such that $A_{1}^{0} \cup A_{2}^{1} \cup \cdots \cup A_{k}^{k-1}$ is the set of faulty nodes that damage all the $Q_{1}^{k \prime} \sin Q_{n}^{k}$, where $\left|A_{i}^{0}\right|=k^{n-2}$ for every $1 \leq i \leq k, A_{i}^{0} \cap A_{j}^{0}=\emptyset$ for $1 \leq i, j \leq k$ and $i \neq j, \bigcup_{i=1}^{k} A_{i}^{0}=V(Q[0])$, and A_{i}^{p} is the counterpart node set of A_{i}^{0} in $Q[p]$ for $1 \leq p \leq k-1$ and $1 \leq i \leq k$.

We prove the claim by induction on n. When $n=2$, let $A_{1}^{0}=\{00\}, A_{2}^{0}=\{10\}, \ldots, A_{k}^{0}=\{(k-1) 0\}$. Then $A_{2}^{1}=\{11\}$, $A_{3}^{2}=\{22\}, \ldots, A_{k}^{k-1}=\{(k-1)(k-1)\}$. Clearly, $A_{1}^{0} \cup A_{2}^{1} \cup \cdots \cup A_{k}^{k-1}$ is the set of faulty nodes that damage all the $Q_{1}^{k \prime}$ s in Q_{2}^{k} for odd $k \geq 3$. Assume that the claim is true for $n-1$, where $n \geq 3$. We shall show that the claim holds for n. Since $Q[0]$ is isomorphic to Q_{n-1}^{k}, we divide $Q[0]$ into $Q^{\prime}[0], Q^{\prime}[1], \ldots, Q^{\prime}[k-1]$ along dimension 1 , where $Q^{\prime}[p]$, for every $0 \leq p \leq k-1$, is induced by $\left\{u=u_{n-1} \ldots u_{1} u_{0} \in V\left(Q_{n}^{k}\right): u_{1}=p, u_{0}=0\right\}$. It is clear that each $Q^{\prime}[p]$ is isomorphic to Q_{n-2}^{k} for $0 \leq p \leq k-1$. By the induction hypothesis, there exists a partition $B_{1}^{00}, B_{2}^{00}, \ldots, B_{k}^{00}$ of $V\left(Q^{\prime}[0]\right)$ such that $B_{1}^{00} \cup B_{2}^{10} \cup \ldots \cup B_{k}^{(k-1) 0}$ is the set of faulty nodes that damage all the Q_{1}^{k} 's in $Q[0]$, where $\left|B_{i}^{00}\right|=k^{n-3}$ for every $1 \leq i \leq k, B_{i}^{00} \cap B_{j}^{00}=\emptyset$ for $1 \leq i, j \leq k$ and $i \neq j, \bigcup_{i=1}^{k} B_{i}^{00}=V\left(Q^{\prime}[0]\right)$, and $B_{i}^{p 0}$ is the counterpart node set of B_{i}^{00} in $Q^{\prime}[p]$ for $1 \leq p \leq k-1$ and $1 \leq i \leq k$. Denote the counterpart node set of $B_{i}^{q 0}$ in $Q[p]$ by $B_{i}^{q p}$ for $1 \leq i \leq k, 0 \leq q \leq k-1$ and $1 \leq p \leq k-1$. See Fig. 2 for more details about the partition.

Let $A_{1}^{0}=B_{1}^{00} \cup B_{2}^{10} \cup \cdots \cup B_{k}^{(k-1) 0}, A_{2}^{0}=B_{2}^{00} \cup B_{3}^{10} \cup \cdots \cup B_{k}^{(k-2) 0} \cup B_{1}^{(k-1) 0}, \ldots, A_{k}^{0}=B_{k}^{00} \cup B_{1}^{10} \cup \cdots \cup B_{k-1}^{(k-1) 0}$. Then $A_{2}^{1}=B_{2}^{01} \cup B_{3}^{11} \cup \cdots \cup B_{k}^{(k-2) 1} \cup B_{1}^{(k-1) 1}, \ldots, A_{k}^{k-1}=B_{k}^{0(k-1)} \cup B_{1}^{1(k-1)} \cup \cdots \cup B_{k-1}^{(k-1)(k-1)}$. By Claim 1 in Lemma $1, Q_{1}^{k}$ in Q_{n}^{k} contains only i-dimensional links for some $i \in\{0,1, \ldots, n-1\}$. Clearly, all the Q_{1}^{k} ’s formed by 0 -dimensional links are damaged by the faulty nodes in $A_{1}^{0} \cup A_{2}^{1} \cup \cdots \cup A_{k}^{k-1}$ (see Fig. 2). Next, we show that all the $Q_{1}^{k \prime}$ in $Q[1]$ are damaged by the faulty nodes in A_{2}^{1}. Define a mapping Ψ as follows:

$$
\begin{aligned}
& \Psi: V(Q[0]) \rightarrow V(Q[1]) \\
& u_{n-1} \ldots u_{2} u_{1} u_{0} \mapsto u_{n-1} \ldots u_{2}\left(u_{1}-1\right)(\bmod k)\left(u_{0}+1\right)
\end{aligned}
$$

Ψ is an isomorphism between $Q[0]$ and $Q[1]$. For $S \subseteq V(Q[0])$, denote $\Psi(S)=\bigcup_{u \in S}\{\Psi(u)\}$. Then $\Psi\left(B_{1}^{00}\right)=B_{1}^{(k-1) 1}$, $\Psi\left(B_{2}^{10}\right)=B_{2}^{01}, \ldots, \Psi\left(B_{k}^{(k-1) 0}\right)=B_{k}^{(k-2) 1}$. Since all the $Q_{1}^{k \prime}$ s in $Q[0]$ are damaged by the faulty nodes in $A_{1}^{0}=B_{1}^{00} \cup B_{2}^{10} \cup \ldots \cup$ $B_{k}^{(k-1) 0}$, we have that all the $Q_{1}^{k \prime}$ s in $Q[1]$ are damaged by the faulty nodes in $\Psi\left(A_{1}^{0}\right)=A_{2}^{1}=B_{2}^{01} \cup B_{3}^{11} \cup \cdots \cup B_{k}^{(k-2) 1} \cup B_{1}^{(k-1) 1}$.

Table 1
The faulty nodes and damaged Q_{n-2}^{k} 's in A_{n-1} (for convenience, denote $\delta=k-1$).

Faulty nodes	Damaged Q_{n-2}^{k}, s	
$00 \ldots 0$	$00 X^{n-2}, 0 X 0 X^{n-3}, \ldots, 0 X^{n-2} 0$	
$01 \ldots 1$	$01 X^{n-2}, 0 X 1 X^{n-3}, \ldots, 0 X^{n-2} 1$	
\vdots	\vdots	\vdots
$0 \delta \ldots \delta$	$0 \delta X^{n-2}, 0 X \delta X^{n-3}, \ldots$,	$\ldots X^{n-2} \delta$
$10 \ldots 0$	$10 X^{n-2}, 1 X 0 X^{n-3}, \ldots, 1 X^{n-2} 0$	
$11 \ldots 1$	$11 X^{n-2}, 1 X 1 X^{n-3}, \ldots, 1 X^{n-2} 1$	
\vdots	\vdots	\vdots
$1 \delta \ldots \delta$	$1 \delta X^{n-2}, 1 X \delta X^{n-3}, \ldots, 1 X^{n-2} \delta$	
\vdots	\vdots	\vdots
$\delta 0 \ldots 0$	$\delta 0 X^{n-2}, \delta X 0 X^{n-3}, \ldots, \delta X^{n-2} 0$	
$\delta 1 \ldots 1$	$\delta 1 X^{n-2}, \delta X 1 X^{n-3}, \ldots, \delta X^{n-2} 1$	
\vdots	\vdots	\vdots
$\delta \delta \ldots \delta$	$\delta \delta X^{n-2}, \delta X \delta X^{n-3}, \ldots, \delta X^{n-2} \delta$	

For every $2 \leq p \leq k-1$, define the mapping Ψ_{p} as follows:

$$
\begin{aligned}
& \Psi_{p}: V(Q[0]) \rightarrow V(Q[p]) \\
& u_{n-1} \ldots u_{2} u_{1} u_{0} \mapsto u_{n-1} \ldots u_{2}\left(u_{1}-p\right)(\bmod k)\left(u_{0}+p\right) .
\end{aligned}
$$

Similarly, we have that all the $Q_{1}^{k \prime} s$ in $Q[p]$ are damaged by the faulty nodes in A_{p+1}^{p} for every $2 \leq p \leq k-1$. Therefore $A_{1}^{0} \cup A_{2}^{1} \cup \cdots \cup A_{k}^{k-1}$ is the set of faulty nodes that damage all the Q_{1}^{k} 's in Q_{n}^{k}. The proof of the claim is complete.

By the claim, $f(n, n-1) \leq\left|A_{1}^{0}\right|+\left|A_{2}^{1}\right|+\cdots+\left|A_{k}^{k-1}\right|=k k^{n-2}=k^{n-1}$. Lemma 3 implies that $f(n, n-1) \geq k^{n-1}$. Therefore we have $f(n, n-1)=k^{n-1}$.

Note that for some special cases the exact value of $f(n, m)$ coincides with the lower bound. But there is a large gap between the lower bound k^{m} and the upper bound $k^{m}\binom{n}{m}$ in Lemma 3. In the following, we shall improve the upper bound on $f(n, m)$.

3.2. A better upper bound on $f(n, m)$

We first present a better upper bound on $f(n, 2)$ by giving a set of faulty nodes that damage all Q_{n-2}^{k} 's in Q_{n}^{k}.
Lemma 4. Denote by $f(n, 2)$ the minimum number of faulty nodes that make every $(n-2)$-dimensional subcube Q_{n-2}^{k} faulty in Q_{n}^{k}. Then $f(n, 2) \leq\binom{ n-1}{1} k^{2}-\binom{n-2}{1} k$ for odd $k \geq 3$.
Proof. By Lemma 2, there are $\binom{n}{2} k^{2}$ distinct Q_{n-2}^{k} 's in Q_{n}^{k}. Divide all the distinct Q_{n-2}^{k} 's in Q_{n}^{k} into $n-1$ sets $A_{n-1}, A_{n-2} \ldots, A_{1}$, where, for $i \in\{1,2, \ldots, n-1\}, A_{i}=\left\{X^{n-1-i} a_{i} X^{i-j-1} a_{j} X^{j}: 0 \leq j \leq i-1\right.$ and $\left.a_{i}, a_{j} \in N_{k-1}\right\}$. Clearly, $\left|A_{i}\right|=\binom{i}{1} k^{2}$ for $i \in\{1,2, \ldots, n-1\}$. We first find k^{2} faulty nodes to damage all the Q_{n-2}^{k} 's in A_{n-1}. See Table 1 for more details.

Secondly, we find k^{2} faulty nodes to damage all the Q_{n-2}^{k} ' $\mathrm{in} A_{n-2}$. See Table 2 for more details.
We proceed in a similar way until we find k^{2} faulty nodes to damage all the Q_{n-2}^{k} 's in A_{1}. See Table 3 for more details of A_{1}.

Note that the nodes $00 \ldots 0,11 \ldots 1, \ldots,(k-1)(k-1) \ldots(k-1)$ repeat $n-2$ times in the faulty nodes which we found. Except $00 \ldots 0,11 \ldots 1, \ldots,(k-1)(k-1) \ldots(k-1)$, the faulty nodes are pairwise distinct. Thus we found $(n-1) k^{2}-(n-2) k$ faulty nodes. Since $\left|A_{n-1}\right|+\left|A_{n-2}\right|+\cdots+\left|A_{1}\right|=(n-1) k^{2}+(n-2) k^{2}+\cdots+k^{2}=\binom{n}{2} k^{2}$, the faulty nodes which we found can damage all the Q_{n-2}^{k} 's in Q_{n}^{k}, which yields $f(n, 2) \leq(n-1) k^{2}-(n-2) k=\binom{n-1}{1} k^{2}-\binom{n-2}{1} k$. The proof is complete.

More generally, we give a better upper bound on $f(n, m)$. The following lemma is useful.
Lemma 5 ([4]). Let s, t be two nonnegative integers with $s \geq t$. Then $\binom{s-1}{t-1}+\binom{s-2}{t-1}+\cdots+\binom{t-1}{t-1}=\binom{s}{t}$
Theorem 2. Denote by $f(n, m)$ the minimum number of faulty nodes that make every $(n-m)$-dimensional subcube Q_{n-m}^{k} faulty in Q_{n}^{k}. Then $f(n, m) \leq\binom{ n-1}{m-1} k^{m}-\binom{n-2}{m-1} k^{m-1}$ for odd $k \geq 3$.

Table 2
The faulty nodes and damaged Q_{n-2}^{k} 's in A_{n-2} (for convenience, denote $\delta=k-1$).

Faulty nodes	Damaged Q_{n-2}^{k} 's
$000 \ldots 0$	$X 00 X^{n-3}, X 0 X 0 X^{n-4}, \ldots, X 0 X^{n-3} 0$
001... 1	$X 01 X^{n-3}, X 0 X 1 X^{n-4}, \ldots, X 0 X^{n-3} 1$
:	
$00 \delta \ldots \delta$	$X 0 \delta X^{n-3}, X 0 X \delta X^{n-4}, \ldots, X 0 X^{n-3} \delta$
110... 0	$X 10 X^{n-3}, X 1 X 0 X^{n-4}, \ldots, X 1 X^{n-3} 0$
111... 1	$X 11 X^{n-3}, X 1 X 1 X^{n-4}, \ldots, X 1 X^{n-3} 1$
:	:
$11 \delta \ldots \delta$	$X 1 \delta X^{n-3}, X 1 X \delta X^{n-4}, \ldots, X 1 X^{n-3} \delta$
:	\ldots
$\delta \delta 0 \ldots 0$	$X \delta 0 X^{n-3}, X \delta X 0 X^{n-4}, \ldots, X \delta X^{n-3} 0$
$\delta \delta 1 \ldots 1$	$X \delta 1 X^{n-3}, X \delta X 1 X^{n-4}, \ldots, X \delta X^{n-3} 1$
\vdots	
$\delta \delta \delta \ldots \delta$	$X \delta \delta X^{n-3}, X \delta X \delta X^{n-4}, \ldots, X \delta X^{n-3} \delta$

Table 3
The faulty nodes and damaged Q_{n-2}^{k} 's in A_{1} (for convenience, denote $\delta=k-1$).

Faulty nodes	Damaged Q_{n-2}^{k} 's
$0 \ldots 00$	$X^{n-2} 00$
$0 \ldots 01$	$X^{n-2} 01$
\vdots	\vdots
$0 \ldots 0 \delta$	$X^{n-2} 0 \delta$
$1 \ldots 10$	$X^{n-2} 10$
$1 \ldots 11$	$X^{n-2} 11$
\vdots	\vdots
$1 \ldots 1 \delta$	$X^{n-2} 1 \delta$
\ldots	\ldots
$\delta \ldots \delta 0$	$X^{n-2} \delta 0$
$\delta \ldots \delta 1$	$X^{n-2} \delta 1$
\vdots	\vdots
$\delta \ldots \delta \delta$	$X^{n-2} \delta \delta$

Proof. We prove the theorem by induction on m. By Lemma 4, the theorem holds for $m=2$. Assume the theorem holds for $m-1(m \geq 3)$, i.e., $f(n, m-1) \leq\binom{ n-1}{m-2} k^{m-1}-\binom{n-2}{m-2} k^{m-2}$ for odd $k \geq 3$. We shall show that the theorem holds for m. By Lemma 2, there are $\binom{n}{m} k^{m}$ distinct Q_{n-m}^{k} 's in Q_{n}^{k}. Divide all the distinct Q_{n-m}^{k} 's in Q_{n}^{k} into $n-m+1$ sets $A_{n-1}, A_{n-2} \ldots, A_{m-1}$, where, for every $i \in\{m-1, \ldots, n-2, n-1\}$, $A_{i}=\left\{X^{n-1-i} a_{i} X^{i-i_{2}-1} a_{i_{2}} X^{i_{2}-i_{3}-1} a_{i_{3}} \ldots a_{i_{m}} X^{i_{m}}: 0 \leq i_{m}<\cdots<\right.$ $i_{3}<i_{2} \leq i-1$ and $\left.a_{i}, a_{i_{2}}, a_{i_{3}}, \ldots, a_{i_{m}} \in N_{k-1}\right\}$ and $\left|A_{i}\right|=\binom{i}{m-1} k^{m}$. By Lemma 5, $\left|A_{n-1}\right|+\left|A_{n-2}\right|+\cdots+\left|A_{m-1}\right|=$ $\left(\binom{n-1}{m-1}+\binom{n-2}{m-1}+\cdots+\binom{m-1}{m-1} k^{m}=\binom{n}{m} k^{m}\right.$. For every $i \in\{m-1, m, \ldots, n-1\}$, denote by B_{i} the set of faulty nodes with the minimum cardinality to damage all Q_{n-m}^{k} 's in A_{i}. For some $r \in N_{k-1}$ and every $i \in\{m-1, m, \ldots, n-1\}$, we denote by $A_{i}(r)$ the set $\left\{X^{n-1-i} r X^{i-i_{2}-1} a_{i_{2}} X^{i_{2}-i_{3}-1} a_{i_{3}} \ldots a_{i_{m}} X^{i_{m}}: 0 \leq i_{m}<\cdots<i_{3}<i_{2} \leq i-1\right.$ and $\left.a_{i_{2}}, a_{i_{3}}, \ldots, a_{i_{m}} \in N_{k-1}\right\}$, and denote by $B_{i}(r)$ the set of faulty nodes with the minimum cardinality to damage all Q_{n-m}^{k} 's in $A_{i}(r)$. Clearly, for every $i \in\{m-1, m, \ldots, n-1\}, \bigcup_{r=0}^{k-1} B_{i}(r)=B_{i}$ and $B_{i}(r) \cap B_{i}\left(r^{\prime}\right)=\emptyset$, where $r, r^{\prime} \in N_{k-1}$ and $r \neq r^{\prime}$.

First, we shall find $B_{n-1}(r)$ for every $r \in N_{k-1}$. Denote $A_{n-1}^{\prime}=\left\{X^{n-i_{2}-2} a_{i_{2}} X^{i_{2}-i_{3}-1} a_{i_{3}} \ldots a_{i_{m}} X^{i_{m}}: 0 \leq i_{m}<\ldots\right.$ $<i_{3}<i_{2} \leq n-2$ and $\left.a_{i_{2}}, a_{i_{3}}, \ldots, a_{i_{m}} \in N_{k-1}\right\}$. Note that A_{n-1}^{\prime} is the set of all the $Q_{(n-1)-(m-1)}^{k}$'s in Q_{n-1}^{k}. By the induction hypothesis, there exists a set B_{n-1}^{\prime} of faulty nodes to damage all the $Q_{(n-1)-(m-1)}^{k}$'s in Q_{n-1}^{k}
with $\left|B_{n-1}^{\prime}\right|=f(n-1, m-1) \leq\binom{ n-2}{m-2} k^{m-1}-\binom{n-3}{m-2} k^{m-2}$. Thus the faulty nodes in B_{n-1}^{\prime} damage all the $Q_{(n-1)-(m-1)}^{k}$'s in A_{n-1}^{\prime}. Let $B_{n-1}^{*}(r)=\left\{r u_{n-2} u_{n-3} \ldots u_{0} \in V\left(Q_{n}^{k}\right): u_{n-2} u_{n-3} \ldots u_{0} \in B_{n-1}^{\prime}\right\}$ be a set of faulty nodes. Then $\left|B_{n-1}^{*}(r)\right|=\left|B_{n-1}^{\prime}\right|$. Recall that $A_{n-1}(r)=\left\{r X^{n-i_{2}-2} a_{i_{2}} X^{i_{2}-i_{3}-1} a_{i_{3}} \ldots a_{i_{m}} X^{i_{m}}: 0 \leq i_{m}<\cdots<i_{3}<i_{2} \leq n-2\right.$ and $\left.a_{i_{2}}, a_{i_{3}}, \ldots, a_{i_{m}} \in N_{k-1}\right\}$. The faulty nodes in $B_{n-1}^{*}(r)$ damage all the Q_{n-m}^{k} 's in $A_{n-1}(r)$. Therefore $\left|B_{n-1}(r)\right| \leq\left|B_{n-1}^{*}(r)\right|=\left|B_{n-1}^{\prime}\right|=f(n-1, m-1) \leq$ $\binom{n-2}{m-2} k^{m-1}-\binom{n-3}{m-2} k^{m-2}$. Note that for any $r^{\prime} \in N_{k-1} \backslash\{r\},\left|B_{n-1}\left(r^{\prime}\right)\right|=\left|B_{n-1}(r)\right|$. It follows that $\left|B_{n-1}\right|=\sum_{r=0}^{k-1}\left|B_{n-1}(r)\right| \leq$ $k\left(\binom{n-2}{m-2} k^{m-1}-\binom{n-3}{m-2} k^{m-2}\right)=\binom{n-2}{m-2} k^{m}-\binom{n-3}{m-2} k^{m-1}$.

Next, we shall find $B_{n-2}(r)$ for every $r \in N_{k-1}$. Denote $A_{n-2}^{\prime}=\left\{X^{n-i_{2}-3} a_{i_{2}} X^{i_{2}-i_{3}-1} a_{i_{3}} \ldots a_{i_{m}} X^{i_{m}}: 0 \leq i_{m}<\ldots<\right.$ $i_{3}<i_{2} \leq n-3$ and $\left.a_{i_{2}}, a_{i_{3}}, \ldots, a_{i_{m}} \in N_{k-1}\right\}$. Note that A_{n-2}^{\prime} is the set of all the $Q_{(n-2)-(m-1)}^{k}$'s in Q_{n-2}^{k}. By the induction hypothesis, there exists a set B_{n-2}^{\prime} of faulty nodes to damage all the $Q_{(n-2)-(m-1)}^{k}$'s in Q_{n-2}^{k} with $\left|B_{n-2}^{\prime}\right|=f(n-2, m-1) \leq$ $\binom{n-3}{m-2} k^{m-1}-\binom{n-4}{m-2} k^{m-2}$. Thus the faulty nodes in B_{n-2}^{\prime} damage all the $Q_{(n-2)-(m-1)}^{k}$'s in A_{n-2}^{\prime}. Given an integer $a \in N_{k-1}$, let $B_{n-2}^{*}(r)=\left\{a r u_{n-3} u_{n-4} \ldots u_{0} \in V\left(Q_{n}^{k}\right): u_{n-3} u_{n-4} \ldots u_{0} \in B_{n-2}^{\prime}\right\}$ be a set of faulty nodes. Then $\left|B_{n-2}^{*}(r)\right|=\left|B_{n-2}^{\prime}\right|$. Recall that $A_{n-2}(r)=\left\{X r X^{n-i_{2}-3} a_{i_{2}} X^{i_{2}-i_{3}-1} a_{i_{3}} \ldots a_{i_{m}} X^{i_{m}}: 0 \leq i_{m}<\cdots<i_{3}<i_{2} \leq n-3\right.$ and $\left.a_{i_{2}}, a_{i_{3}}, \ldots, a_{i_{m}} \in N_{k-1}\right\}$. The faulty nodes in $B_{n-2}^{*}(r)$ damage all the Q_{n-m}^{k} 's in $A_{n-2}(r)$. Therefore $\left|B_{n-2}(r)\right| \leq\left|B_{n-2}^{*}(r)\right|=\left|B_{n-2}^{\prime}\right|=f(n-2, m-1) \leq$ $\binom{n-3}{m-2} k^{m-1}-\binom{n-4}{m-2} k^{m-2}$. Note that for any $r^{\prime} \in N_{k-1} \backslash\{r\},\left|B_{n-2}\left(r^{\prime}\right)\right|=\left|B_{n-2}(r)\right|$. It follows that $\left|B_{n-2}\right|=\sum_{r=0}^{k-1}\left|B_{n-2}(r)\right| \leq$ $k\left(\binom{n-3}{m-2} k^{m-1}-\binom{n-4}{m-2} k^{m-2}\right)=\binom{n-3}{m-2} k^{m}-\binom{n-4}{m-2} k^{m-1}$.

We proceed in a similar way until we get $\left|B_{m}\right| \leq\binom{ m-1}{m-2} k^{m}-\binom{m-2}{m-2} k^{m-1}$.
Now, we consider the remaining $A_{m-1}=\left\{X^{n-m} a_{m-1} a_{m-2} \ldots a_{0}: a_{0}, \ldots, a_{m-2}, a_{m-1} \in N_{k-1}\right\}$. There are k^{m} disjoint Q_{n-m}^{k} 's in A_{m-1}. By making a node faulty in each of the k^{m} disjoint Q_{n-m}^{k} 's in A_{m-1}, we have $\left|B_{m-1}\right|=k^{m}=\binom{m-2}{m-2} k^{m}$. Therefore,

$$
\begin{aligned}
f(n, m)= & \left|B_{n-1}\right|+\left|B_{n-2}\right|+\cdots+\left|B_{m}\right|+\left|B_{m-1}\right| \\
\leq & \binom{n-2}{m-2} k^{m}-\binom{n-3}{m-2} k^{m-1}+\binom{n-3}{m-2} k^{m}-\binom{n-4}{m-2} k^{m-1} \\
& +\ldots+\binom{m-1}{m-2} k^{m}-\binom{m-2}{m-2} k^{m-1}+\binom{m-2}{m-2} k^{m} \\
= & \left(\binom{n-2}{m-2}+\binom{n-3}{m-2}+\cdots+\binom{m-2}{m-2}\right) k^{m} \\
& -\left(\binom{n-3}{m-2}+\binom{n-4}{m-2}+\cdots+\binom{m-2}{m-2}\right) k^{m-1}
\end{aligned}
$$

By Lemma 5, $f(n, m) \leq\binom{ n-1}{m-1} k^{m}-\binom{n-2}{m-1} k^{m-1}$. The proof is complete.

4. Conclusions

In this paper, we investigate $f(n, m)$, the minimum number of faulty nodes which make every ($n-m$)-dimensional subcube Q_{n-m}^{k} faulty in a k-ary n-cube Q_{n}^{k} under node-failure models. We present the lower and upper bounds on $f(n, m)$, and determine the exact value of $f(n, m)$ for some special cases. The results can be used in the reliability analysis of the subnetworks in k-ary n-cubes. The determination of the exact value of $f(n, m)$ remains an open problem for the general case.

References

[1] Yaagoub A. Ashir, Iain A. Stewart, Fault-tolerant embeddings of Hamiltonian circuits in k-ary n-cubes, SIAM Journal on Discrete Mathematics 15 (3) (2002) 317-328.
[2] Bernd Becker, Hans-Ulrich Simon, How robust is the n-cube? in: Proceedings of 27th Annual Symposium on Foundations of Computer Science, 1986, pp. 283-291.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[4] Richard A. Brualdi, Introductory Combinatorics, 3rd edition, Prentice Hall, New Jersey, 1999.
[5] Mee Yee Chan, Shiang-Jen Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4 (4) (1991) 511-527.
[6] Jung-Sheng Fu, Fault-free Hamiltonian cycles in twisted cubes with conditional link faults, Theoretical Computer Science 407 (1-3) (2008) 318-329.
[7] Tung-Yang Ho, Ting-Yi Sung, Lih-Hsing Hsu, A note on edge fault tolerance with respect to hypercubes, Applied Mathematics Letters 18 (10) (2005) 1125-1128.
[8] Sun-Yuan Hsieh, Embedding longest fault-free paths onto star graphs with more vertex faults, Theoretical Computer Science 337 (1-3) (2005) 370-378.
[9] R.E. Kessler, J.L. Schwarzmeier, Cray T3D: a new dimension for Cray Research, in: Proceedings of the 38th IEEE Computer Society International Conference, Compcon Spring'93, San Francisco, CA, 1993, pp. 176-182.
[10] Shahram Latifi, A study of fault tolerance in star graph, Information Processing Letters 102 (5) (2007) 196-200.
[11] Shangwei Lin, Shiying Wang, Chunfang Li, Panconnectivity and edge-pancyclicity of k-ary n-cubes with faulty elements, Discrete Applied Mathematics 159 (4) (2011) 212-223.
[12] Meijie Ma, Guizhen Liu, Jun-Ming Xu, Fault-tolerant embedding of paths in crossed cubes, Theoretical Computer Science 407 (1-3) (2008) 110-116.
[13] Michael Noakes, William J. Dally, System design of the J-machine, in: Proceedings of the Sixth MIT Conference on Advanced Research in VLSI, MIT Press, Cambridge, MA, 1990, pp. 179-194.
[14] Craig Peterson, James Sutton, Paul Wiley, iWarp: a 100-MOPS, LIW microprocessor for multicomputers, IEEE Micro 11 (3) (1991) 26-29. 81-87.
[15] Iain A. Stewart, Yonghong Xiang, Embedding long paths in k-ary n-cubes with faulty nodes and links, IEEE Transactions on Parallel and Distributed Systems 19 (8) (2008) 1071-1085.
[16] Ping-Ying Tsai, Jung-Sheng Fu, Gen-Huey Chen, Fault-free longest paths in star networks with conditional link faults, Theoretical Computer Science 410 (8-10) (2009) 766-775.
[17] Shiying Wang, Yuxing Yang, Fault tolerance in bubble-sort graph networks, Theoretical Computer Science 421 (2012) 62-69.
[18] Ming-Chien Yang, Jimmy J.M. Tan, Lih-Hsing Hsu, Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes, Journal of Parallel and Distributed Computing 67 (4) (2007) 362-368.

[^0]: * This work is supported by the National Natural Science Foundation of China (61070229).
 * Corresponding author. Tel.: +86 3517010555.

 E-mail addresses: shiying@sxu.edu.cn (S. Wang), guozhen@sxu.edu.cn (G. Zhang).

