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1. Introduction

Granular computing (GrC), which is a term coined jointly by Zadeh and Lin [22, 23, 49, 50], plays a
fundamental role in information granulation of human reasoning. Since then a rapid development and a
fast growing interest of GrC have been witnessed [18, 19, 20,28, 30, 32, 47, 48]. Granular computing
is often loosely regarded as an umbrella term to cover theories, methodologies, techniques, and tools
that make use of granules in complex problem solving [46]. Several granular computing models such
as computing with words, rough set theory and quotient spacetheory have been successfully used in
many fields, especially in artificial intelligence. Granule, granulation and granularity are regarded as the
three primitive notions of GrC. A granule is a clump of objects drawn together by indistinguishability,
similarity and proximity of functionality. Granulation ofan object leads to a collection of granules.
The granularity is the measurement of the granulation degree of objects [32]. Yao [47] thought that the
framework of GrC is based on three perspectives: philosophy, methodology and information processing
paradigm .

Multi-attribute decision making (MADM) is a kind of important decision making problem. One of
the tasks in MADM is to find the most desirable alternative(s)from a group of feasible alternatives with
respect to a finite set of attributes [15, 27]. MADM has becomea hot research topic over the last three
decades, and has been extensively applied to various areas such as society, economics, management,
and others [7, 13, 15, 26, 27, 35]. GrC could be a new perspective for solving multi-attribute decision
making problems, and several relative works have been addressed [8, 9, 13, 14, 24, 25, 29, 31, 35]. By
replacing equivalence relations with dominance relations, Greco et al. [8, 9] generalized classical rough
sets to dominance rough sets for analyzing multi-attributedecision making problems. Herrera et al. [13]
used multi-granular linguistic information to solve MADM problems. Hu et al. [14] presented a fuzzy
preference rough set model and concluded that the lower and upper approximations in their model can be
understood as the pessimistic and optimistic decision in human reasoning. Liu et al. [24, 25] employed
an attribute reduction approach to determine the weights ofattributes. Qian et al. [29, 31] developed
methods to rank objects with interval and set values based ona local dominance degree and a global
dominance degree. Song et al. [35] defined an ordered mutual information to calculate the weight of
each criterion and the directional distance index with weights for obtaining a total rank of all objects.

Many multi-attribute decision making researchers use the weighted mean operator to aggregate eval-
uation information. This aggregation process is based on the assumption that the attributes are inde-
pendent of one another and their effects are viewed as additive. However, the interdependence and
interaction among attributes are very common in many real multi-attribute decision making problems.
Then the independence assumption is too strong to match decision behaviors in the real world. To over-
come this limitation, Choquet [4] introduced a useful tool called Choquet integral to model not only the
importance of each attribute but also the importance of eachcoalition of attributes. The importance of
a family of attributes may not be the sum of the importance of each attribute and it can be smaller or
greater, due respectively to redundancy or synergy among the attributes. Under the framework of the
Choquet integral, fuzzy measures can be used to describe interactions among attributes and also model
the relative importance of attributes. Recently, the Choquet integral has been studied and applied widely
in multi-attribute decision making [2, 5, 6, 7, 11, 17, 34, 36, 43, 44]. Ashayeri et al. [2] applied the
Choquet integral operator in supply chain partners and configuration selection problem. Chen et al. [5]
developed an identification procedure for calculating theλ−fuzzy measures by using sampling design
and genetic algorithms. Demirel et al. [6] showed a successful application of the multi-attribute Choquet
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integral to a real warehouse location selection problem of abig Turkish logistic firm. Fan [7] indicated
that the Choquet integral should be studied further in multi-attribute decision making. Grabisch [11]
introduced an iterative method to identify the fuzzy measure. Kojadinovic [17] proposed an alternative
unsupervised identification method based on the estimationof the fuzzy measure coefficients by means
of information-theoretic functionals. Sekita [34] studied on theλ− fuzzy measure identification. Xu
[43] and Tan [36] applied the Choquet integral to multi-criteria inteval-valued intuitionistic fuzzy deci-
sion making and group decision making problems. Yang et al. [44] studied the decision making problem
in which the evaluation values are linguistic arguments anddeveloped some new aggregation operators
by using the Choquet integral.

Clearly, the definition of the fuzzy measure is required before using the Choquet integral as an ag-
gregation operator. Some researchers [2, 6, 11, 36, 43, 44] gave the fuzzy measures of the attribute
sets directly, which requires the knowledge of subjective estimates for the alternative set. The others
[5, 10, 17, 34] used complex computing process to calculate the fuzzy measures of attribute sets. While
if the number of attributesm is large, it is rather unrealistic to assume that the2m − 2 fuzzy measures
on the attribute set can be provided by the decision maker subjectively. In addition, the evaluation values
of attributes and their distribution characteristic have been greatly ignored in the latter methods such
as [5, 10, 34]. Kojadinovic [17] estimated the fuzzy measures by the information contents of attribute
sets under the utility function expression. In the weightedmean method, Liu et al. [24, 25] defined the
importance degree and weight of each attribute by integrating attribute reduction of rough set theory and
information entropy method in Data Mining. These weight acquisition methods considered the judgment
information and its distribution characteristic and they are data-driven objective computation methods.
However, some decision makers would like to express the preference information under different at-
tributes in different forms such as utility function, multiplicative preference relation, fuzzy preference
relation and ordinal ranking in MADM. Then it is a very interesting work to compute the fuzzy measures
of attribute sets in different formats. Motivated by the works of Kojadinovic and Liu, the main aim of our
research is to determine the fuzzy measures of the attributesets objectively by granular computing for
solving the interdependent multi-attribute decision making problems in which the preference information
is expressed in different forms.

The rest of this paper is organized as follows. The model of multi-attribute decision making problem
is reviewed and the preorder granular structures of the fourpreference forms: utility function, multi-
plicative preference relation, fuzzy preference relationand ordinal ranking are presented in Section 2.
In Section 3, the similarity degree of preorder pairs is defined and the properties are also analyzed thor-
oughly; a fuzzy measure of an attribute set is given objectively based on the new similarity degree. Two
illustrative examples are shown in Section 4. Finally, conclusions and future works are given in Section 5.

2. Preorder granular structure in multi-attribute decisio n making

Before going into detail, the model of multi-attribute decision making is reviewed in the following sub-
section.

2.1. The model of multi-attribute decision making

Multi-attribute decision making could be described by means of the following sets. A discrete set ofn
feasible alternatives:U = {u1, ... , ui, ... , un}(n ≥ 2); a finite set of attributes:A = {a1, ... , ai, ... , am}
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(m ≥ 2). A decision maker evaluates the alternatives under the attributes inA. And some aggregation
methods can be used to integrate the evaluation information. The decision maker’s preferences over the
alternative set might be expressed in the following one or more forms.

(1) Utility function [7, 43]

The preferences under an attributeak are given as a set ofn utility valuesV k = {v1k, ... , vik, ... , vnk},
wherevik represents the utility evaluation ofui with respect to the attributeak.

(2) Multiplicative preference relation[33]

The decision maker’s preferences onU underak can be described by a positive preference relation
P k = (pkij), wherepkij indicates a ratio of the preference intensity of alternative ui to uj, i.e., it is in-
terpreted asui is pkij times as good asuj underak. Saaty suggests thatpkij should be measured on a
1-9 scale:pkij = 1 indicates indifference betweenui anduj , pkij = 9 indicates thatui is unanimously
preferred touj, andpkij ∈ {2, ..., 8} indicates intermediate evaluations. It is usual to assume the multi-
plicative reciprocity propertypkij · p

k
ji = 1 (∀i, j) andpkii = 1.

(3) Fuzzy preference relation[12]

The decision maker’s preferences onU underak can also be described by a fuzzy preference relation
Qk = (qkij), whereqkij (0 ≤ qkij ≤ 1) denotes the preference degree or intensity ofui overuj : qkij = 1

2

indicates indifference betweenui anduj , andqkij >
1
2 indicates thatui is preferred touj . Generally, it is

assumed thatqkij + qkji = 1 (∀i, j) andqkii =
1
2 .

(4) Ordinal ranking of the alternatives[3]

The decision maker gives the preferences onU under an attributeak as an individual preference
rankingOk = {ok(u1), . . . , o

k(ui), . . . , o
k(un)}, whereok(ui) is the rank or priority assigned to alter-

nativeui. This expression dates back at least to Borda’s “method of marks”. ok(ui) = ok(uj) (i 6= j)
is allowed, that is to say, some alternatives are tied in someplaces. LetU = {u1, u2, u3, u4}. O =
{1, 4, 2.5, 2.5} is a preference ranking under an attributea. The ranking 2.5 indicates that alternativeu3
andu4 are tied for the second.

Example 2.1. A customer is going to buy a car. Five cars are to be evaluated and denoted byu1, u2, u3, u4
andu5. The following attributes are considered:a1− breaking performance,a2− fuel economy (L/100km),
a3− comfortable level,a4− operating stability. LetA = {a1, a2, a3, a4}. The preferences under the
breaking performance may be given in the ranking form asO1 = {o1(u1), o

1(u2), o
1(u3), o

1(u4),
o1(u5)} = {2, 3, 1, 5, 4}; the preferences under the fuel economy are in the utility function form as
V 2 = {v12, v22, v32,
v42, v52} = {10, 11, 9, 8, 9}; the preferences under the comfortable level are in the multiplicative prefer-
ence relation form as

P 3 =




1 1
2 3 4 1

2 1 6 8 2
1
3

1
6 1 4

3
1
3

1
4

1
8

3
4 1 1

4

1 1
2 3 4 1




;
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the preferences under the operating stability are conveyedin the fuzzy preference relation form as

Q4 =




0.5 0.55 0.7 0.95 0.5

0.45 0.5 0.65 0.9 0.45

0.3 0.35 0.5 0.75 0.3

0.05 0.1 0.25 0.5 0.05

0.5 0.55 0.7 0.95 0.5




.

The resolution of a multi-attribute decision making problem consists of obtaining a set of solution al-
ternatives by integrating the different preferences underthe given attribute set. In the integration process,
different weights of the attribute sets directly influence the Choquet integral decision result. Conse-
quently, it is necessary to obtain the attributes’ rationalweights. In the following section, we are going
to propose a new data-driven method which is based on granular computing to compute the weights of
attribute sets. In what follows, the two key GrC notions granules and granulation are defined in MADM
with different evaluation forms.

2.2. Preoder granular structures in the four evaluation forms

Constructing a granular structure is a vital work of GrC. So we should analyze and define granular
structures in multi-attribute decision making first.

Definition 2.2. [16] A preorder is a binary relationP over a setU which is reflexive and transitive, i.e.,
for anyu in U , (u, u) ∈ P (reflexivity); if (u, v) ∈ P and(v,w) ∈ P , then(u,w) ∈ P (transitivity).

In this paper, a preorderP is symbolled by ”�P ”, then (u, v) ∈ P denoted by ”u �P v”. We call
[u]�P = {v ∈ A|v �P u} the non-inferior granule ofu. U/ �P= {[u]�P |u ∈ U} is the granulation of
U induced byP . In what follows, we construct the granulations ofU in the above four evaluation forms.

(1) Utility function

Let V k = {v1k, ..., vik , ..., vnk} be an utility preference provided by a decision maker andvik rep-
resents the utility evaluation. For a profit attribute, let�V k= {(ui, uj)|vik ≥ vjk|ui, uj ∈ U}; for a
cost attribute, let�V k= {(ui, uj)|vik ≤ vjk|ui, uj ∈ U}. In the following, we take the profit attribute
for example, for anyui ∈ U , vik ≥ vik, (ui, ui) ∈�V k , so�V k is reflexive. If (ui, uj) ∈�V k and
(uj , ul) ∈�V k , we havevik ≥ vjk andvik ≥ vlk, thenvik ≥ vlk, so(ui, ul) ∈�V k , thus�V k is transi-
tive. Therefore, we conclude that�V k is a preorder. Then, the granulation ofU induced by�V k can be
formed asU/ �V k= {[ui]

�
V k |ui ∈ U}.

(2) Multiplicative preference relation

In a decision making process, a consistent multiplicative preference relationP k = (pkij) which
satisfies the condition:pkij · p

k
jl = pkil, (∀i, j, l = 1, 2, ..., n) is desired and if a multiplicative preference

relation is not consistent, some ready-made methods are given to transform it to be consistent [33]. Let
P k be a consistent multiplicative preference relation and�1

P k= {(ui, uj)|p
k
ij ≥ 1, ui, uj ∈ U}. For

anyui ∈ U, we havepkii = 1, (ui, ui) ∈ �1
P k , so�1

P k is reflexive. If(ui, uj) ∈ �1
P k , (uj , ul) ∈ �1

P k ,

pkij ≥ 1 andpkjl ≥ 1, pkil = pkij · p
k
jl ≥ 1, so(ui, ul) ∈ �1

P k , which means that�1
P k is transitive. It can
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be concluded that�1
P k is a preorder. Therefore, the granulation ofU induced by�1

P k can be formed as

U/ �1
P k= {[ui]

�1

Pk |ui ∈ U}.

(3) Fuzzy preference relation

In a decision making process, a consistent fuzzy preferencerelationQk = (qkij) which satisfies the
condition: qkij + qkjl − qkil = 1

2 , (∀i, j, k = 1, 2, ..., n) is desired and if a fuzzy preference relation is

not consistent, there are some ready-made methods to transform it to be consistent [12]. LetQk be a

consistent fuzzy preference relation and�
1

2

Qk= {(ui, uj)|q
k
ij ≥ 1

2 , ui, uj ∈ U}. For anyui ∈ U, we

haveqkii = 1
2 , (ui, ui) ∈ �

1

2

Qk , so�
1

2

Qk is reflexive. If (ui, uj) ∈ �
1

2

Qk , (uj , ul) ∈ �
1

2

Qk , q
k
ij ≥ 1

2 and

qkjl ≥ 1
2 , q

k
il = qkij + qkjl −

1
2 ≥ 1

2 , so (ui, ul) ∈ �
1

2

Qk , which means that�
1

2

Qk is transitive. It can

be concluded that�
1

2

Qk is a preorder. Therefore, the corresponding granulation ofU can be formed as

U/ �
1

2

Qk= {[ui]
�

1
2

Qk |ui ∈ A}.

(4) Ordinal ranking of the alternatives

Given an individual preference rankingOk={ok(u1), . . . , o
k(ui), . . . , o

k(un)}. Let�Ok={(ui, uj)|
ok(ui) ≤ ok(uj)}. Similar to Case (1), it is easy to prove that�Ok is a preorder. Then, the granular struc-
tureU/ �Ok induced byOk is constructed asU/ �Ok= {[ui]

�
Ok |ui ∈ U}.

Example 2.3. (Continued from Example 2.1) We construct the corresponding preorders and extract the
preorder granular structures under different attributes.

The preorder determined by the evaluation information under a1 and the corresponding preorder
granular structure are given as

�O1= {(u3, u1), (u3, u2), (u3, u3), (u3, u4), (u3, u5), (u1, u1), (u1, u2), (u1, u4),

(u1, u5), (u2, u2), (u2, u4), (u2, u5), (u5, u4), (u5, u5), (u4, u4)}

and
U/ �O1= {{u1, u3}, {u1, u2, u3}, {u3}, {u1, u2, u3, u4, u5}, {u1, u2, u3, u5}},

respectively.
The preorder extracted from the evaluation information under a2 and the corresponding preorder

granular structure are shown as

�V 2= {(u4, u1), (u4, u2), (u4, u3), (u4, u4), (u4, u5), (u3, u1), (u3, u2), (u3, u3),

(u3, u5), (u5, u1), (u5, u2), (u5, u3), (u5, u5), (u1, u1), (u1, u2), (u2, u2)}

and
U/ �V 2= {{u1, u3, u4, u5}, {u1, u2, u3, u4, u5}, {u3, u4, u5}, {u4}, {u3, u4, u5}}.

The preorder extracted from the preference information under a3 and the corresponding preorder
granular structure are given as

�1
P 3= {(u1, u1), (u1, u3), (u1, u4), (u1, u5), (u2, u1), (u2, u2), (u2, u3), (u2, u4),

(u2, u5), (u3, u3), (u3, u4), (u4, u4), (u5, u1), (u5, u3), (u5, u4), (u5, u5)}
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and

U/ �1
P 3= {{u1, u2, u5}, {u2}, {u1, u2, u3, u4, u5}, {u1, u2, u4, u5}, {u1, u2, u5}}.

The last, the preorder extracted from the evaluation undera4 and the corresponding preorder granular
structure are displayed as

�
1

2

Q4= {(u1, u1), (u1, u2), (u1, u3), (u1, u4), (u1, u5), (u2, u2), (u2, u3), (u2, u4),

(u2, u5), (u3, u3), (u3, u4), (u4, u4), (u5, u1), (u5, u2), (u5, u3), (u5, u4), (u5, u5)}

and

U/ �
1

2

Q4= {{u1, u5}, {u1, u2, u5}, {u1, u2, u3, u5}, {u1, u2, u3, u4, u5}, {u1, u5}}.

We have analyzed the preorder granular structures under a single attributeak in different evalua-
tion forms and construct the corresponding granulations ofU. The preorder granular structure under an
attribute setA is presented based on the following proposition.

Proposition 2.4. Let U = {u1, . . . , ui, . . . , un} be a set of the alternatives. If�P1
and�P2

are two
preorders onU, then�P1

∩ �P2
is a preorder onU .

Proof:
For anyui ∈ U, (ui, ui) ∈ �P1

and (ui, ui) ∈ �P2
, we get (ui, ui) ∈ �P1

∩ �P2
. Hence,

�P1
∩ �P2

is reflexive.
Let (ui, uj) ∈ �P1

∩ �P2
and(uj , ul) ∈ �P1

∩ �P2
. (ui, uj) ∈ �P1

and(uj , ul) ∈ �P1
, then

(ui, ul) ∈ �P1
. Similarly, (ui, ul) ∈ �P2

. Thus,(ui, ul) ∈ �P1
∩ �P2

. We have that�P1
∩ �P2

is
transitive.

Therefore,�P1
∩ �P2

is a preorder. ⊓⊔

Proposition 2.4 shows that the intersection of the finite preorders is also a preorder.A = {a1, a2, . . . ,
am} is a nonempty attribute set. LetP k be the preorder under the attributeak. Let PA =

⋂m
k=1 P

k. It is
easy to prove thatPA is a preorder andPA is called the preorder of the attribute setA.

Example 2.5. (Continued from Example 2.3) Based on the results in Example2.3, we calculate the
preorder under the attribute setA and lay out the granular structure as

�PA =
⋂4

k=1 P
4

=�O1

⋂
�V 2

⋂
�1

P 3

⋂
�

1

2

Q4

= {(u1, u1), (u2, u2), (u3, u3), (u4, u4), (u5, u5)}

and

U/ �PA= {{u1}, {u2}, {u3}, {u4}, {u5}}.
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3. Attributes’ weights learning method based on preorder granular
structure

The evaluation information under one attribute corresponds to a unique preorder, so we can analyze the
relations of attributes and determine the weights by these preorders. In what follows, we investigate the
importance of attributes via preorder granular computing method. One should note that the following
preorder granular structures can be constructed from any one of the above four forms.

3.1. Preorder similarity degree

Similarity measure is fundamentally important in almost every scientific field. In this section, we will
further study the similarity degree between a pair of preorders.

Definition 3.1. Let U = {u1, . . . , ui, . . . , un} be a nonempty finite set andP be the set of all preorders
onU. For any�P1

,�P2
∈ P, U/ �P1

= {[u1]
�P1 , . . . , [ui]

�P1 , . . . , [un]
�P1}, U/ �P2

= {[u1]
�P2 , . . . ,

[ui]
�P2 , . . . , [un]

�P2}. We define the similarity degree between�P1
and�P2

as

sim(�P1
,�P2

) = 1−
1

n− 1

n∑

i=1

|[ui]
�P1 ⊖ [ui]

�P2 |

n
, (1)

where⊖ denotes the symmetric difference of the sets.

Proposition 3.2. LetU = {u1, . . . , ui, . . . , un} be a nonempty finite set andP be the set of all preorders
onU. For any�P1

,�P2
∈ P, 0 ≤ sim(�P1

,�P2
) ≤ 1.

Proof:
Since�P1

and�P2
are reflexive, for anyui ∈ U, {ui} ⊆ [ui]

�P1 , {ui} ⊆ [ui]
�P2 , then ∅ ⊆

[ui]
�P1 ⊖ [ui]

�P2 ⊆ U − {ui}, so0 ≤ |[ui]
�P1 ⊖ [ui]

�P2 | ≤ n− 1. Thus,0 ≤ |[ui]
�P1⊖[ui]

�P2 |
n

≤ n−1
n

,

0 ≤ 1
n−1

∑n
i=1

|[ui]
�P1⊖[ui]

�P2 |
n

≤ 1, 0 ≤ 1− 1
n−1

∑n
i=1

|[ui]
�P1⊖[ui]

�P2 |
n

≤ 1. Therefore,

0 ≤ sim(�P1
,�P2

) ≤ 1. ⊓⊔

Proposition 3.3. LetU = {u1, . . . , ui, . . . , un} be a nonempty finite set andP be the set of all preorders
onU. For any�P1

,�P2
∈ P, sim(�P1

,�P2
) = sim(�P2

,�P1
).

Proof:
The set operator⊖ is commutative, so the similarity measure is also commutative. ⊓⊔

Proposition 3.4. If �P1
=�P2

, thensim(�P1
,�P2

) = 1.

Proof:
Since�P1

=�P2
, for anyui ∈ U, [ui]

�P1 = [ui]
�P2 , |[ui]

�P1 ⊖ [ui]
�P2 | = |∅| = 0. Thus,

sim(�P1
,�P2

) = 1− 1
n−1

∑n
i=1

|[ui]
�P1⊖[ui]

�P2 |
n

= 1− 1
n−1

∑n
i=1

0
n

= 1− 0

= 1. ⊓⊔
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Proposition 3.5. LetU = {u1, . . . , ui, . . . , un} be a nonempty finite set andP be the set of all preorders
onU. If �P1

is a total order and�−1
P1

=�P2
, thensim(�P1

,�P2
) = 0.

Proof:
Since�P1

is a total order, without loss of generality, let�P1
= {u1 �P1

u2 . . . �P1
ui . . . �P1

un},
then�P2

=�−1
P1

= {un �P2
un−1 . . . �P2

ui . . . �P2
u1}. For anyui ∈ A, [ui]

�P1 = {u1, u2, . . . , ui−1,

ui} and[ui]�P2 = {un, un−1, . . . , ui+1, ui}, then|[ui]�P1 ⊖ [ui]
�P2 | = |U −{ui}| = n− 1. Therefore,

sim(�P1
,�P2

) = 1− 1
n−1

∑n
i=1

|[ui]
�P1⊖[ui]

�P2 |
n

= 1− 1
n−1

∑n
i=1

n−1
n

= 1− 1

= 0. ⊓⊔

Proposition 3.5 shows that the similarity degree between two complete reverse preorders reaches the
minimum value0. It is similar to our intuitive feeling. In addition, we calculate the similarity measure
between the two special preorders: the identity relationI = {(ui, ui)|ui ∈ U} and the universal relation
E = U × U = {(ui, uj)|ui, uj ∈ U}.

Proposition 3.6. Let U = {u1, . . . , ui, . . . , un} be a nonempty finite set.I andE are the identify
relation and the universal relation onU . Then,sim(�I ,�E) = 0.

Proof:
Since�I= {(ui, ui)|ui ∈ U},E = U×U = {(ui, uj)|ui, uj ∈ U}, [ui]

�I = {ui}, and[ui]�E = U.
So[ui]�I ⊖ [ui]

�E = {ui} ⊖ U = U − {ui} = n− 1. Thus,

sim(�I ,�E) = 1− 1
n−1

∑n
i=1

[ui]
�I⊖[ui]

�E |
n

= 1− 1
n−1

∑n
i=1

n−1
n

= 1− 1

= 0. ⊓⊔

In fact, the identity relation means that each element inU is distinct, and the universal relation tells
that the elements inU are all the same. There exist pretty different logical meanings between these two
preorders.

Proposition 3.7. LetU = {u1, . . . , ui, . . . , un} be a nonempty finite set andP be the set of all preorders
onU. If �P1

⊆�P2
⊆�P3

, thensim(�P1
,�P2

) ≥ sim(�P1
,�P3

) andsim(�P2
,�P3

) ≥ sim(�P1
,�P3

).

Proof:
By the condition�P1

⊆�P2
⊆�P3

, we can easily get[ui]�P1 ⊆ [ui]
�P2 ⊆ [ui]

�P3 , then([ui]�P1 ⊖
[ui]

�P2 ) ⊆ (�P1
⊖[ui]

�P3 ), so |[ui]�P1 ⊖ [ui]
�P2 | ≤ |[ui]

�P1 ⊖ [ui]
�P3 |. Therefore,

sim(�P1
,�P2

) = 1− 1
n−1

∑n
i=1

|[ui]
�P1⊖[ui]

�P2 |
n

≥ 1− 1
n−1

∑n
i=1

|[ui]
�P1⊖[ui]

�P3 |
n

= sim(�P1
,�P3

).

The proof ofsim(�P2
,�P3

) ≥ sim(�P1
,�P3

) follows in a similar manner. ⊓⊔
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The properties above show that the similarity degree proposed in this paper are reasonable and in
what follows we will use the similarity degree to measure theimportance of the attribute sets in multi-
attribute decision making.

3.2. Weights of the attribute set

In the framework of the multi-attribute decision making, the interaction phenomena among attibutes can
be reflected by a discrete fuzzy measureµ. µ(A′) can also be interpreted as the importance of the subset
A′ ⊆ A.

Definition 3.8. [6, 11] A set functionµ: 2X → [0, 1] is called a fuzzy measure if it satisfies the following
properties:

(1) µ(∅) = 0;
(2) µ(X) = 1;
(3) µ(A′) ≤ µ(A) if A′ ⊆ A ⊆ X.

The fuzzy measure of∅ equals to0 and the fuzzy measure of the whole attribute set reaches a maxi-
mum1. The monotonicity of the fuzzy measure means that the importance of an attribute subset cannot
decrease when a new attribute or some new attributes are added to it. The main characteristic of a fuzzy
measure is the non-additivity, which enables it to represent flexible the various kinds of intersections
among the attributes, ranging from redundancy (negative interaction) to synergy (positive interaction).

When using a fuzzy measure to model the importance of an attribute subset, the Choquet integral is
a suitable aggregation function. We can rank alternatives according to the value of the Choquet integral
in multi-attribute decision making.

Definition 3.9. [11, 43] LetA = {a1, . . . , ai, . . . , am} be a set of attributes andf be a real-valued
function onA, the Choquet integral off with respect to a fuzzy measureµ onA is defined as

(C)

∫
fdµ =

m∑

i=1

[f(a(i))− f(ai−1)]µ(A(i)) (2)

or equally by

(C)

∫
fdµ =

m∑

i=1

[µ(A(i) − µ(A(i+1))]f(a(i)) (3)

where the parentheses used for indices represent a permutation onA such thatf(a(1)) ≤ . . . ≤ f(a(m)),
f(a(0)) = 0, A(i) = {a(i), . . . , a(m)}, andA(m+1) = ∅.

The Choquet integral generalizes the WA and the OWA operators, and has good aggregation proper-
ties such as idempotency, boundedness, commutativity, monotonicity.

It is a very important and difficult work to determine the fuzzy measures of attribute sets before using
the Choquet integral to solve a multi-attribute decision making problem. Many researchers suppose that
the fuzzy measure was given subjectively in their models. While the judgments of the decision makers
occasionally absolutely depend on their knowledge or experience, and to some extent, the subjective
weights are tinctured with prejudice, so an objective weighting method desired. In fact, the similarity
degree of the preorders corresponding to the attribute set is a valuable information to determine fuzzy
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measures of the attribute sets. In what follows, we use the similarity degree to depict the importance
(weights) of the attribute and the attribute set.

Let U = {u1, . . . , ui, . . . , un} be a feasible alternative set andA = {a1, . . . , ai, . . . , am} be an
attribute set. The preferences of the alternatives are evaluated under each attribute. The preorder under
the attribute setA′(A′ ⊆ A) onU is defined as�PA′=

⋂
a∈A′(�P a).

Definition 3.10. Let U = {u1, . . . , ui, . . . , un} be a feasible alternative set,A = {a1, . . . , ai, . . . , am}
be an attribute set. We define a measureµ̃ of A′(A′ ⊆ A) as

µ̃(A′) = sim(�PA′ ,�PA), (4)

specially, we set̃µ(∅) = 0.

Theorem 3.11. Let U = {u1, . . . , ui, . . . , un} be a feasible alternative set,A = {a1, . . . , ai, . . . , am}
be an attribute set. The alternatives are evaluated under each attribute in the four different preference
forms. Then,̃µ defined above is a fuzzy measure onA.

Proof:
(1) According to the definition above,̃µ(∅) = 0.

(2) By proposition 3.4,̃µ(A) = sim(�PA ,�PA) = 1. So,µ̃(A) = 1 holds.
(3) Let A1, A2 ⊆ A, andA1 ⊆ A2. We easily have that�PA⊆�PA2⊆�PA1 , by Proposition 3.7,

sim(�PA,�PA2 ) ≥ sim(�PA,�PA1 ), i.e. sim(�PA2 ,�PA) ≥ sim(�PA1 ,�PA). So µ̃(A1) ≤
µ̃(A2). Hence,̃µ is a fuzzy measure onA.

This completes the proof. ⊓⊔

The method for determining the fuzzy measure of an attributeset is shown in Theorem 3.11. It is
a data-driven method and the fuzzy measure can be calculatedfrom the real evaluation information in
whatever form. As analyzed in [37], the weights (fuzzy measure) of the attribute set are sometimes not
consistent with the decision maker’s subjective preferences, so the combination of objective method and
subjective method might be appropriate for determining theweights of the attributes. In this study, we
only consider the objective one.

4. Illustrative examples

In this section, we use two examples to illustrate the determination processes of the attribute sets’ fuzzy
measures. The first example involves a decision making problem with hybrid evaluation forms. The fol-
lowed one shows not only the determination processes of the fuzzy measures, but also the computations
of the Choquet integrals for a decision making problem with pure evaluation form as utility function.

Example 4.1. We continue to use Example 2.1 and the granular structures inExample 2.3 to illustra-
tive how to compute the fuzzy measures of attributes. There are four attributes involved in this deci-
sion making problem. According to the definition and properties of the fuzzy measure,̃µ(∅) = 0 and
µ̃({a1, a2, a3, a4}) = 1, then24 − 2 fuzzy measures need be determined by the proposed GrC method.
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LetA = {a1, a2, a3, a4}. Take the calculation of̃µ({a2, a3, a4}) for example. The preorder granular
structure of the whole attribute set{a1, a2, a3, a4} has been calculated in Example 2.5 as

U/ ≻PA= {{u1}, {u2}, {u3}, {u4}, {u5}},

and we should calculate the preorder granular structure of{a2, a3, a4}. Proposition 2.4 gives the method
of constructing the preorder granular structure of an attribute set, so

U/ �P {a2,a3,a4} =�P a2 ∩ �P a3 ∩ �P a4

=�V 2 ∩ �P 3 ∩ �Q4

= {{u1, u5}, {u2}, {u3, u5}, {u4}, {u5}}.

Then, by using Eq. (4), we have

µ̃({a2, a3, a4}) = sim(�P {a2,a3,a4} ,�PA)

= 1− 1
5−1 × ({u1,u5}⊖{u1}

5 + {u2}⊖{u2}
5 + {u3,u5}⊖{u3}

5 + {u4}⊖{u4}
5 + {u5}⊖{u5}

5 )

= 1− 1
4×5 × (1 + 1)

= 0.9.

Similarly, the following fuzzy measures can be calculated.

µ̃({a1}) = 0.5, µ̃({a2}) = 0.45, µ̃({a3}) = 0.45, µ̃({a4}) = 0.45,

µ̃({a1, a2}) = 0.75, µ̃({a1, a3}) = 0.75, µ̃({a1, a4}) = 0.75, µ̃({a2, a3}) = 0.85,

µ̃({a2, a4}) = 0.8, µ̃({a3, a4}) = 0.6, µ̃({a1, a2, a3}) = 1, µ̃({a1, a2, a4}) = 0.95

µ̃({a1, a3, a4}) = 0.8, µ̃({a2, a3, a4}) = 0.9.

From the fuzzy measure calculated above, one can find that there exist greatly redundancy between
attributea3 anda4, for the reason that̃µ({a3})+ µ̃({a4}) is much bigger thañµ({a3, a4}). Actually, a3
(comfortable level) has a positive correlation witha4 (operating stability).

Without the help of transformations between utility function and other evaluation forms, we cannot
gain the comprehensive results of alternatives by using Eq.(2) or Eq. (3) for this example. Here, we
only calculate the fuzzy measures of the attribute sets. It is one of our further works to aggregate the
multi-attribute preference information with hybrid forms.

Example 4.2. In this example, we suppose a decision maker provides all thepreferences in the utility
function form. There are five students need to be ordered by the performances with respect to three
subjects:a1− Mathematics,a2− Physics anda3− Literature. They are evaluated on each subject on a
scale of 0 to 100. The evaluations are presented in Table 1. Weuse the fuzzy measurẽµ and the Choquet
integral to calculate the comprehensive result.

Table 1. The evaluation of five students

Mathematics Physics Literature

u1 95 90 65

u2 85 80 75

u3 90 85 80

u4 80 85 90

u5 75 80 80
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Firstly, the preorder granular structures of the attributesets are computed as follows. We only give
the representative ones, the rest of the attribute subsets are similar.

U/ �V 1= {{u1}, {u1, u2, u3}, {u1, u3}, {u1, u2, u3, u4}, {u1, u2, u3, u4, u5}},

U/ �V 2= {{u1}, {u1, u2, u3, u4, u5}, {u1, u3, u4}, {u1, u3, u4}, {u1, u2, u3, u4, u5}},

U/ �V 3= {{u1, u2, u3, u4, u5}, {u2, u3, u4, u5}, {u3, u4, u5}, {u4}, {u3, u4, u5}},

U/ �V 1,2= U/(�V 1 ∩ �V 2) = {{u1}, {u1, u2, u3}, {u1, u3}, {u1, u3, u4}, {u1, u2, u3, u4, u5}},

. . . . . .

U/ �V 1,2,3= U/(�V 1 ∩ �V 2 ∩ �V 3) = {{u1}, {u2, u3}, {u3}, {u4}, {u3, u4, u5}}.

Secondly, calculate the fuzzy measure on the attribute setA = {a1 = Mathematics, a2 = Physics,
a3 = Literature} based on the similarity degree and Eq. (4).

µ̃({a1}) = sim(�V 1 ,�V 1,2.3)

= 1− 1
5−1

∑5
i=1

|[ui]
�
PV1 ⊖[ui]

�
PV2 |

n

= 1− 1
4 × (|{u1}⊖{u1}|

5 + |{u1,u2,u3}⊖{u2,u3}|
5 + |{u1,u3}⊖{u3}|

5 +
|{u1,u2,u3,u4}⊖{u4}|

5 + |{u1,u2,u3,u4,u5}⊖{u3,u4,u5}|
5 )

= 1− 1
4 × (05 + 1

5 +
1
5 + 3

5 + 2
5)

= 1− 1
4 ×

7
5

= 0.65.

Similarly, we compute the fuzzy measures of the other subsetof A: µ̃({a2}) = 0.55, µ̃({a3}) = 0.6,
µ̃({a1, a2}) = 0.7, µ̃({a1, a3}) = 1, µ̃({a2, a3}) = 0.85, µ̃({a1, a2, a3}) = 1.

Thirdly, with the fuzzy measure computed above, we calculate the Choquet integral of the five stu-
dents by using Eq. (3).
Ch(u1, µ̃) = 95× µ̃({a1}) + 90× (µ̃{a1, a2} − µ̃{a1}) + 65× (µ̃{a1, a2, a3} − µ̃{a1, a2}) = 85.75,
Ch(u2, µ̃) = 85× µ̃({a1}) + 80× (µ̃{a1, a2} − µ̃{a1}) + 75× (µ̃{a1, a2, a3} − µ̃{a1, a2}) = 81.75,
Ch(u3, µ̃) = 90× µ̃({a1}) + 85× (µ̃{a1, a2} − µ̃{a1}) + 80× (µ̃{a1, a2, a3} − µ̃{a1, a2}) = 86.75,
Ch(u4, µ̃) = 90× µ̃({a3}) + 85× (µ̃{a3, a2} − µ̃{a3}) + 80× (µ̃{a3, a2, a1} − µ̃{a3, a2}) = 87.25,
Ch(u5, µ̃) = 80× µ̃({a3}) + 80× (µ̃{a3, a2} − µ̃{a3}) + 75× (µ̃{a3, a2, a1} − µ̃{a3, a2}) = 79.25.

Finally, we rank the students with respect to the comprehensive results calculated by the Choquet
integral:

u4 ≻ u3 ≻ u1 ≻ u2 ≻ u5.

According to the ranking of the five students, we conclude that u4 comes first andu5 the last. One
may find thatu3 andu4 with the same scores in Physics and with the reverse scores inMathematics and
Literature, while the Choquet integral ofu4 is bigger thanu3. It is because that the fuzzy measure of the
set{a1, a2} is much less than the sum of the fuzzy measures ofa1 anda2 and the fuzzy measure of the
set{a2, a3} is slightly less than the sum of the weights ofa2 anda3. That is to say there exists much more
redundancy interaction between Mathematics and Physics than that between Physics and Literature. The



344 B. Wang et al. / Preorder Information Based Attributes’ Weights Learning in Multi-attribute Decision Making

Choquet integral results reflect the interactions between attributes. If we use the weighted mean operator
to aggregate the score,u3 would be better thanu4 for that the individual weight ofa1 is better than that of
a3. In fact, the weighted mean operator does not consider the redundancy between attributes, the results
are not rational and not accord with the judgements of us.

Both of Kojadinovic’s mutual information method and the presented method are data-driven unsu-
pervised weights acquisition methods. Different from Kojadinovic’s method, the presented method has
two main characteristics: one is that the different preference forms expressed by decision makers are
considered, while Kojadinovic’s method only deals with utility function expressed MADM problems;
The other is that the fuzzy measures (weights) of attribute sets are derived from analyzing the dominance
relations induced by the judgments under the correspondingattribute sets, while it is rather complex to
estimate the probability distribution before computing the mutual information in Kojadinovic’s method.

5. Conclusions and future works

In the present research, we have proposed a GrC based data-driven weights learning method for solving
the MADM problems with different preference forms. The weight, i.e. fuzzy measure of attribute set is
defined by the similarity degree of a special pair of preordergranular structures, which provides a new
and objective way to determine the weight of an attribute subset under different preference forms.

The followings are the issues to be concerned in our further work: build the general flow of the
Choquet integral based MADM with different preference forms; determine weights of attribute set by
GrC method when the evaluation information is incomplete; explore the practical fuzzy measure learning
method in order to overcome the “curse of dimensionality”.
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