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Multigranulation rough sets (MGRS) is one of desirable directions in rough set theory, in
which lower/upper approximations are approximated by granular structures induced by
multiple binary relations. It provides a new perspective for decision making analysis based
on rough set theory. In decision making analysis, people often adopt the decision strategy
‘‘Seeking common ground while eliminating differences’’ (SCED). This strategy implies that
one reserves common decisions while deleting inconsistent decisions. From this point of
view, the objective of this study is to develop a new multigranulation rough set based
decision model based on SCED strategy, called pessimistic multigranulation rough sets.
We study this model from three aspects, which are lower/upper approximation and their
properties, decision rules and attribute reduction, in this paper.

� 2013 Published by Elsevier Inc.
1. Introduction

Rough set theory, originated by Pawlak [20,21], has become a well-established theory for uncertainty management in a
wide variety of applications related to pattern recognition, image processing, feature selection, neural computing, conflict
analysis, decision support, data mining and knowledge discovery [2,4,10,11,15,16,25–28,30,31,34,41,43]. One of the
strengths of rough set theory is the fact that all its parameters are obtained from the given data. In other words, instead
of using external numbers or other additional parameters, the rough set data analysis (RSDA) utilizes solely the granular
structure of the given data, expressed as classes of suitable equivalence relations [5,6,25,26,33].

In the past ten years, several extensions of the rough set model have been proposed in terms of various requirements,
such as the probabilistic rough set model (see [38]), the variable precision rough set (VPRS) model (see [42,45]), the rough
set model based on tolerance relation (see [12–14]), the Bayesian rough set model (see [32]), the Dominance-based rough set
model (see [3]), game-theoretic rough set model (see [7,8]), the fuzzy rough set model and the rough fuzzy set model (see
[1,19]). In particular, the probabilistic rough sets have been paid close attention [9,35–37,39]. A special issue on probabilistic
rough sets was set up in International Journal of Approximate Reasoning, in which six relative papers were published [36].
Yao presented a new decision making method based on the probabilistic rough set, called three-way decision, which are
constructed by positive region, boundary region and negative region, respectively [39]. In the literature [37], the author
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further emphasized the superiority of three-way decisions in probabilistic rough set models. In fact, the probabilistic rough
sets is developed based on the Bayesian decision principle, in which its parameters can be learned from a given decision ta-
ble. Three-way decisions are most of superiorities of probabilistic rough set models. Since the fuzzy rough sets was proposed,
this theory have been also largely developed [10,31,44]. Jensen and Shen [10] developed a series of feature selection ap-
proaches for classification using the fuzzy rough set model. Shen and Chouchoulas [31] presented a rough-fuzzy approach
for generating classification rules. Zhao et al. [44] addressed a fuzzy variable rough set model and trained a rule-based clas-
sifier with it. Indeed, the fuzzy rough set theory can do better than other rough set models when we need to deal with nu-
meric data, while the classical rough sets will collapse. In fact, the classical rough set theory will be dominant when all of the
attribute values and concepts are discrete-valued.

In the view of granular computing (proposed by Zadeh [40]), in existing rough set models, a general concept described by
a set is always characterized via the so-called upper and lower approximations under a single granulation, i.e., the concept is
depicted by known knowledge induced from a single relation (such as equivalence relation, tolerance relation and reflexive
relation) on the universe [17,18,22,38]. Conveniently, this kind of rough set models is called single granulation rough sets,
just SGRS. However, this approach to describing a target concept is mainly based on the following assumption:

If P and Q are two sets of conditional features and X # U is a target concept, then the rough sets of X are derived from the
quotient set U=ðP [ QÞ. In fact, the quotient set is equivalent to the formula
1 How
multigr
This stu
dP [ Q ¼ fPi \ Q j : Pi 2 U=P; Q j 2 U=Q ; Pi \ Pj – Øg:
It implies the following two ideas:

(1) we can perform an intersection operation between any Pi and Qj,
(2) the target concept is approximately described by using the quotient set U=ðP [ QÞ.

In fact, the target concept is described by using a finer granulation (partitions) formed through combining two known
granulations (partitions) induced from two attribute subsets. Although it generates a much finer granulation, the combina-
tion/fining destroys the original granular structure/partitions. In general, the above assumption cannot be always satisfied or
required in practice. In many circumstances, we often need to describe concurrently a target concept through multi binary
relations (e.g. equivalence relation, tolerance relation, reflexive relation and neighborhood relation) on the universe accord-
ing to a user’s requirements or targets of problem solving. Based on this consideration, Qian et al. [23–25] introduced
multigranulation rough set theory (MGRS) to more widely apply rough set theory in practical applications, in which
lower/upper approximations are approximated by granular structures induced by multiple binary relations.

Besides the motivation of theoretical study above, it also has the motivation of real application. From the viewpoint of
rough set’s application, the multigranulation rough set theory is very desirable in many real applications, such as multi-
source data analysis, knowledge discovery from data with high dimensions and distributive information systems. For exam-
ple, It is very desirable to develop multigranulation rough sets in the following two cases.

(1) When we apply the rough set theory for data mining and knowledge discovery from multi-source data, its key task is
to consider how to knowledge representation and rough approximation in the context of multi-source information
systems. In order to efficiently discover knowledge online, it is unnecessary to gather and combine every information
systems from multiple sources as an entire information system for data analysis. More reasonable strategy is to
directly analyzing these multi-source information systems. In this situation, the classical single granulation rough
set theory (SGRS) has its limitation that the computational times of algorithms are too longer to efficiently knowledge
discovery from multi-source information systems.

(2) When analyzing data with high dimensions, a lot of attributes bring out a challenge for knowledge discovery. There
are two main problems: (1) after granulating data using all attributes, the intensions of information granules obtained
will be very longer and the extensions of those will be very smaller, which determines a rule-based classifier with
much smaller generalization ability; and (2) a lot of attributes also lead to inefficient of algorithms in rough set theory.
These two shortcomings are so important that the existing rough set models cannot be well used to rough set-based
data analysis for data with high dimensions.

In the multigranulation rough set theory, each of various binary relation determines a corresponding information gran-
ulation, which largely impacts the commonality between each of the granulations and the fusion among all granulations. In
this paper, we do not further discuss how binary relations impact information fusion among all granulations,1 but develop a
new decision method, called a pessimistic multigranulation rough set model.

Classical rough sets and multigranulation rough sets are complementary in many practical applications. When two attri-
bute sets in information systems possesses a contradiction or inconsistent relationship, or efficient computation is required,
each of various binary relations impacts information fusion among information granulations is a very important and interesting issue in the
anulation rough set theory. This will produce many information fusion methods, especially the information fusion in various kinds of granular spaces.
dy is beyond the scope of this paper. We will investigate this issue in further work.
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MGRS will display its advantage for rule extraction and knowledge discovery; when there is a consistent relationship be-
tween its values under one-attribute set and those under another attribute set, standard rough set theory (SGRS) will hold
dominant position. In particular, for some practical applications in which the above two cases occur concurrently, these two
methods can be combined to solve problems.

The first multigranulation rough set model was proposed by Qian et al. in Refs. [23,28] to deal with complete information
systems, the second is developed for rough set based decision from incomplete data [24,25]. In these two models, each lower
approximation collects the objects that one of their equivalence classes is included in the target concept in multiple granular
structures. This kind of multigranulation rough sets is called optimistic multigranulation rough set. From the viewpoint of
decision making, this kind of rough set based decision can be called optimistic rough set based decision, which is based on
the ‘‘Seeking common ground while reserving differences’’ (SCRD) strategy.

In decision making field, people often adopt another decision strategy ‘‘Seeking common ground while eliminating dif-
ferences’’ (SCED). This strategy implies that one reserves common decisions while deleting inconsistent decisions. Hence,
this opinion can be seen as a conservative decision strategy. For example, this strategy often is adopted in many decision
problems such as conflict analysis, selection decision and risk investment, and so on. As a powerful tool to deal with decision
problems, rough set theory have contributed many important results. Hence, it is very desirable that one investigates rough
set theory in the context of ‘‘Seeking common ground while eliminating differences’’ (SCED) strategy. In this study, our objec-
tive is to develop a new multigranulation rough decision theory based on the SCED strategy, called pessimistic multigran-
ulation rough sets. Following these comments, multigranulation rough set theory (MGRS) can be classified into two parts:
one is the optimistic multigranulation rough set [28] and the other is the pessimistic multigranulation rough set [27]. By
the way, the words ‘‘optimistic’’ and ‘‘pessimistic’’ have also occurred in some rough set literatures [37,39], however they
have different semantics. The words ‘‘optimistic’’ and ‘‘pessimistic’’ in this series of studies about multigranulation rough
sets refer in particular to two information fusion strategies ‘‘Seeking common ground while reserving differences’’ and
‘‘Seeking common ground while eliminating differences’’, respectively, while these two words do not in other literatures.

The study is organized as follows. Some basic concepts in classical rough sets and multigranulation rough sets are briefly
reviewed in Section 2. In Section 3, we propose a pessimistic rough set based decision method called pessimistic multigran-
ulation rough sets, and investigate some of its nice properties. In Section 4, we focus on decision rules extracted from multi-
ple granular structures using the proposed pessimistic rough set based decision method. In Section 5, we develop attribute
reduction approaches in the context of pessimistic multigranulation rough sets, and give a heuristic approach to computing a
reduct in the pessimistic multigranulation rough set model. In Section 6, A practical case is employed for illustrating the
mechanism and application of the pessimistic multigranulation rough sets. Finally, Section 7 concludes this paper by bring-
ing some remarks and discussions.
2. Preliminary knowledge on rough sets

In this section, we review some basic concepts such as information system, Pawlak’s rough set, and optimistic multigran-
ulation rough set. Throughout this paper, we assume that the universe U is a finite non-empty set.

2.1. Pawlak’s rough set

Formally, an information system can be considered as a pair I ¼ hU;ATi, where.

� U is a non-empty finite set of objects, it is called the universe;
� AT is a non-empty finite set of attributes, such that 8a 2 AT;Va is the domain of attribute a.

8x 2 U, we denote the value of x under the attribute a (a 2 AT) by aðxÞ. Given A # AT , an indiscernibility relation INDðAÞ can
be defined as
INDðAÞ ¼ fðx; yÞ 2 U � U : aðxÞ ¼ aðyÞ; a 2 Ag: ð1Þ
The relation INDðAÞ is reflexive, symmetric and transitive, then INDðAÞ is an equivalence relation. By the indiscernibility rela-
tion INDðAÞ, one can derive the lower and upper approximations of an arbitrary subset X of U. They are defined as
AðXÞ ¼ fx 2 U : ½x�A # Xg and AðXÞ ¼ fx 2 U : ½x�A \ X – ;g ð2Þ
respectively, where ½x�A ¼ fy 2 U : ðx; yÞ 2 INDðAÞg is the A-equivalence class containing x. The pair ½AðXÞ;AðXÞ� is referred to
as the Pawlak’s rough set of X with respect to the set of attributes A.

2.2. Optimistic multigranulation rough set

The multigranulation rough set (MGRS) is different from Pawlak’s rough set model because the former is constructed on
the basis of a family of indiscernibility relations instead of single indiscernibility relation.
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In optimistic multigranulation rough set approach, the word ‘‘optimistic’’ is used to express the idea that in multi inde-
pendent granular structures, we need only at least one granular structure to satisfy with the inclusion condition between
equivalence class and the approximated target. The upper approximation of optimistic multigranulation rough set is defined
by the complement of the lower approximation.

Definition 1 [29]. Let I be an information system in which A1;A2; � � � ;Am # AT, then 8X # U, the optimistic multigranulation

lower and upper approximations are denoted by
Pm

i¼1Ai
OðXÞ and

Pm
i¼1Ai

OðXÞ, respectively,
Xm

i¼1

Ai
OðXÞ ¼ fx 2 U : ½x�A1

# X _ ½x�A2
# X _ � � � _ ½x�Am

# Xg; ð3Þ

Xm

i¼1

Ai
OðXÞ ¼�

Xm

i¼1

Ai
Oð� XÞ

0@ 1A; ð4Þ
where ½x�Ai
(1 6 i 6 m) is the equivalence class of x in terms of set of attributes Ai, and � X is the complement of X.

By the lower approximation
Pm

i¼1Ai
OðXÞ and upper approximation

Pm
i¼1Ai

OðXÞ, the optimistic multigranulation boundary
region of X is
BNOXm

i¼1

Ai

ðXÞ ¼
Xm

i¼1

Ai
OðXÞ �

Xm

i¼1

Ai
OðXÞ: ð5Þ
Theorem 1. Let I be an information system in which A1;A2; � � � ;Am # AT, then 8X # U, we have
Xm

i¼1

Ai
OðXÞ ¼ fx 2 U : ½x�A1

\ X – ; ^ ½x�A2
\ X – ; ^ � � � ^ ½x�Am

\ X – ;g: ð6Þ
From Theorem 1, it can be seen that though the optimistic multigranulation upper approximation is defined by the com-
plement of the optimistic multigranulation lower approximation, it can also be considered as a set in which objects have
non-empty intersection with the target in terms of each granular structure.

Since multiple independent indiscernibility relations are used in optimistic multigranulation rough set, then it is natrual
to define a partial relation such that: given two sets of attributes A1 and A2, i.e. U=INDðA1Þ � U=INDðA2Þ (or
U=INDðA2Þ 	 U=INDðA1Þ) if and only if, for each Yi 2 U=INDðA1Þ, there exists Xj 2 U=INDðA2Þ such that Yi # Xj where
U=INDðA1Þ ¼ fY1;Y2; � � �g and U=INDðA2Þ ¼ fX1;X2; � � �g are partitions induced by indiscernibility relations INDðA1Þ and
INDðA2Þ respectively. In this case, we say that A2 is coarser than A1, or A1 is finer than A2. If U=INDðA1Þ � U=INDðA2Þ and
U=INDðA1Þ– U=INDðA2Þ, we say A2 is strictly coarser than A1 (or A1 is strictly finer than A2), denoted by
U=INDðA1Þ 
 U=INDðA2Þ (or U=INDðA2Þ � U=INDðA1Þ).

Theorem 2. Let I be an information system in which A1;A2; � � � ;Am # AT, suppose that U=INDðA1Þ � U=INDðA2Þ � � � �
� U=INDðAmÞ, then we have
Xm

i¼1

Ai
OðXÞ ¼ A1ðXÞ; ð7Þ

Xm

i¼1

Ai
OðXÞ ¼ A1ðXÞ: ð8Þ
The above theorem tells us that if there is a partial relation among the partitions, then the optimistic multigranulation
rough set is equivalent to the rough set in terms of the finest indiscernibility relation.
Theorem 3. Let I be an information system in which A1;A2; � � � ;Am # AT;8X # U, then we have following properties about the
optimistic multigranulation rough approximations:

1.
Pm

i¼1Ai
OðXÞ# X #

Pm
i¼1Ai

OðXÞ;

2.
Pm

i¼1Ai
Oð;Þ ¼

Pm
i¼1Ai

Oð;Þ ¼ ;;
Pm

i¼1Ai
OðUÞ ¼

Pm
i¼1Ai

OðUÞ ¼ U;

3. X # Y )
Pm

i¼1Ai
OðXÞ#

Pm
i¼1Ai

OðYÞ;
Pm

i¼1Ai
OðXÞ#

Pm
i¼1Ai

OðYÞ;

4.
Pm

i¼1Ai
OðXÞ ¼

Sm
i¼1AiðXÞ;

Pm
i¼1Ai

OðXÞ ¼
Tm

i¼1AiðXÞ;
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5.
Pm

i¼1Ai
Oð� XÞ ¼�

Pm
i¼1Ai

OðXÞ
� �

;
Pm

i¼1Ai
Oð� XÞ ¼�

Pm
i¼1Ai

OðXÞ
� �

.

Theorem 4. Let I be an information system in which A1;A2; � � � ;Am # AT, then 8X1;X2; � � � ;Xj # U, the optimistic multigranulation
rough set has the following properties:

1.
Pm

i¼1Ai
O Tn

j¼1Xj

� �
¼
Sm

i¼1

Tn
j¼1AiðXjÞ

� �
,
Pm

i¼1Ai
O Sn

j¼1Xj

� �
¼
Tm

i¼1

Sn
j¼1AiðXjÞ

� �
;

2.
Pm

i¼1Ai
O
Tn

j¼1Xj

� �
#
Tn

j¼1

Pm
i¼1Ai

OðXjÞ
� �

;
Pm

i¼1Ai
O
Sn

j¼1Xj

� �
�
Sn

j¼1

Pm
i¼1Ai

OðXjÞ
� �

;

3.
Pm

i¼1Ai
O Sn

j¼1Xj

� �
�
Sn

j¼1

Pm
i¼1Ai

OðXjÞ
� �

;
Pm

i¼1Ai
O Tn

j¼1Xj

� �
#
Tn

j¼1

Pm
i¼1Ai

OðXjÞ
� �

.

Theorem 5. Let I be an information system in which A1;A2; � � � ;Am # AT, suppose that A ¼ A1 [ A2 [ � � � [ Am, then 8X # U, we
have
Xm

i¼1

Ai
OðXÞ# AðXÞ;

Xm

i¼1

Ai
OðXÞ � AðXÞ:
Theorem 5 shows that the optimistic multigranulation lower approximation is smaller than Pawlak’s lower approxima-
tion while the optimistic multigranulation upper approximation is greater than Pawlak’s upper approximation.
3. Pessimistic multigranulation rough sets

In decision making analysis, ‘‘Seeking common ground while eliminating differences’’ (SCED) is one of usual decision
strategy. This strategy argues that one reserves common decisions while deleting inconsistent decisions, which can be seen
as a conservative decision strategy. Based on this consideration, in this section, we propose a new multigranulation rough
set, called pessimistic rough decision, and investigate its properties.

3.1. Pessimistic multigranulation rough set model and properties

Based on the SCED strategy, the following definition gives the formal representation of lower/upper approximation in the
context of multi granular structures.

Definition 2. Let I be an information system in which A1;A2; � � � ;Am # AT, then 8X # U, the pessimistic multigranulation

lower and upper approximations are denoted by
Pm

i¼1Ai
PðXÞ and

Pm
i¼1Ai

PðXÞ, respectively,
Xm

i¼1

Ai
PðXÞ ¼ fx 2 U : ½x�A1

# X ^ ½x�A2
# X ^ � � � ^ ½x�Am

# Xg; ð9Þ

Xm

i¼1

Ai
PðXÞ ¼�

Xm

i¼1

Ai
Pð� XÞ

0@ 1A: ð10Þ
By the lower approximation
Pm

i¼1Ai
PðXÞ and upper approximation

Pm
i¼1Ai

PðXÞ, the pessimistic multigranulation boundary
region of X is
BNPXm

i¼1

Ai

ðXÞ ¼
Xm

i¼1

Ai
PðXÞ �

Xm

i¼1

Ai
PðXÞ: ð11Þ
Theorem 6. Let I be an information system in which A1;A2; � � � ;Am # AT, then 8X # U, we have
Xm

i¼1

Ai
PðXÞ ¼ fx 2 U : ½x�A1

\ X – ; _ ½x�A2
\ X – ; _ � � � _ ½x�Am

\ X – ;g: ð12Þ
Proof. By Definition 2, we have
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x 2
Xm

i¼1

Ai
PðXÞ () x R

Xm

i¼1

Ai
Pð� XÞ

() ½x�A1
� ð� XÞ _ ½x�A2

� ð� XÞ _ � � � _ ½x�Am
� ð� XÞ

() ½x�A1
\ X – ; _ ½x�A2

\ X – ; _ � � � _ ½x�Am
\ X – ;: �
Different from the upper approximation of optimistic multigranulation rough set, the upper approximation of pessimistic
multigranulation rough set is represented as a set in which objects have non-empty intersection with the target in terms of
at least one granular structure.

Theorem 7. Let I be an information system in which A1;A2; � � � ;Am # AT, suppose that U=INDðR1Þ � U=INDðR2Þ � � � �
� U=INDðRmÞ, then we have
Xm

i¼1

Ai
PðXÞ ¼ AmðXÞ; ð13Þ

Xm

i¼1

Ai
PðXÞ ¼ AmðXÞ: ð14Þ
Proof. 8x 2
Pm

i¼1Ai
PðXÞ, then we have ½x�Ai

# X for each i ¼ 1;2; � � � ;m, it follows that x 2 AmðXÞ because ½x�Am
# X.

8x 2 AmðXÞ, we have ½x�Am
# X. Moreover, since U=INDðR1Þ � U=INDðR2Þ � � � � � U=INDðRmÞ, then we have

½x�A1
# ½x�A2

# ½x�Am
, from which we can conclude that ½x�A1

# ½x�A2
# ½x�Am

# X. Then by the definition of pessimistic

multigranulation lower approximation, we have x 2
Pm

i¼1Ai
PðXÞ.

From discussions above, we can conclude that
Pm

i¼1Ai
PðXÞ ¼ AmðXÞ. Similarly, it is not difficult to prove thatPm

i¼1Ai
PðXÞ ¼ AmðXÞ. h

The above theorem tells us that if there is a partial relation among the partitions, then the pessimistic multigranulation
rough set is equivalent to the rough set in terms of the coarsest equivalence relation.

Theorem 8. Let I be an information system in which A1;A2; � � � ;Am # AT;8X;Y # U, then we have following properties about the
pessimistic multigranulation rough approximation:

1.
Pm

i¼1Ai
PðXÞ# X #

Pm
i¼1Ai

PðXÞ;

2.
Pm

i¼1Ai
Pð;Þ ¼

Pm
i¼1Ai

Pð;Þ ¼ ;;
Pm

i¼1Ai
PðUÞ ¼

Pm
i¼1Ai

PðUÞ ¼ U;

3. X # Y )
Pm

i¼1Ai
PðXÞ#

Pm
i¼1Ai

PðYÞ;
Pm

i¼1Ai
PðXÞ#

Pm
i¼1Ai

PðYÞ;

4.
Pm

i¼1Ai
PðXÞ ¼

Tm
i¼1AiðXÞ;

Pm
i¼1Ai

PðXÞ ¼
Sm

i¼1AiðXÞ;

5.
Pm

i¼1Ai
Pð� XÞ ¼�

Pm
i¼1Ai

PðXÞ
� �

;
Pm

i¼1Ai
Pð� XÞ ¼�

Pm
i¼1Ai

PðXÞ
� �

.

Proof.

1. 8x 2
Pm

i¼1Ai
PðXÞ, then by the definition of pessimistic multigranulation lower approximation, we have ½x�Ai

# X for each
i ¼ 1;2; � � � ;m. Since indiscernibility relation is reflexive, then we have x 2 ½x�Ai

for each i ¼ 1;2; � � � ;m, it follows that

x 2 X, i.e.
Pm

i¼1Ai
PðXÞ# X.8x 2 X, since indiscernibility relation is reflexive, then we have x 2 ½x�Ai

for each i ¼ 1;2; � � � ;m,

it follows that ½x�Ai
\ X – ; for each i ¼ 1;2; � � � ;m. By Theorem 6 we have x 2

Pm
i¼1Ai

PðXÞ, i.e. X #
Pm

i¼1Ai
PðXÞ.

2. ;#
Pm

i¼1Ai
Pð;Þ holds obviously since the empty set is included into each set. Moreover, by the proof of 1 we know thatPm

i¼1Ai
Pð;Þ# ;. Therefore,

Pm
i¼1Ai

Pð;Þ ¼ ; holds.;#
Pm

i¼1Ai
Pð;Þ holds obviously since the empty set is included into each

set. 8x R ;, we have x 2 U. Since the indiscernibility relation is reflexive, then we have x 2 ½x�Ai
for each i ¼ 1;2; � � � ;m,

thus, ½x�Ai
\ ; ¼ ; for each i ¼ 1;2; � � � ;m. By Theorem 6, we know that x R

Pm
i¼1Ai

Pð;Þ, it follows that
Pm

i¼1Ai
Pð;Þ# ;. From

discussions above, we have
Pm

i¼1Ai
Pð;Þ ¼ ;.

Similarly, it is not difficult to prove
Pm

i¼1Ai
PðUÞ ¼

Pm
i¼1Ai

PðUÞ ¼ U.
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3. 8x 2
Pm

i¼1Ai
PðXÞ, then by the definition of pessimistic multigranulation lower approximation, we have ½x�Ai

# X for each
i ¼ 1;2; � � � ;m. Since X # Y , then ½x�Ai

# Y for each i ¼ 1;2; � � � ;m, it follows that x 2
Pm

i¼1Ai
PðYÞ, i.e.

Pm
i¼1Ai

PðXÞ#
Pm

i¼1Ai
PðYÞ.

Similarly, it is not difficult to prove that
Pm

i¼1Ai
PðXÞ#

Pm
i¼1Ai

PðYÞ.
4. 8x 2

Pm
i¼1Ai

PðXÞ, then by the definition of pessimistic multigranulation lower approximation, we have ½x�Ai
# X for each

i ¼ 1;2; � � � ;m. Moreover, by the definition of classical lower approximation, we have x 2 AiðXÞ for each i ¼ 1;2; � � � ;m,
it follows that x 2

Tm
i¼1AiðXÞ, i.e.

Pm
i¼1Ai

PðXÞ#
Tm

i¼1AiðXÞ.8x 2
Tm

i¼1AiðXÞ, we have ½x�Ai
# X for each i ¼ 1;2; � � � ;m. Then by

the definition of pessimistic multigranulation lower approximation, x 2
Pm

i¼1Ai
PðXÞ holds obviously, i.e.Tm

i¼1AiðXÞ#
Pm

i¼1Ai
PðXÞ.

From discussions above, we have
Pm

i¼1Ai
PðXÞ ¼

Tm
i¼1AiðXÞ. Similarly, it is not difficult to prove

Pm
i¼1Ai

PðXÞ ¼
Sm

i¼1AiðXÞ.
5. 8x 2

Pm
i¼1Ai

Pð� XÞ, then by the definition of pessimistic multigranulation lower approximation, we have ½x�Ai
# ð� XÞ for

each i ¼ 1;2; � � � ;m, it follows that ½x�Ai
\ X ¼ ; for each i ¼ 1;2; � � � ;m. By Theorem 6, we can conclude that x R

Pm
i¼1Ai

PðXÞ,

i.e.
Pm

i¼1Ai
Pð� XÞ# �

Pm
i¼1Ai

PðXÞ
� �

.8x R
Pm

i¼1Ai
PðXÞ, by Theorem 6, we have ½x�Ai

\ X ¼ ; for each i ¼ 1;2; � � � ;m, i.e.

½x�Ai
# ð� XÞ for each i ¼ 1;2; � � � ;m, then by the definition of pessimistic multigranulation lower approximation, we can

conclude that x 2
Pm

i¼1Ai
Pð� XÞ, i.e. �

Pm
i¼1Ai

PðXÞ
� �

#
Pm

i¼1Ai
Pð� XÞ.

From discussions above, we have
Pm

i¼1Ai
Pð� XÞ ¼�

Pm
i¼1Ai

PðXÞ
� �

. Similarly, it is not difficult to prove thatPm
i¼1Ai

Pð� XÞ ¼�
Pm

i¼1Ai
PðXÞ

� �
. h
Theorem 9. Let I be an information system in which A1;A2; � � � ;Am # AT, then 8X1;X2; � � � ;Xj # U, the pessimistic multigranulation
rough set has the following properties:

1.
Pm

i¼1Ai
P Tn

j¼1Xj

� �
¼
Tm

i¼1

Tn
j¼1AiðXjÞ

� �
,
Pm

i¼1Ai
P Sn

j¼1Xj

� �
¼
Sm

i¼1

Sn
j¼1AiðXjÞ

� �
;

2.
Pm

i¼1Ai
P
Tn

j¼1Xj

� �
¼
Tn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

;
Pm

i¼1Ai
P
Sn

j¼1Xj

� �
¼
Sn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

;

3.
Pm

i¼1Ai
P Sn

j¼1Xj

� �
�
Sn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

;
Pm

i¼1Ai
P Tn

j¼1Xj

� �
#
Tn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

.

Proof.

1. 8x 2
Pm

i¼1Ai
P Tn

j¼1Xj

� �
, then by the definition of pessimistic multigranulation lower approximation, we have ½x�Ai

#
Tn

j¼1Xj

for each i ¼ 1;2; � � � ;m, it follows that ½x�Ai
# Xj for each i ¼ 1;2; � � � ;m and j ¼ 1;2; � � � ;n, from which we can conclude that

x 2
Tn

j¼1AiðXjÞ for each i ¼ 1;2; � � � ;m, i.e. x 2
Tm

i¼1

Tn
j¼1AiðXjÞ

� �
. 8x 2

Tm
i¼1

Tn
j¼1AiðXjÞ

� �
, we have x 2

Tn
j¼1AiðXjÞ for each

i ¼ 1;2; � � � ;m. Moreover, since x 2
Tn

j¼1AiðXjÞ, then x 2 AiðXjÞ for each j ¼ 1;2; � � � ;n, from which we can conclude that

½x�Ai
# Xj for each i ¼ 1;2; � � � ;m and j ¼ 1;2; � � � ;n. Thus, ½x�Ai

#
Tn

j¼1Xj for each i ¼ 1;2; � � � ;m, by the definition of pessimis-

tic multigranulation lower approximation, we have x 2
Pm

i¼1Ai
P Tn

j¼1Xj

� �
.

From discussions above, we have
Pm

i¼1Ai
P Tn

j¼1Xj

� �
¼
Tm

i¼1
Tn

j¼1AiðXjÞ
� �

. Similarly, it is not difficult to provePm
i¼1Ai

P Sn
j¼1Xj

� �
¼
Sm

i¼1
Sn

j¼1AiðXjÞ
� �

.

2. By the proof of 4 in Theorem 8, we have
Pm

i¼1Ai
P Tn

j¼1Xj

� �
¼
Tm

i¼1Ai
Tn

j¼1Xj

� �
. By the basic property of Pawlak’s rough set,

we know
Tm

i¼1Ai
Tn

j¼1Xj

� �
¼
Tn

j¼1

Tm
i¼1AiðXjÞ. Since

Tm
i¼1AiðXjÞ ¼

Pm
i¼1Ai

PðXjÞ holds through the proof of 4 in Theorem 8, thenPm
i¼1Ai

P Tn
j¼1Xj

� �
¼
Tm

i¼1Ai
Tn

j¼1Xj

� �
¼
Tn

j¼1

Tm
i¼1AiðXjÞ ¼

Tn
j¼1

Pm
i¼1Ai

PðXjÞ
� �

.

Similarly, it is not difficult to prove
Pm

i¼1Ai
P
Sn

j¼1Xj

� �
¼
Sn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

.

3. 8x 2
Sn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

, then 9Xk(k 2 f1;2; � � � ;ng) such that x 2
Pm

i¼1Ai
PðXkÞ. By the definition of pessimistic multigranu-

lation lower approximation, ½x�Ai
# Xk for each i ¼ 1;2; � � � ;m, i.e. ½x�Ai

#
Sn

j¼1Xj for each i ¼ 1;2; � � � ;m; x 2
Pm

i¼1Ai
P Sn

j¼1Xj

� �
,

from which we can conclude that
Pm

i¼1Ai
P Sn

j¼1Xj

� �
�
Sn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

. Similarly, it is not difficult to provePm
i¼1Ai

P Tn
j¼1Xj

� �
#
Tn

j¼1

Pm
i¼1Ai

PðXjÞ
� �

. h
Theorem 10. Let I be an information system in which A1;A2; � � � ;Am # AT, suppose that A ¼ A1 [ A2 [ � � � [ Am, then 8X # U, we
have
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Xm

i¼1

Ai
PðXÞ#

Xm

i¼1

Ai
OðXÞ# AðXÞ;

Xm

i¼1

Ai
PðXÞ �

Xm

i¼1

Ai
OðXÞ � AðXÞ:
Proof. Following Theorem 5, it must be proved that
Pm

i¼1Ai
PðXÞ#

Pm
i¼1Ai

OðXÞ and
Pm

i¼1Ai
PðXÞ �

Pm
i¼1Ai

OðXÞ.8x 2
Pm

i¼1Ai
PðXÞ,

by Definition 2, we have ½x�Ai
# X (8i 2 f1;2; � � � ;mg), then by Definition 1, x 2

Pm
i¼1Ai

OðXÞ holds.8x 2
Pm

i¼1Ai
OðXÞ, by Theorem

1, we have ½x�Ai
\ X – ; (8i 2 f1;2; � � � ;mg), then by Theorem 3, x 2

Pm
i¼1Ai

PðXÞ holds. h

The above theorem tells us that the pessimistic multigranulation lower approximation is smaller than Pawlak’s lower
approximation while the pessimistic multigranulation upper approximation is greater than Pawlak’s upper approximation.
Moreover, the pessimistic multigranulation lower approximation is smaller than optimistic multigranulation lower approx-
imation while the pessimistic multigranulation upper approximation is greater than optimistic multigranulation upper
approximation.

Remark. From the above theorem, it can be seen that the ‘‘distance’’ between the pessimistic multigranulation lower
approximation and its upper approximation is largest, which leads to larger boundary region (bigger uncertainty) for a given
subset X than optimistic multigranulation rough set and Pawlak’s rough set. However, it is not disappointed, which is
because that the uncertainty is determined by each given multigranulation fusion strategy. The pessimistic multigranulation
rough set adopts the decision strategy ‘‘Seeking common ground while eliminating differences’’, and the decision induced by
it must be consistent with every decision maker’s viewpoint. In fact, the pessimistic decision and optimistic decision can be
seen as two extreme cases of information fusion based on multigranulation rough sets.
3.2. Rough memberships

In the rough set literature, rough membership function introduced in [20] can be used to measure degrees of inclusion of
equivalence classes into subsets of the universe.

Definition 3. Let I be an information system in which A # AT;8X # U, the rough membership of x in X is denoted by lA
XðxÞ

such that
lA
XðxÞ ¼

j ½x�A \ X j
j ½x�A j

: ð15Þ
In Pawlak’s rough set model, there is a direct relationship between the rough approximation and the membership such
that
lA
XðxÞ ¼ 1() x 2 AðXÞ; ð16Þ

0 < lA
XðxÞ 
 1() x 2 AðXÞ: ð17Þ
It should be noticed that since more than one indiscernibility relations are used in multigranulation rough set approach,
the re-definition of the rough membership has become a necessity.

Definition 4. Let I be an information system in which A1;A2; � � � ;Am # AT;8X # U, the maximal and minimal rough
memberships of x in X are denoted by gA

XðxÞ and hA
XðxÞ, respectively, where
g

Xm

i¼1

Ai

X ðxÞ ¼ maxm
i¼1l

Ai
X ðxÞ; ð18Þ

h

Xm

i¼1

Ai

X ðxÞ ¼ minm
i¼1l

Ai
X ðxÞ: ð19Þ
Theorem 11. Let I be an information system in which A1;A2; � � � ;Am # AT;8X # U, we have

1. g
Pm

i¼1
Ai

X ðxÞ ¼ 1() x 2
Pm

i¼1AO
i ðXÞ;

2. 0 < h
Pm

i¼1
Ai

X ðxÞ 
 1() x 2
Pm

i¼1AO
i ðXÞ;

3. h
Pm

i¼1
Ai

X ðxÞ ¼ 1() x 2
Pm

i¼1AP
i ðXÞ;

4. 0 < g
Pm

i¼1
Ai

X ðxÞ 
 1() x 2
Pm

i¼1AP
i ðXÞ.
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Proof. For the term 1, we have that
g
Pm

i¼1
X ðxÞ ¼ 1() maxm

i¼1l
Ai
X ðxÞ ¼ 1

() 9i 2 f1;2; � � � ;mgs:t:½x�Ai
# X

() x 2
Xm

i¼1
Ai

OðXÞ
Similarly, the terms 2, 3, and 4 also can be proved. h
4. Rules in multigranulation rough sets

The end result of the rough set model is a representation of the information contained in the data system considered in
terms of ‘‘if� � �then� � �’’ decision rules. The decision rules can be generated from the decision system in the rough set ap-
proach. A decision system is an information system such that I ¼ ðU;AT [ DÞ in which AT is the set of condition attributes,
while D is the set of decision attributes. In our paper, to simplify our discussion, we only consider one decision attribute
d and then the decision system can be represented by I ¼ ðU;AT [ fdgÞ. Generally speaking, we may assume that such deci-
sion attribute determines a partition on the universe of discourse, i.e U=INDðfdgÞ ¼ fX1;X2; � � � ;Xlg.

Following the optimistic and pessimistic multigranulation rough set approaches mentioned above, suppose that
A ¼ fa1; a2; � � � ; amg, then 8x 2 U, we may desire to generate the following decision rules from a decision system:

� ‘‘OR’’ decision rule: r_x : a1ðyÞ ¼ a1ðxÞ _ a2ðyÞ ¼ a2ðxÞ _ � � � _ amðyÞ ¼ amðxÞ ! dðyÞ ¼ dðxÞ.

Obviously, the ‘‘OR’’ decision rule r_x is different from the rules which can be induced from Pawlak’s rough set model be-
cause the condition part of r_x is composed by the logical connective ‘‘_’’ (disjunction). In essence, the restriction of such deci-
sion rule is weaker than that of decision rules in Pawlak’s rough set theory, since intersection operations among equivalence
classes need not to be performed in optimistic multigranulation rough set.

Generally speaking, the ‘‘OR’’ decision rule r_x can be decomposed into a family of decision rules such that
r1
x : a1ðyÞ ¼ a1ðxÞ ! dðyÞ ¼ dðxÞ

r2
x : a2ðyÞ ¼ a2ðxÞ ! dðyÞ ¼ dðxÞ

..

.

rm
x : amðyÞ ¼ amðxÞ ! dðyÞ ¼ dðxÞ
The certainty factor of the decision rule r_x is defined as
Cðr_x Þ ¼maxm
i¼1ðCðri

xÞÞ ð20Þ
where Cðri
xÞ (1 6 i 6 m) is the certainty factor of the decomposed decision rule ri

x, that is,
Cðri
xÞ ¼

j ½x�ai
\ ½x�d j

j ½x�ai
j ; ð21Þ
in which ½x�ai
is the equivalence class of x in terms of the condition attribute ai; ½x�d is the equivalence class of x in terms of the

decision attribute d, j X j is the cardinal number of the set X.
Similar to the decision rules in Pawlak’s rough set theory, in multigranulation rough set theory, the rules r_x are referred to

as certain if and only if Cðr_x Þ ¼ 1; the rules r_x are referred to as possible if and only if 0 < Cðr_x Þ < 1.

Theorem 12. Let I be a decision system in which A ¼ fa1; a2; � � � ; amg# AT, then 8x 2 U

1. x 2
Pm

i¼1ai
Oð½x�dÞ () Cðr_x Þ ¼ 1;

2. x 2 BNPPm

i¼1
ai
ð½x�dÞ () 0 < Cðr_x Þ < 1;
Proof. We only prove 1, the proofs of 2 is similar to the proofs of 1.8x 2 U,
x 2
Xm

i¼1

ai
Oð½x�dÞ () 9ai 2 A s:t:½x�ai

# ½x�d

() 9ai 2 A s:t:Cðri
xÞ ¼

j ½x�ai
\ ½x�d j

j ½x�ai
j ¼ 1

() Cðr_x Þ ¼maxm
i¼1ðCðri

xÞÞ ¼ 1 �
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By the above theorem, we can draw the following conclusions:

1. The certain ‘‘OR’’ rules are supported by the objects in optimistic multigranulation lower approximation;
2. The possible ‘‘OR’’ rules are supported by the objects in pessimistic multigranulation boundary region.

5. Attribute reduction

Intuitively, some attributes are not significant in a representation and their removal has no real impact on the value of the
representation of elements. If it is not significant, one can simply remove an attribute for further consideration.

Definition 5. Let I be a decision system in which A ¼ fa1; a2; � � � ; amg# AT ¼ fa1; a2; � � � ; ang. We define
ATPðdÞ ¼
Xn

i¼1

ai
PðX1Þ;

Xn

i¼1

ai
PðX2Þ; � � � ;

Xn

i¼1

ai
PðXlÞ

8<:
9=;; ð22Þ

ATPðdÞ ¼
Xn

i¼1

ai
PðX1Þ;

Xn

i¼1

ai
PðX2Þ; � � � ;

Xn

i¼1

ai
PðXlÞ

( )
; ð23Þ

BNP
ATðdÞ ¼ BNPPn

i¼1
Ai
ðX1Þ;BNPPn

i¼1
Ai
ðX2Þ; � � � ; BNPPn

i¼1
Ai
ðXlÞ

� �
; ð24Þ
1. A is referred to as the pessimistic multigranulation lower approximate distribution reduct if and only if APðdÞ ¼ ATPðdÞ
and BPðdÞ – ATPðdÞ for each B � A;

2. A is referred to as the pessimistic multigranulation upper approximate distribution reduct if and only if APðdÞ ¼ ATPðdÞ
and BPðdÞ – ATPðdÞ for each B � A;

3. A is referred to as the pessimistic multigranulation boundary region distribution reduct if and only if BNP
AðdÞ ¼ BNP

ATðdÞ
and BNP

BðdÞ – BNP
ATðdÞ for each B � A.

Since the pessimistic multigranulation rough set model mainly considers the lower approximation and the upper approx-
imation of a target concept by multiple equivalence relations, in the following, we introduce a measure of importance of con-
dition attributes with respect to decision attributes in a decision system.

Let I be a decision system in which A ¼ fa1; a2; � � � ; amg# AT ¼ fa1; a2; � � � ; ang. A measure of importance of condition attri-
butes A # AT with respect to decision attributes d in pessimistic MGRS in terms of the under approximation and the upper
approximation can be divided into two forms: an importance measure of the lower approximation and an importance measure
of the upper approximation.

Let I be a decision system in which A ¼ fa1; a2; � � � ; amg# AT ¼ fa1; a2; � � � ; ang. Given a condition attribute a 2 A and
X 2 U=fdg. Firstly, we give two preliminary definitions in the following.

Definition 6. We say that a is lower approximation significant in A with respect to X if
Pm

i¼1ai
PX �

Pm
i¼1;ai–aai

PX (ai 2 A), and

that a is not lower approximation significant in A with respect to X if
Pm

i¼1ai
PX ¼

Pm
i¼1;ai–aai

PX (ai 2 A).
Definition 7. We say that a is upper approximation significant in A with respect to X if
Pm

i¼1ai
PX �

Pm
i¼1;ai–aai

PX (ai 2 A), and

that a is not upper approximation significant in A with respect to X if
Pm

i¼1ai
PX ¼

Pm
i¼1;ai–aai

PX (ai 2 A).
We introduce a quantitative measure for the significance as follows.
The importance measure of the lower approximation of condition attributes A # AT with respect to decision attributes D in

MGRS is defined as
SAðdÞ ¼
P Pm

i¼1;ai–aai
PX n

Pm
i¼1ai

PX
��� ��� : X 2 U=fdg
n o

j U j ; ð25Þ
where the attributes A ¼ fa1; a2; � � � ; amg, and d is the decision attribute.
The importance measure of the upper approximation of condition attributes A # AT with respect to decision attributes D in

MGRS is defined as
SAðdÞ ¼
P
j
Pm

i¼1ai
PX n

Pm
i¼1;ai–aai

PX j: X 2 U=fdg
n o

j U j ; ð26Þ
where the attributes A ¼ fa1; a2; � � � ; amg, and d is the decision attribute.
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In particular, when A ¼ fag; SaðdÞ is the importance measure of the lower approximation of the attribute a 2 A with
respect to d and SaðdÞ is the importance measure of the upper approximation of the attribute a 2 A with respect to d.

To compute the significance of an attribute a in A with respect to d, we need to compute m partitions U=faig (i 6 m). The
time complexity for computing each partition is Oðj U jÞ. So, the time complexity for computing m partitions is Oðm j U jÞ.
Therefore, the time complexity of computing a lower approximation of X 2 U=fdg by A is Oðm j Uj2Þ.

From the above two definitions, we know the following:

� SAðDÞP 0 and SAðDÞP 0;
� attributes A with respect to d is the lower approximation significant if and only if SAðdÞ ¼ 0; and
� attributes A with respect to d is the upper approximation significant if and only if SAðdÞ ¼ 0.

Based on the above measures, we give the inner significance measure and the outer significance measure of an attribute
for designing a heuristic attribute reduction algorithm. Simply, we only consider the pessimistic multigranulation lower
approximate distribution reduct, which are defined as follows.

Definition 8. Let I be a decision system in which A ¼ fa1; a2; � � � ; amg# AT ¼ fa1; a2; � � � ; ang and 8a 2 A. The significance
measure of a in A is defined as
Siginnerða;A; dÞ ¼ SA�fagðdÞ � SAðdÞ: ð27Þ
Definition 9. Let I be a decision system in which A ¼ fa1; a2; � � � ; amg# AT ¼ fa1; a2; � � � ; ang and 8a 2 AT � A. The significance
measure of a in A is defined as
Sigouterða;A; dÞ ¼ SAðdÞ � SA[fagðdÞ: ð28Þ

Using each of these two significance measures of an attribute, we can design a forward greedy attribute reduction algo-

rithm in the pessimistic multigranulation rough set model. It can be formally written as follows.
Algorithm 1. An attribute reduction algorithm in the pessimistic multigranulation rough set

Input: a decision table I ¼ ðU;C [ fdgÞ;
Output: One reduct red.
Step 1: red Ø; //red is the pool to conserve the selected attributes

Step 2: Compute Siginnerðak;C; dÞ; k 6j C j;
Step 3: Put ak into red, where Siginnerðak;C; dÞ > 0; // These attributes form the core of the given decision system
Step 4: While SredðdÞ – SCðdÞ Do//This provides a stopping criterion

{red red [ fa0g, where Sigouterða0; red; dÞ ¼ maxfSigouterðak; red;dÞ; ak 2 C � redg}; //Sigouterðak;C; dÞ
is the outer importance measure of the attribute ak

Step 5: return red and end.

Computing the significance measure of an attribute is one of the key steps in the algorithm. The time complexity of com-
puting the core in Step 2 is Oðj C jj Uj2Þ. In Step 5, we begin with the core and add an attribute with the maximal significance
into the set in each stage until finding a reduct. This process is called a forward reduction algorithm whose time complexity
is Oð

PC
i¼1 j Uj

2ðj C j �iþ 1Þ. Thus the time complexity of Algorithm 1 is Oðj C jj Uj2 þ
PC

i¼1 j Uj
2ðj C j �iþ 1Þ.

The algorithm can obtain an attribute reduct from a given decision system, which provides the minimal attributes (or
granular structures) that retain the lower approximation of a target decision unchanged in the context of pessimistic mul-
tigranulation rough sets.
Table 1a
The information system from site 1.

U a1 a2 a3

x1 2 2 2
x2 2 2 2
x3 0 0 0
x4 0 0 0
x5 0 0 0
x6 2 1 0
x7 0 0 0
x8 2 2 2
x9 2 1 0
x10 0 0 0
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6. Case study

For an investor or decision maker, he may need to adopt a better one from some possible investment projects or find some
directions from existing successful investment projects before investing. The purpose of this section is, through a venture
investment issue, to illustrate the mechanism of the pessimistic rough set based decision and its applications.

In this section, we consider the site selection of a marketplace through using the proposed method in this paper. There are
ten investment projects xiði ¼ 1;2; � � � ;10Þ can be considered, which evaluations are from online five sites. There are three
factors to be considered, which are Locus (a1), Investment (a2) and Population density (a3). Venture level is classified to three
classes 0, 1 and 2. The bigger the value of venture level is, and the higher the venture of investment project is. Tables 1a, 1b,
1c, 1d, 1e are information systems about evaluating venture investment given by these five sites.

In these evaluation information systems, each one makes a decision independently, especially their attributes may be incon-
sistent. For this situation, the classical rough set model will be helpless. It is also very difficult that these information systems
are combined into a entire information system. Therefore, In the following, we apply the pessimistic MGRS proposed by this
paper for decision-making. Given a classification from real applications, U=INDðDÞ ¼ ffx1; x2; x6; x8; x9g; fx3; x4; x5; x7; x10gg. Sup-
pose that Y1 ¼ fx1; x2; x6; x8; x9g and Y2 ¼ fx3; x4; x5; x7; x10g. For each site, we calculate its granular structure (partition) as
follows.

For the information system from site 1 (wrt. S1),
U=fa1; a2; a3g ¼ ffx1; x2; x8g; fx6; x9g; fx3; x4; x5; x7; x10gg;
for the information system from site 2 (wrt. S2),
U=fa1; a2g ¼ ffx1; x2; x6; x8; x9g; fx4; x7g; fx3; x5; x10gg;
for the information system from site 3 (wrt. S3),
U=fa2; a3g ¼ ffx1; x2; x8; x9g; fx6; x7g; fx3; x4; x5; x10gg;
for the information system from site 4 (wrt. S4),
U=fa1; a3g ¼ ffx1; x2; x6; x8g; fx4; x9g; fx3; x5; x7; x10gg;
and for the information system from site 5 (wrt. S5),
U=fa1; a2; a3g ¼ ffx1; x2; x8; x9g; fx4; x6g; fx3; x5; x7; x10gg:
From Definition 2, one can obtain the following pessimistic multigranulation lower approximation of the classification,
which is as follows

SPðDÞ ¼ ffx1; x2; x8g; fx3; x5; x10gg, where S ¼ fS1; S2; S3; S4; S5g.
In what follows, we compute the inner important significance of each site through using Definition 8.
SiginnerðS1; S;DÞ ¼ SS�fS1gðDÞ � SSðdÞ ¼
6

10
� 6

10
¼ 0

10
;

SiginnerðS2; S;DÞ ¼ SS�fS2gðDÞ � SSðdÞ ¼
6

10
� 6

10
¼ 0

10
;

SiginnerðS3; S;DÞ ¼ SS�fS3gðDÞ � SSðdÞ ¼
7

10
� 6

10
¼ 1

10
;

SiginnerðS4; S;DÞ ¼ SS�fS4gðDÞ � SSðdÞ ¼
7

10
� 6

10
¼ 1

10
;

SiginnerðS5; S;DÞ ¼ SS�fS5gðDÞ � SSðdÞ ¼
6

10
� 6

10
¼ 0

10
:

Table 1b
The information system from site 2.

U a1 a2

x1 1 2
x2 1 2
x3 0 0
x4 0 2
x5 0 0
x6 1 2
x7 0 2
x8 1 2
x9 1 2
x10 0 0



Table 1c
The information system from site 3.

U a2 a3

x1 2 1
x2 2 1
x3 0 0
x4 0 0
x5 0 0
x6 1 1
x7 1 1
x8 2 1
x9 2 1
x10 0 0

Table 1d
The information system from site 4.

U a1 a3

x1 1 2
x2 1 2
x3 0 0
x4 1 1
x5 0 0
x6 1 2
x7 0 0
x8 1 2
x9 1 1
x10 0 0

Table 1e
The information system from site 5.

U a1 a2 a3

x1 1 2 2

x2 1 2 2
x3 0 1 1
x4 0 1 2
x5 0 1 1
x6 0 1 2
x7 0 1 1
x8 1 2 2
x9 1 2 2
x10 0 1 1
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According to the values of these inner significance measures, we select the site S3 as first attribute in the heuristic algo-
rithm (see Algorithm 1). Then, we select the second site through using Definition 9. Through calculating the outer signifi-
cance measures of these sites, we have that
SigouterðS1; S3;DÞ ¼ SfS3gðDÞ � SfS3[S1gðDÞ ¼
8

10
� 8

10
¼ 0

10
;

SigouterðS2; S3;DÞ ¼ SfS3gðDÞ � SfS3[S2gðDÞ ¼
8

10
� 8

10
¼ 0

10
;

SigouterðS4; S3;DÞ ¼ SfS3gðDÞ � SfS3[S4gðDÞ ¼
8

10
� 6

10
¼ 2

10
;

SigouterðS5; S3;DÞ ¼ SfS3gðDÞ � SfS3[S5gðDÞ ¼
8

10
� 7

10
¼ 1

10
:

In this situation, we select the fourth site as the selected one. Through calculating their pessimistic multigranulation low-
er approximation, we find
fS4; S3gPðDÞ ¼ SPðDÞ ¼ ffx1; x2; x8g; fx3; x5; x10gg:
That is to say, fS4; S3g is a reduct of these granular structures in the pessimistic multigranulation rough sets.
In addition, using the computational process above, we also can search an upper approximation reduct of the pessimistic

multigranulation rough sets.
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7. Conclusions

Multigranulation rough sets (MGRS) is one of desirable directions in rough set theory, in which lower/upper approxima-
tions are approximated by granular structures induced by multiple binary relations. It provides a new perspective for deci-
sion making analysis based on rough set theory. In this paper, we have first proposed a new multigranulation rough set
model based on the decision strategy ‘‘Seeking common ground while eliminating differences’’ (SCED), called pessimistic
rough set model. Moreover, we have discussed the relationship between optimistic multigranulation rough sets and pessi-
mistic multigranulation rough sets. Finally, we have also developed a heuristic approach to find an attribute reduct from a
decision table in the context of pessimistic multigranulation rough set model. These results largely enrich research scopes
and applicable fields of rough set theory.

Following the development of multigranulation rough sets (MGRS), its future direction has four aspects: (1) model exten-
sion of multigranulation rough sets based on other binary relations; (2) information fusion based on multiple granular
spaces; (3) information granule selection and granulation selection; and (4) applications of multigranulation rough sets. It
is deserved to point out that the multigranulation rough set and the standard rough set can be combined for data mining
and knowledge discovery from various real applications, such as multi-source information systems, data with high dimen-
sions, and distributive information systems.
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