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An Algorithm for Clustering Categorical
Data With Set-Valued Features
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Abstract— In data mining, objects are often represented by a
set of features, where each feature of an object has only one
value. However, in reality, some features can take on multiple
values, for instance, a person with several job titles, hobbies, and
email addresses. These features can be referred to as set-valued
features and are often treated with dummy features when using
existing data mining algorithms to analyze data with set-valued
features. In this paper, we propose an SV-k-modes algorithm
that clusters categorical data with set-valued features. In this
algorithm, a distance function is defined between two objects
with set-valued features, and a set-valued mode representation
of cluster centers is proposed. We develop a heuristic method
to update cluster centers in the iterative clustering process and
an initialization algorithm to select the initial cluster centers.
The convergence and complexity of the SV-k-modes algorithm
are analyzed. Experiments are conducted on both synthetic data
and real data from five different applications. The experimental
results have shown that the SV-k-modes algorithm performs
better when clustering real data than do three other categorical
clustering algorithms and that the algorithm is scalable to large
data.

Index Terms— Categorical data set-valued feature, set-valued
modes, SV-k-modes algorithm.

I. INTRODUCTION

ACOMMON data representation model in data analysis
and mining describes a set of n objects {x1, x2, · · · , xn}

by a set of m features {A1, A2, · · · , Am}. In this model [1],
a data set X is represented as a table or matrix in which each
row is a particular object and each column is a feature whose
value for an object is a single value. This data matrix is used
as input to most data mining algorithms. However, this data
representation is oversimplified. In real applications, features
can have multiple values for an object, for instance, a person
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TABLE I

EXAMPLE OF DATA WITH SET-VALUED FEATURES

with several job titles and hobbies. Such data are widespread in
questionnaire, banking, insurance, telecommunication, retail,
and medical databases.

A more general data representation in real-world applica-
tions is illustrated in the example in Table I.

Without loss of generality, the data in Table I can be
formulated as follows. Let X = {X1, X2, · · · , Xn} be a set of
n objects described by a set of m features {A1, A2, · · · , Am}.
Let V j (1 ≤ j ≤ m) denote a set of categorical values for
A j in X. Suppose that V

A j
Xi

is a nonempty finite set of values

of A j for object Xi . If V
A j
Xi
⊆ V j , A j is called a set-valued

feature and Xi is called a set-valued object. In the traditional
representation, A j has a single value from V j for each object
and is a single-valued feature, which is a special case of set-
valued features.

To analyze a set of set-valued objects in Table I, the com-
monly used method uses dummy categorical features that are
created to represent set-valued features. Each unique value of
a set-valued feature is made a dummy feature whose value is 1
if an object has that value in the set-valued feature; otherwise,
0 is assigned to the dummy feature for that object. Although
dummy features simplify the representation of set-valued
features and enable classification or clustering algorithms to
be used to analyze set-valued objects, this treatment may
result in the fragmentation of semantic information because
a single feature is divided into many features. In addition,
as the number of set-valued features increases in a data set,
many distance measures become meaningless [2]. Although
some distance measures can make a large difference for the
0/1 coding, the coding method may generate meaningless
cluster centers in certain clustering algorithms.

Giannotti et al. [2] proposed a transactional k-means algo-
rithm (Trk-means) with the Jaccard distance to cluster set-
valued objects but omitted analysis of the convergence of
the algorithm. Guha et al. [3] presented a ROCK algorithm,
which is an agglomerative hierarchical method unscalable to
large data. It is also difficult to obtain the interpretable cluster
representatives from hierarchical clustering results.
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In this paper, we propose a set-valued k-modes
(SV-k-modes) algorithm to cluster categorical data with
set-valued features. This algorithm takes a data set with
set-valued features in the format shown in Table I as input
data. A set-valued object is defined to represent the center of
a cluster as set-valued modes, and a new cluster center update
method is developed to search for the cluster center from
the given set of set-valued categorical objects by minimizing
the sum of the distance between the objects and the cluster
center. Based on the new cluster center representation and the
center update method, the SV-k-modes algorithm is developed
to extend the clustering process of the k-modes algorithm to
cluster categorical data with set-valued features. To speed up
the search for a new cluster center, we propose a heuristic
method to construct new cluster centers in each iteration of
the clustering process, which can significantly reduce the
search time for new cluster centers. A method for the selection
of the initial cluster centers is also developed to improve
the clustering performance of the SV-k-modes algorithm.
Experiments are conducted on both synthetic data and real
data from five different applications. The experimental results
have shown that the SV-k-modes algorithm performs better
at clustering the real data than do three other categorical
clustering algorithms and is scalable to large data.

The remainder of this paper is organized as follows.
Section II presents the SV-k-modes algorithm. Section III
presents a heuristic method to construct new cluster centers.
In Section IV, a method for selecting initial cluster centers is
given. In Section V, we show the experimental results on real
data sets from five different applications. Section VI shows
the results of a scalability test of the SV-k-modes algorithm
using synthetic data sets. Some related work is reviewed
in Section VII. Conclusions about this paper are given
in Section VIII.

II. SV-k-MODE CLUSTERING

In this section, we present the SV-k-modes algorithm, which
uses the k-means clustering process [4] to cluster categorical
data with set-valued features. Given a set of initial cluster
centers, the k-means clustering process iterates in two steps:
1) allocating objects into clusters according to a distance
measure and 2) updating cluster centers according to the
new allocation of objects in the clusters. In the SV-k-modes
algorithm, the Jaccard coefficient [5] is used as the dis-
tance measure between two set-valued objects. k set-valued
objects, called set-valued k modes, are used as representatives
of k cluster centers. Given a cluster of set-valued objects,
the cluster center is found by minimizing the sum of the
distances between objects and the cluster center. As with the
k-means algorithm, the SV-k-modes algorithm converges to a
local minimum after a number of iterations.

A. Distance Measure Between Two Set-Valued Objects

Definition 1: [6] Let X and Y be two nonempty finite sets.
The dissimilarity measure between X and Y is defined as

d(X, Y ) = 1− |X ∩ Y |
|X ∪ Y |

d(X, Y ) is a distance measure that satisfies the following
properties [6].

1) Non-negativity: d(X, Y ) ≥ 0 and d(X, X) = 0.
2) Symmetry: d(X, Y ) = d(Y, X).
3) Triangle inequality: d(X, Y )+ d(Y, Z) ≥ d(X, Z).
d(·, ·) is a generalization of the simple matching dis-

tance measure that is used in the k-modes algorithm to
cluster categorical data with single-valued features. Clearly,
0 ≤ d(·, ·) ≤ 1.

Given two set-valued objects Xi and X j described by m set-
valued features {A1, A2, . . . , Am}, the dissimilarity measure
between the two objects is defined as

Dm(Xi , X j ) =
m∑

s=1

d
(
V As

Xi
, V As

X j

)
. (1)

Dm(Xi , X j ) is a distance measure that satisfies the follow-
ing properties.

1) Non-negativity: Dm(Xi , X j ) ≥ 0 and Dm(Xi , Xi ) = 0.
2) Symmetry: Dm(Xi , X j ) = Dm(X j , Xi ).
3) Triangle inequality: Dm(Xi , X j ) + Dm(X j , Xk) ≥

Dm(Xi , Xk).
Proof: Properties 1) and 2) can be verified directly by the

definition of Dm(Xi , X j ).
Property 3) can be proved by mathematical induction as

follows.
When m = 1, by property 3) of d(·, ·)

D1(Xi , X j )+ D1(X j , Xk) = d
(
V A1

Xi
, V A1

X j

)+ d
(
V A1

X j
, V A1

Xk

)

≥ d
(
V A1

Xi
, V A1

Xk

)

= D1(Xi , Xk).

For any positive integer m ≥ 2, we assume that
Dm−1(Xi , X j ) + Dm−1(X j , Xk) ≥ Dm−1(Xi , Xk). We prove
that Dm(·, ·) satisfies property 3).

Using the triangle inequality properties of Dm−1(·, ·)
and d(·, ·), we have that

Dm(Xi , X j )+ Dm(X j , Xk)

=
m∑

s=1
d
(
V As

Xi
, V As

X j

)+
m∑

s=1
d
(
V As

X j
, V As

Xk

)

=
(

m−1∑
s=1

d
(
V As

Xi
, V As

X j

)+
m−1∑
s=1

d
(
V As

X j
, V As

Xk

)

+ (
d
(
V Am

Xi
, V Am

X j

)+ d
(
V Am

X j
, V Am

Xk

))

= (Dm−1(Xi , X j )+ Dm−1(X j , Xk))

+ (
d
(
V Am

Xi
, V Am

X j

)+ d
(
V Am

X j
, V Am

Xk

))

≥ Dm−1(Xi , Xk)+
(
d
(
V Am

Xi
, V Am

X j

)+ d
(
V Am

X j
, V Am

Xk

))

≥ Dm−1(Xi , Xk)+ d
(
V Am

Xi
, V Am

Xk

)

= Dm(Xi , Xk).

B. Set-Valued Modes as Cluster Centers

Given a set of set-valued objects X with m set-valued
features, the center of X is defined as follows.

Definition 2: Let X = {X1, X2, · · · , Xn} be a set of n
objects with m set-valued features, and let Q be a set-valued
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object with the same m set-valued features. Q is the set-
valued modes or the center of X if Q minimizes the following
function:

F(X, Q) =
n∑

i=1

Dm(Xi , Q) (2)

where Xi ∈ X and Dm(Xi , Q) is the distance between Xi and
Q as defined in (1). Here, Q is not necessarily an object of X.

If the features of X are single valued, Q is the modes
of X [7]. In a general case, if X has set-valued features, Q is
called the set-valued modes of X.

To minimize F(X, Q), we can separately minimize the sum
of the distance between the objects and the center in feature
A j ( j ∈ {1, 2, · · · , m}) to search for the set value Q A j ,

i.e., minimizing
∑n

i=1 d(V
A j

Xi
, Q A j ) to find Q A j . Supposing

that A j has r ′j distinct categorical values, the number of
categorical values that Q A j can have is between 1 and r ′j .
If the size of Q A j is r j , the number of possible sets for Q A j

is C
r j

r ′j
. Therefore, the total number of possible sets for Q A j to

choose from is
∑r ′j

r j=1 C
r j

r ′j
. With an exhaustive search method,

we can traverse each of
∑r ′j

r j=1 C
r j

r ′j
unique combinations to

find a Q A j that minimizes
∑n

i=1 d(V
A j
Xi

, Q A j ). This global

optimization algorithm, global algorithm of finding set-valued
modes (GAFSM), for finding set-valued modes is described
in Algorithm 1.

Algorithm 1 GAFSM Algorithm
1: Input:
2: - X = {X1, X2, · · · , Xn} : the set of n set-valued objects;
3: - m : the number of features;
4: Output: The set-valued modes Q;
5: Method:
6: Q = ∅;
7: for j = 1 to m do
8: Generate a set Q j = {Q1

A j
, Q2

A j
, · · · , Q2|V j |−1

A j
} of

∑r ′j
r j=1 C

r j

r ′j
combinations in V j by binomial theorem;

9: for i = 1 to 2|V j | − 1 do
10: T empV alue = ∞;
11: T empQ = ∅;
12: Compute Fi = F(X, Qi

A j
) according to (2);

13: if Fi ≤ T empV alue then
14: T empV alue = Fi ;
15: T empQ = Qi

A j
;

16: end if
17: end for
18: Q← T empQ;
19: end for
20: return Q;

C. SV-k-Modes Algorithm

Given (1) as the distance measure between objects with
set-valued features, the SV-k-modes algorithm for clustering a

set of set-valued objects X = {X1, X2, · · · , Xn} into k(� n)
clusters minimizes the following objective function:

F ′(W, Q) =
k∑

l=1

n∑

i=1

ωli Dm(Xi , Ql )

subject to

ωli ∈ {0, 1}, 1 ≤ l ≤ k, 1 ≤ i ≤ n (3)
k∑

l=1

ωli = 1, 1 ≤ i ≤ n (4)

0 <

n∑

i=1

ωli < n, 1 ≤ l ≤ k (5)

where W = [ωli ] is a k-by-n {0, 1} matrix in which ωli = 1
indicates that object Xi is allocated to cluster l and Q =
[Q1, Q2, · · · , Qk ], where Ql ∈ Q is the set-valued modes of
cluster l with m set-valued features.

F ′(W, Q) can be solved with an iterative process for solving
two subproblems iteratively until the process converges. The
first step is to fix Q = Qt at iteration t and solve the
reduced problem F ′(W, Qt ) with (1) to find W t that min-
imizes F ′(W, Qt ). The second step is to fix W t and solve
the reduced problem F ′(W t , Q) using algorithm G AFSM for
finding the Qt+1 that minimizes F ′(W t , Q). The SV-k-modes
algorithm is given in Algorithm 2.

Algorithm 2 SV-k-Modes Algorithm
1: Input:
2: - X : a set of n set-valued objects;
3: - k : the number of clusters;
4: Output: {C1, C2, · · · , Ck}, a set of k clusters;
5: Method:
6: Step 1. Randomly choose k objects as Q(1). Determine

W (1) such that F ′(W, Q(1)) is minimized with (1). Set t =
1.

7: Step 2. Determine Q(t+1) such that F ′(W (t), Q(t+1))
is minimized with Algorithm 1. If F ′(W (t), Q(t+1)) =
F ′(W (t), Q(t)), then stop; otherwise, goto step 3.

8: Step 3. Determine W (t+1) such that F ′(W (t+1), Q(t+1))
is minimized. If F ′(W (t+1), Q(t+1)) = F ′(W (t), Q(t+1)),
then stop; otherwise, set t = t + 1 and goto step 2.

The computational complexity of the SV-k-modes algorithm
is analyzed as follows.

1) The computational complexity for the calculation of
the distance between two objects on feature A j is
O(|V j |). The computational complexity of the calcula-
tion of the distance between two objects in m features is
O(m × |V ′|), where |V ′| = max{|V j ||1 ≤ j ≤ m}.

2) Updating cluster centers. The main goal of updating
cluster centers is to find the set-valued modes in each
cluster according to the partition matrix W . The compu-
tational complexity for this step is O(km×2|V ′|), where
|V ′| = max{|V j ||1 ≤ j ≤ m}.

If the clustering process needs t iterations to converge, the
total computational complexity of the SV-k-modes algorithm
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is O(nmtk × 2|V ′|), where |V ′| = max{|V j ||1 ≤ j ≤ m}. It is
obvious that the time complexity of the proposed algorithm
increases linearly as the number of objects, features, or clusters
increases.

Theorem 1: The SV-k-modes algorithm converges to a local
minimal solution in a finite number of iterations.

Proof: We note that the number of possible values for the

center of a cluster is N = �m
j=1

∑|V j |
r j=1 C

r j

|V j |, where |V j | is

the number of unique values in A j and C
r j

|V j | is the number

of combinations in choosing r j values from a set of |V j |
values. When dividing a data set into k clusters, the number
of possible partitions is finite. We can show that each possible
partition only occurs once in the clustering process. Let W h be
a partition at iteration h. We can obtain the Qh that depends
on W h .

Suppose that W h1 = W h2 , where h1 and h2 are two
different iterations, i.e., h1 = h2. If Qh1 and Qh2 are obtained
from W h1 and W h2 , respectively, then Qh1 = Qh2 because
W h1 = W h2 . Therefore, we have

F ′(W h1 , Qh1) = F ′(W h2 , Qh2 ).

However, the value of the objective function F ′(·, ·) generated
by the SV-k-modes algorithm is strictly decreasing. h1 and h2
must be two consecutive iterations in which the clustering
result is no longer changing and the clustering process con-
verges. Therefore, the SV-k-modes algorithm converges in a
finite number of iterations.

III. HEURISTIC METHOD FOR UPDATING

CLUSTER CENTERS

The GAFSM algorithm for finding cluster centers is not
efficient if the cluster is large and if the number of unique
values in the set-valued features is large. In this section,
we propose a heuristic method that is used to update the cluster
centers in the SV -k-modes clustering process. This method
constructs a cluster center Q with a subset of values in V j

with the highest frequency in the cluster of objects X, and
this Q results in a small value of (2). This heuristic method
increases the efficiency of updating cluster centers in the
SV -k-modes algorithm.

Definition 3: Let V j = {q j
1 , q j

2 , · · · , q j
r ′j
} be r ′j distinct

values of A j appearing in the cluster of objects X, and let
S j be a subset of V j . The probability-based frequency of S j

is defined as

f (S j ) = 1

n

n∑

i=1

ν
(
S j , V

A j
Xi

)
(6)

where n is the number of objects in X and

ν
(
S j , V

A j
Xi

) =

⎧
⎪⎨

⎪⎩

|S j |
|V A j

Xi
|
, if S j ⊆ V

A j
Xi

.

0, otherwise.

(7)

Theorem 2: Let X be a set of n set-valued objects, and let
A j be a feature with a value set V j = {q j

1 , q j
2 , · · · , q j

r ′j
}.

Suppose that Q A j = {q j
1 } is a subset of V j . Q A j mini-

mizes F(X, Q A j ) of (2) if f ({q j
1 }) ≥ f ({q j

t }), where t ∈
{2, 3 · · · , r ′j }.

Proof: To minimize F(X, Q A j ) = ∑n
i=1(1 −

(|V A j
Xi
∩ Q A j |/|V A j

Xi
∪ Q A j |)) = n − ∑n

i=1(|V A j
Xi
∩ Q A j |/

|V A j
Xi
∪ Q A j |), we only need to maximize

∑n
i=1(|V A j

Xi
∩ Q A j |/|V A j

Xi
∪ Q A j |). With (6), we have

n∑

i=1

∣∣V A j
Xi
∩ Q A j

∣∣
∣∣V A j

Xi
∪ Q A j

∣∣
=

n∑

i=1

∣∣V A j
Xi
∩ {q j

1 }
∣∣

∣∣V A j
Xi
∪ {q j

1 }
∣∣

=
n∑

i=1

∣∣V A j
Xi
∩ {q j

1 }
∣∣

∣∣V A j
Xi

∣∣

= n f
({

q j
1

})
.

Given Q′A j
= {q j

t } = Q A j , we have

n∑

i=1

∣∣V A j
Xi
∩ Q′A j

∣∣
∣∣V A j

Xi
∪ Q′A j

∣∣
= n f

({
q j

t

})
.

Because f ({q j
1 }) ≥ f ({q j

t }), F(X, Q A j ) ≤ F(X, Q′A j
).

Lemma 1: Let A and B be two finite sets, and let
B = {q1, q2, · · · , qn}. We have

|A ∩ B| = |A ∩ {q1}| + |A ∩ {q2}| + · · · + |A ∩ {qn}|. (8)

Proof: By the inclusion–exclusion principle [8], we have

|A ∩ B| = |A ∩ {q1, q2, · · · , qn}|
= |(A ∩ {q1}) ∪ (A ∩ {q2}) ∪ · · · ∪ (A ∩ {qn})|
= |(A ∩ {q1})| + |(A ∩ {q2})| + · · · + |(A ∩ {qn})|
+(−1)2−1

n∑

h=1

n∑

t>h

|(A ∩ {qh}) ∩ (A ∩ {qt })| + · · ·

+(−1)n−1|(A ∩ {q1}) ∩ (A ∩ {q2}) ∩ · · ·
× ∩ (A ∩ {qn})|.

Because q1 = q2 = · · · = qn , we have (A∩{qh})∩ (A∩{qt}) =
∅ for 1 ≤ h, t ≤ n, and h = t . Thus, we have

|A ∩ B| = |A ∩ {q1}| + |A ∩ {q2}| + · · · + |A ∩ {qn}|.

Theorem 3: Let X be a set of n set-valued objects, and
let A j be feature with the value set V j = {q j

1 , q j
2 , · · · , q j

r ′j
}.

Suppose that Q A j = {q j
1 , q j

2 , · · · , q j
r j } is a subset of V j and

that Q A j ⊆ V
A j

Xi
. Q A j minimizes F(X, Q A j ) if f ({q j

1 }) ≥
f ({q j

2 }) ≥ · · · ≥ f ({q j
r j }) > f ({q j

r j+1}) ≥ · · · ≥ f ({q j
r ′j
}).

Proof:
To minimize F(X, Q A j ) = ∑n

i=1(1 −
(|V A j

Xi
∩ Q A j |/|V A j

Xi
∪ Q A j |)) = n −

∑n
i=1(|V A j

Xi
∩ Q A j |/|V A j

Xi
∪ Q A j |), we only need to maximize



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CAO et al.: ALGORITHM FOR CLUSTERING CATEGORICAL DATA WITH SET-VALUED FEATURES 5

∑n
i=1(|V A j

Xi
∩ Q A j |/|V A j

Xi
∪ Q A j |). With Lemma 1 and (6),

we have

n∑

i=1

∣∣V A j
Xi
∩ Q A j

∣∣
∣∣V A j

Xi
∪ Q A j

∣∣

=
n∑

i=1

∣∣V A j
Xi
∩ {q j

1 }
∣∣+ ∣∣V A j

Xi
∩ {q j

2 }
∣∣+ · · · + ∣∣V A j

Xi
∩ {q j

r j }
∣∣

∣∣V A j
Xi
∪ Q A j

∣∣

=
n∑

i=1

∣∣V A j
Xi
∩ {q j

1 }
∣∣+ ∣∣V A j

Xi
∩ {q j

2 }
∣∣+ · · · + ∣∣V A j

Xi
∩ {q j

r j }
∣∣

∣∣V A j
Xi

∣∣

= n
(

f
({

q j
1

})+ f
({

q j
2

})+ · · · + f
({

q j
r j

}))
.

Given Q′A j
= {q j

s1, q j
s2, · · · , q j

sr j } = Q A j and Q′A j
⊆ V

A j
Xi

,
we have

n∑

i=1

∣∣V A j
Xi
∩ Q′A j

∣∣
∣∣V A j

Xi
∪ Q′A j

∣∣
= n

(
f
({

q j
s1v}

) + f
({

q j
s2

})

+ · · · + f
({

q j
sr j

}))
.

Because f ({q j
1 }) + f ({q j

2 }) + · · · + f ({q j
r j }) > f ({q j

s1}) +
f ({q j

s2})+ · · · + f ({q j
sr j }), F(X, Q A j ) < F(X, Q′A j

).
Using Definition 2 and Theorems 2 and 3, we can construct

Q A j from the set of r ′j unique values in feature A j . We first

compute the frequency f ({q j
h }) of all categorical values in

feature A j from cluster X and rank the categorical values in
descending order of f ({q j

h }) in set V j = {q j
1 , q j

2 , · · · , q j
r ′j
}.

Assume that Q A j has r j values. We consider three situations
to construct Q A j .

1) When r j = 1, we choose the most frequent categorical
value {q j

1 } for Q A j according to Theorem 2. If there is
more than one most frequent categorical value, we ran-
domly choose one value for Q A j .

2) When r j = r ′j , we choose all categorical values in A j

for Q A j as the center of the cluster.
3) When 1 < r j < r ′j , we have the following three cases.

Case 1: f ({q j
1 }) ≥ f ({q j

2 }) ≥ · · · ≥ f ({q j
r j }) >

f ({q j
r j+1}) ≥ · · · ≥ f ({q j

r ′j
}). We choose the first r j

most frequent categorical values for Q A j according to
Theorem 3.
Case 2: f ({q j

1 }) ≥ f ({q j
2 }) ≥ · · · > f ({q j

r j }) =
f ({q j

r j+1}) > · · · ≥ f ({q j
r ′j
}). We first

choose the first r j − 1 most frequent values
Q′ = {q j

1 , q j
2 , · · · , q j

r j−1} as part of values for

Q A j . If
∑r j−1

i=1 f ({q j
i , q j

r j }) >
∑r j−1

i=1 f ({q j
i , q j

r j+1}),
we choose {q j

r j } as the r j th value for Q A j ,

i.e., Q A j = {q j
r j } ∪ Q′. If

∑r j−1
i=1 f ({q j

i , q j
r j }) <

∑r j−1
i=1 f ({q j

i , q j
r j+1}), we choose Q A j = {q j

r j+1} ∪ Q′.
If

∑r j−1
i=1 f ({q j

i , q j
r j }) = ∑r j−1

i=1 f ({q j
i , q j

r j+1}),
we choose either Q A j = {q j

r j } ∪ Q′ or Q A j =
{q j

r j+1} ∪ Q′.

Case 3: f ({q j
1 }) ≥ f ({q j

2 }) ≥ · · · > f ({q j
r j−p′ }) =

· · · = f ({q j
r j }) = f ({q j

r j+1}) = · · · = f ({q j
r j+p}) >

f ({q j
r j+p+1}) ≥ · · · ≥ f ({q j

r ′j
}), where p′ and p are two

integers. We choose the first (r j − p′ −1) most frequent
categorical values as Q′ = {q j

1 , q j
2 , · · · , q j

r j−p′−1}.
Assume that Q j is the set of all combinations of p′ + 1
categorical values from the next p′ + p + 1 categorical
values. Let Qs be a combination in Q j that produces

the largest sum of frequencies, i.e.,
∑r j−p′−1

i=1 f ({q j
i } ∪

Qs) ≥ ∑r j−p′−1
i=1 f ({q j

i } ∪ Qt ), where Qt is any com-
bination in Q j and Qt = Qs . We choose Qs as the
remaining values for Q A j , i.e., Q A j = Qs ∪ Q′.

The cluster center Q A j constructed with the above meth-
ods from a given set of set-valued objects X results in a
smaller value of F(X, Q A j ) of (2). Therefore, we use this
heuristic method to update the set-valued modes in the set-
valued k-modes clustering process, which is more efficient
than the exhaustive method for transversing all possible val-
ues to update the set-valued modes. To further reduce the
computational complexity of updating the set-valued modes,
we fix the number of categorical values in Q A j as r j =
round(

∑n
i=1(|V A j

Xi
|/n)). For r j = 1, this case is equivalent

to the k-modes algorithm. The algorithm using the heuristic
method to update the set-valued modes is given in Algo-
rithm 3. The name of the algorithm, HAFSM, is the abbre-
viation for heuristic algorithm of finding set-valued modes.

IV. METHOD FOR OBTAINING INITIAL CLUSTER CENTERS

Because the SV-k-modes algorithm is sensitive to the initial
cluster centers, the choice of appropriate initial cluster centers
has a direct impact on the final clustering result. In this section,
we propose an algorithm for selecting the initial cluster centers
for the SV-k-modes algorithm. This algorithm is an extension
of a previous initialization method [9] used to obtain the initial
cluster centers for the k-modes algorithm.

Definition 4: Let X = {X1, X2, · · · , Xn} be a set of n set-
valued objects with m set-valued features. For any Xi ∈ X,
the density of Xi is defined as

Dens(Xi ) = 1

n

m∑

j=1

n∑

p=1

∣∣V A j
Xi
∩ V

A j
X p

∣∣
∣∣V A j

Xi
∪ V

A j
X p

∣∣
. (9)

Dens(Xi ) is a measure of the number of objects in the
neighborhood of Xi . A larger value of Dens(Xi ) denotes a
higher number of objects in the neighborhood of Xi . With
this measure, we can select the objects with large values of
Dens(Xi ) as the candidates for the initial cluster centers.
Among the candidates, we compute the mutual distances of
these objects and select the candidates with large mutual
distances as the initial cluster centers. The generating initial
cluster centers algorithm (GICCA) is shown in Algorithm 4.

In finding a set of initial cluster centers, finding the
first initial cluster center has a computational complexity
of O(n2m|V ′|), where |V ′| = max{|V j ||1 ≤ j ≤ m}.
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Algorithm 3 HAFSM
1: Input:
2: - X = {X1, X2, · · · , Xn} : the set of n set-valued objects;
3: - m : the number of features;
4: Output: The set-valued modes Q;
5: Method:
6: Q = ∅;
7: for j = 1 to m do
8: Obtain the domain values V j of the j th feature;
9: Compute the probability-based frequency of each domain

value according to (6) and arrange the categorical values
of V j = {q j

1 , q j
2 , · · · , q j

|V j |} in descending order of the
probability-based frequency;

10: r = round(
∑n

i=1(|V A j
Xi
|/n));

11: if r = 1 then
12: Select the most frequent value as the j th component

of Q; if there is more than one most frequent categor-
ical value, we arbitrarily select one value as the j th
component of Q;

13: end if
14: if r > 1 and f ({q j

r }) > f ({q j
r+1}) then

15: Select the first r values {q j
1 , q j

2 , · · · , q j
r } as the j th

component of Q;
16: end if
17: if r > 1 and f ({q j

r−p′ }) = f ({q j
r−p′+1}) = · · · =

f ({q j
r }) = · · · = f ({q j

r+p}) then
18: Select p′ + 1 values from

{q j
r−p′ , q j

r−p′+1, · · · , q j
r , q j

r+p}, generate c p′+1
r−p′+1+p

types of combinations by the binomial theorem.
19: Take the first r− p′−1 most frequent categorical values

as Q′;
20: For each combination, form r − p′ − 1 pairs with each

value of Q′;
21: Compute the sum of the probability-based frequencies

of r − p′ − 1 pairs for each combination using (6).
22: Take the combination with the largest sum and Q′ as

the j th component of Q;
23: end if
24: end for
25: return Q;

Finding the remaining initial cluster centers has a computa-
tional complexity of O(nmk|V ′|), where |V ′| = max{|V j ||1 ≤
j ≤ m}. The total computational complexity of GICCA is
O(n2m|V ′|), where |V ′| = max{|V j ||1 ≤ j ≤ m}.

Example 1: X has four objects, X1, X2, X3, and X4, each
described by one feature A1, where V A1

X1
= {a, b, e}, V A1

X2
=

{a, d, e}, V A1
X3
= {a, b, c, d}, and V A1

X4
= {a, b, c}. We suppose

that X can be divided into two clusters. The two initial
cluster centers can be computed as follows. According to
Definition IV, we have that

Dens(X1)

= 1

4

( |{a, b, e} ∩ {a, b, e}|
|{a, b, e} ∪ {a, b, e}|+

|{a, b, e} ∩ {a, d, e}|
|{a, b, e} ∪ {a, d, e}|

Algorithm 4 GICCA
1: Input:
2: - X : a set of n set-valued objects;
3: - k : the number of clusters desired;
4: Output: k objects;
5: Method:
6: Step 1: Centers = ∅;
7: Step 2: For each Xi ∈ X, calculate the Dens(Xi ),

Centers = Centers ∪ {Xi1 }, where Xi1 satisfies
Dens(Xi1 ) = max{Dens(Xi )|1 ≤ i ≤ n}, and the first
cluster center is selected;

8: Step 3: Find the second cluster center, Centers =
Centers ∪ {Xi2 }, where Xi2 satisfies Dm(Xi2 , Xm) ×
Dens(Xi2 ) = max{Dm(Xi , Xm) × Dens(Xi )|Xm ∈
Centers, 1 ≤ i ≤ n};

9: Step 4: If |Centers| < k, then goto Step 5; otherwise, goto
Step 6;

10: Step 5: For any Xi ∈ X, Centers = Centers ∪
{Xi3}, where Xi3 satisfies Dm(Xi3 , Xm) × Dens(Xi3 ) =
max{minXm∈Centers{Dm(Xi , Xm) × Dens(Xi )}|Xi ∈ X},
goto Step 4;

11: Step 6: Return Centers;

+ |{a, b, e} ∩ {a, b, c, d}|
|{a, b, e} ∪ {a, b, c, d}|+

|{a, b, e} ∩ {a, b, c}|
|{a, b, e} ∪ {a, b, c}|

)

= 1

4

(
1+ 2

4
+ 2

5
+ 2

4

)

= 48

80
.

Similarly, we can obtain Dens(X2) = (42/80),
Dens(X3) = (51/80) and Dens(X4) = (49/80).

Therefore, X3 can be taken as the first initial cluster center.
For the second initial cluster center, we have that

Dm(X3, X1)× Dens(X1) = 3

5
× 48

80
= 150

400
= 0.3600

Dm(X3, X2)× Dens(X2) = 3

5
× 42

80
= 126

400
= 0.3150

Dm(X3, X4)× Dens(X4) = 1

4
× 49

80
= 49

320
= 0.1531.

Thus, X1 is taken as the second initial cluster center.

V. EXPERIMENTS ON REAL DATA

In this section, we present experiment results on five real
data sets from different applications to show the effectiveness
and efficiency of the SV-k-modes algorithm. We first discuss
the preprocessing methods that are used to convert the real
data into the set-valued representation. Then, we present five
external indices used for evaluating clustering algorithms.
Finally, we show the comparison results for the SV-k-modes
algorithm against other algorithms on the five real data sets.

A. Data Preprocessing

The five publicly available real data sets are not in the
set-valued representation, and the SV-k-modes algorithm can-
not directly cluster these data sets in their original formats.
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Fig. 1. Distribution of Market Basket data.

We conducted a series of data preprocessing steps on each
data set to convert them into the set-valued representation.
These preprocessing steps on each data set are elaborated upon
below.

1) Musk Data: Musk data used for drug activity predic-
tion [10] were downloaded from University of California,
Irvine (UCI) [11]. The Musk data are given in two data sets:
Musk1 and Musk2. We only used Musk1, which contains a set
of molecules. Each molecule has different shapes or confor-
mations, which are described by 166 numerical features. Each
shape or conformation of a molecule is represented as a single
record in the data set. Some molecules have only one shape
record, whereas some have as many as 1044 records. There-
fore, each molecule can be treated as a set-valued object. The
molecules in the Musk data were labeled by human experts
into two classes: musks and nonmusks. In the experiment,
we considered that the Musk data could be clustered into two
clusters.

2) Market Basket Data: Market Basket data were down-
loaded from a website.1 These data have been frequently used
to evaluate association rule algorithms. The Market Basket
data set contains transactions of 1001 customers, each having
at most seven transaction records. The transaction records have
four attributes or features: Customer_Id, Transaction_Time,
Product_Name, and Product_Id. We deleted Transaction_Time
because the time value was the same for all records.
Product_Id and Product_Name represent the same feature;
therefore, we only kept Product_ID. After removing Trans-
action_Time and Product_Name from the data set, we con-
verted the Market Basket data into a set of 1001 set-valued
objects (customers) with one set-valued feature: Product_ID.
Then, we used the set-valued distance in (1) to compute the
mutual distances between customers and the multidimensional
scaling technique [12] to compute two coordinate values
x and y for each customer from the mutual distance matrix.
Fig. 1 shows the distribution of the 1001 customers in the
2-D space. We can observe that the 1001 customers can be
divided into 3 clusters. In the experiments, we considered the
number of clusters in this data set as 3.

3) Microsoft Web Data: The Microsoft Web data were
downloaded from UCI [11]. The data set records the

1http://www.datatang.com/datares/go.aspx?dataid=613168

Fig. 2. Distribution of Microsoft Web data.

Fig. 3. Distribution of the Alibaba data.

areas (Vroots) of www.microsoft.com where users visited
during a week in February 1998. Each record has two features:
User_Id and Vroots. If a user visited several areas of the
website, the user had several records. Therefore, users are set-
valued objects, and Vroots is a set-valued feature. Similarly,
we computed the distance matrix of the users using (1), and
we computed two coordinates x and y of the users from the
distance matrix using the multidimensional scaling technique.
Fig. 2 shows the distribution of users in the 2-D space. We can
see that this data set has two clusters.

4) Alibaba Data: These data were downloaded from a
website.2 This data set was provided by Alibaba for a big data
competition in 2014. The Alibaba data set contains records
of User_Id, Time, Action_type, and Brand_Id. Each record
describes a user who visited a brand at a given time and took
a specific action. In these data, we only considered the User_Id
and Brand_Id features, i.e., each user was interested in a
particular set of brands. Therefore, users are set-valued objects,
and Brand is a set-valued feature. With the same technique,
we plotted the distribution of the users in a 2-D space as shown
in Fig. 3. We can see that the Alibaba data set has two clusters.

5) MovieLens Data: The MovieLens data were downloaded
from the MovieLens website.3 The data contain four tables
about rating information, user information, movie information,

2http://102.alibaba.com/competition/addDiscovery/index.htm
3http://grouplens.org/data sets/movielens/
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Fig. 4. Distribution of MovieLens data.

TABLE II

SUMMARY OF REAL SET-VALUED DATA SETS

and tag information. We only used the first three tables.
The data were divided into three different sizes: Movie-
Lens 100 k, MovieLens 1 M, and MovieLens 10 M.
We chose the MovieLens 1 M data to evaluate the SV-k-modes
algorithm.

The rating table contains 6040 users, who rated approxi-
mately 3900 movies. The rating was on a 5-star scale. Each
user has at least 20 rating records. The rating table has
1 000 209 rating records with four features: User_Id, Movie_Id,
Rating, and Timestamp. The movie table has three features:
Movie_Id, Title, and Genres. Movie_Id and Genres have a
one-to-many relationship, i.e., each movie has several genre
values.

The user table has User_Id and other demographic features,
such as Gender, Age, Occupation, and Zip-code, which are cat-
egorical features. Age contains seven categories corresponding
to age ranges. Occupation has 21 distinct categorical values.

The rating table was first joined with the movie table
on Movie_Id. Then, the joined table was further joined
with the user table on User_Id to create a final table with
eight features: User_Id, Gender, Age, Occupation, Zip-code,
Genres, Rating, and Timestamp. Among them, User_Id,
Gender, Age, Occupation, Zip-code, and Timestamp are
single-valued features, and Genres and Rating are set-
valued features. The final table possesses 6040 set-valued
objects (users). In the experiments, Zip-code and Timestamp
were removed because they took on too many different
values. We took a sample of 2306 objects and computed
their 2-D coordinates. Fig. 4 shows the distribution of the
2306 objects. We can observe that the sample data have three
clusters.

The final data sets from the five real data sets are listed
in Table II. These set-valued data sets were used in the
experiments to evaluate the SV-k-modes algorithm.

TABLE III

CONTINGENCY TABLE

B. Measures of Clustering Results

Five measures were used to evaluate the clustering results:
1) the adjusted Rand index (ARI) [13]; 2) the normalized
mutual information (NMI) [14]; 3) accuracy (ac); 4) preci-
sion (PE); and 5) recall (RE). These measures are defined as
follows.

Let X be a categorical set-valued data set, let C =
{C1, C2, · · · , C ′k} be the set of clusters of X generated by a
clustering algorithm, and let P = {P1, P2, · · · , Pk} be the
set of the true classes of X. The intersections of clusters
and classes are summarized in the contingency table shown
in Table III, where ni j denotes the number of objects in
common between Pi and C j : ni j = |Pi ∩ C j |. pi and c j

are the numbers of objects in Pi and C j , respectively.
The five evaluation measures are calculated from the con-

tingency table as follows:

ARI =

∑
i j

C2
ni j
− [ ∑

i
C2

pi

∑
j

C2
c j

]/
C2

n

1
2

[ ∑
i

C2
pi
+∑

j
C2

c j

]− [∑
i

C2
pi

∑
j

C2
c j

]/
C2

n

N M I =

k∑
i=1

k′∑
j=1

ni j log
(

ni j n
pi c j

)

√
k∑

i=1
pilog

( pi
n

) k′∑
j=1

c j log
( c j

n

)

ac = 1

n
max

j1 j2··· jk∈S

k∑

i=1

ni ji

P E = 1

k

k∑

i=1

ni j∗i
pi

RE = 1

k ′
k′∑

i=1

ni j∗i
ci

where n1 j∗1 + n2 j∗2 + · · · + nkj∗k = max
j1 j2··· jx k∈S

∑k
i=1 ni ji

( j∗1 j∗2 · · · j∗k ∈ S) and S = { j1 j2 · · · jk| j1, j2, · · · , jk ∈
{1, 2, · · · , k}, ji = jt for i = t } is a set of all
permutations of 1, 2, · · · , k. In these experiments, we let
k = k ′, i.e., the number of clusters to be found was equal
to the number of classes in the data set. Larger values of
ARI , N M I , ac, P E , and RE indicate better clustering
results.
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TABLE IV

COMPARISON RESULTS OF GAFSM AND HAFSM ON MARKET BASKET DATA

TABLE V

RUNTIME OF THE SV-k-MODES ALGORITHM WITH GAFSM AND HAFSM ON MARKET BASKET DATA

C. Comparisons of Two Cluster Center Update
Algorithms: GAFSM and HAFSM

In this section, we show the performance comparison results
of the cluster center update algorithms GAFSM and HAFSM
used in the SV-k-modes algorithm. Because the exhaustive
search algorithm GAFSM is very time-consuming, we only
used it to cluster the Market Basket data. Table IV shows
the results of the clustering performance of the SV-k-modes
algorithm with two initial cluster center selection methods,
Random and GICCA, and two cluster center update methods,
GAFSM and HAFSM. In this experiment, each combination of
the SV-k-modes algorithm was run 20 times on the data set,
except the combination with GICCA because the clustering
results of the SV-k-modes algorithm with GICCA are unique.
The values of the five performance measures in Table IV are
the mean values and standard deviations of 20 results.

From Table IV, we can see that the combination of
SV-k-modes+GICCA+HAFSM achieved the best perfor-
mance. Comparing the combinations with GAFSM and
HAFSM, we can see that the SV-k-modes algorithm with
HAFSM performed much better than the SV-k-modes algo-
rithm with GAFSM. This indicates that the HAFSM cluster
center update method is better than the GAFSM cluster center
update method. This may imply that cluster centers constructed
with HAFSM are better representatives of clusters than are the
cluster centers found by GAFSM.

Comparing the random initial cluster center selection
method with GICCA, we can see that GICCA improved
the clustering performance significantly. This indicates that
GICCA is a necessary step in the SV-k-modes algorithm.

Table V shows the execution time of the SV-k-modes
algorithm with the two update methods. We can see that
the SV-k-modes algorithm with GAFSM was very slow.
It took approximately 34 hours to produce one clustering
result from the Market Basket data. This is not acceptable
in real applications. Therefore, we did not use GAFSM in the
other experiments. On the other hand, we can see that the
SV-k-modes algorithm with HAFSM only took a few seconds
to produce a clustering result from the same data set. HAFSM
speeds up the SV-k-modes process tremendously and is a key
step in the SV-k-modes algorithm.

Fig. 5 shows the relationship between the accuracy ac
of the clustering results and the values of the objective

Fig. 5. Relationship between F ′ and ac from 20 results of Market Basket
data.

function minimized by the SV-k-modes algorithm with
GAFSM. From the 20 results, we can see that the clustering
accuracy ac is negatively related to the objective function
value F ′. Specifically, a smaller objective function value F ′
results in a higher clustering accuracy ac. However, this
relationship is not deterministic. Certain larger values of F ′
result in high clustering accuracy. This may be why HAFSM
can produce more accurate clustering results than GAFSM.

D. Comparisons of SV-k-Modes With Other
Clustering Algorithms

In this section, we compare the clustering results of the
SV-k-modes algorithm from the five data sets in Table II
with the clustering results of three clustering algorithms: a
multi-instance clustering algorithm (BAMIC) [15], k-modes,
and Trk-means [2]. Due to the different characteristics of the
data sets and algorithms, we present the comparison results
separately on different data sets. We also compare the results
of the SV-k-modes algorithm with GICCA and random initial
cluster center selection.

1) Results on Musk1 Data: On this data set, we compared
the clustering results of the SV-k-modes algorithm against the
results of the BAMIC algorithm [15], which is an extension to
the k-medoids algorithm with Hausdorff distances to cluster
unlabeled bags. In this experiment, we used three Hausdorff
distances, minimal, maximal and average, in BAMIC and
both random and GICCA initial cluster center selection meth-
ods in the SV-k-modes algorithm. A total of 50 runs were



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VI

COMPARISON RESULTS OF BAMIC AND SV-k-MODES ALGORITHMS ON MUSK1 DATA

TABLE VII

COMPARISON RESULTS OF k-MODES, TRk-MEANS, AND SV-k-MODES ALGORITHMS ON MARKET BASKET DATA

TABLE VIII

COMPARISON RESULTS OF k-MODES, TRk-MEANS, AND SV-k-MODES ALGORITHMS ON MICROSOFT WEB DATA

TABLE IX

COMPARISON RESULTS OF k-MODES, TRk-MEANS, AND SV-k-MODES ALGORITHMS ON ALIBABA DATA

conducted for each algorithm, and five evaluation measures
were calculated to facilitate an evaluation of the results.
Table VI shows the clustering performance mean values and
standard deviations of five combinations of two algorithms
with respect to five evaluation measures. Each performance
value was computed from 50 clustering results.

From Table VI, we can find that SV-k-modes+
GICCA+HAFSM performed significantly better than the
other four algorithms. BAMIC(average) is slightly better
than SV-k-modes+HAFSM, which is much better than
BAMIC(minimal) and BAMIC(maximal). These results further
demonstrate that GICCA is an effective initial cluster center
selection method and much better than random selection.

2) Results on Market Basket, Microsoft Web, and Alibaba
Data Sets: On these three data sets, we compared the clus-
tering results of the SV-k-modes algorithm with the results
of two clustering algorithms: k-modes and Trk-means [2].
We first converted the set-valued features into single-valued
features with dummy features for the k-modes algorithm.
Because the result of Trk-means is sensitive to the parame-
ter γ , we tested three γ values: 0.1, 0.3, and 0.5. For the
SV-k-modes algorithm, we used both GICCA and HAFSM
because these two methods used together produced the best

performance of the SV-k-modes algorithm. Each algorithm
was run 50 times on each data set. The results in terms
of the five evaluation measures on each data set are given
in Tables VII, VIII, and IX.

From Tables VII, VIII, and IX, we can see that
SV-k-modes+GICCA+HAFSM performed significantly better
than the other algorithms on the three data sets. Because
Trk-means could not produce meaningful results with γ = 0.5
on the Alibaba data set, the results were excluded from
Table IX.

3) Results on MovieLens Data: Because the MovieLens
data include both single-valued features and set-valued fea-
tures, Trk-means cannot be applied to these data because
the cluster representatives are meaningless on single-valued
features. Therefore, we only compared the SV-k-modes algo-
rithm with the k-modes algorithm. Table X shows the results
in terms of the five evaluation measures. We can see that
the k-modes algorithm performed poorly on these data.
The SV-k-modes algorithm with HAFSM and random ini-
tial centers performed much better than the k-modes algo-
rithm. This indicates that the SV-k-modes algorithm is a
good algorithm for data with both single-valued features
and set-valued features. After adding GICCA to the the
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TABLE X

COMPARISON RESULTS OF k-MODES AND SV-k-MODES ALGORITHMS ON MOVIELENS DATA

TABLE XI

SET-VALUED CLUSTER CENTERS FROM A CLUSTERING RESULT OF MOVIELENS DATA BY THE SV-k-MODES ALGORITHM

TABLE XII

MOVIE CATEGORIES OF THE CODES OF THE GENRES

FEATURE IN TABLE XI

SV-k-modes algorithm, the performance was further improved
significantly.

To further investigate the clustering results, we list the
three cluster centers in Table XI from one cluster result by
SV-k-modes+GICCA+HAFSM. Table XII lists the movie
categories of the codes of the Genres feature. With the
information shown in the cluster centers, we can give some
explanations about user preferences. For example, few people
like Documentary films because this category do not appear
in the set-valued cluster centers of the Genres feature. Users
in cluster C3 do not like “Animation” films but love “West-
ern” movies because of their age. Users in cluster C1 enjoy
“Film-Noir” movies, but users in the other two groups do
not. Although these explanations are not profound, the results
indeed reveal that the SV-k-modes algorithm can obtain more
interesting information from complex set-valued data than can
other clustering algorithms.

Table XIII shows the cluster centers of one clustering result
produced by the k-modes algorithm. These cluster centers on
the Age, Occupation, and Rating features are not interpretable.
Comparatively, the information of the cluster centers by the
SV-k-modes algorithm is much richer and more useful.

VI. SCALABILITY STUDIES ON SYNTHETIC DATA

In this section, we present the results of a scalability test
of the SV-k-modes algorithm on synthetic data. The algorithm
used to generate set-valued synthetic data is proposed, and the
scalability of the SV-k-modes algorithm on synthetic data sets
is demonstrated.

A. Data Generation Method

Let X denote a set of n set-valued objects {X1, X2, · · · , Xn}
to be generated with m set-valued features {A1, A2, · · · , Am},
and let V j be the set of categories for the set value of
feature A j , where ( j = 1, 2, · · · , m). We use the following
parameters to generate the synthetic data set X with k clusters
C = {C1, C2, · · · , Ck}, and we make each cluster identifiable
from other clusters:

1) k: the number of clusters to be generated in X;
2) ci : the number of objects in Ci ;
3) ρ: the overlap percentage of feature values between any

two clusters.
For simplicity, we make the numbers of categories equal for

all V j , where j = 1, 2, · · · , m. To generate an object X for
cluster Ci , we perform the following steps.

1) Construct a set of set values of feature A j ( j =
1, 2, · · · , m) for cluster Ci with specific parameters ρ,
k, and V j .

2) Randomly select one set value as the value of object X
for feature A j , where j = 1, 2, · · · , m.

3) Repeat Step 2 to generate all set-valued objects for
cluster Ci and assign the cluster label to all objects in
the cluster.

Repeat the above steps to generate objects for other clusters
with different parameters ρ, k, and V j . The synthetic data gen-
eration algorithm generating set-valued data algorithm (GSDA)
is given in Algorithm 5.

B. Scalability Study

We test the scalability of the SV-k-modes algorithm against
changes in the number of objects, the number of features,
the number of clusters, and the number of categories of the
set-valued features. A total of 10 synthetic data sets were
generated with GSDA. The parameter ρ was set to 0.5. In each
scalability experiment, the same data set was utilized 10 times,
and the execution time was the average of 10 runs. The
experiments were conducted on a PC with an Intel Xeon
i7 CPU (3.4 GHz) and 16 GB of memory. The experimental
results are reported based on four experiments below.

Experiment 1: In this experiment, we set m = 10, |V j | = 10
( j = 1, 2, . . . , m), and k = 2, and the number of objects was
varied from 1000 to 5000 with a step length of 1000.
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TABLE XIII

CLUSTER CENTERS FROM A CLUSTERING RESULT OF MOVIELENS DATA BY THE k-MODES ALGORITHM

Algorithm 5 GSDA
1: Input:
2: - n : the number of objects in each cluster;
3: - m : the number of features;
4: - V j : the domain values in A j ;
5: - ρ : the overlap percentage of domain values of each

feature in different clusters;
6: - k : the number of clusters;
7: Output: A synthetic data set X with label;
8: Method:
9: X = ∅;

10: for i = 1 to k do
11: for j = 1 to m do
12: Uniformly allocate V j to k clusters V j

1 , V j
2 , · · · , V j

k ;
13: end for
14: end for
15: for i = 1 to k do
16: for p = 1 to n do
17: for q = 1 to m do
18: Obtain the domain values of the qth features V q

i in
the i th cluster;

19: for h = 1 to k do
20: if i!=h then
21: Compute the number of overlap feature values

rationum = round(|V q
h | × ρ);

22: Randomly select rationum values from V q
h and

add them to V q
i ;

23: end if
24: end for
25: Randomly select r values from V q

i as the qth com-
ponent of X ;

26: end for
27: Assign the label i to object X ;
28: Add X to X;
29: end for
30: end for
31: return X;

Fig. 6 shows the scalability of the SV-k-modes algorithm
against the number of objects. We can see that this algorithm
was linearly scalable to the number of objects. Therefore,
the SV-k-modes algorithm can efficiently cluster a large num-
ber of set-valued objects.

Experiment 2: In this experiment, we set |X| = 1000,
|V j | = 10 ( j = 1, 2, . . . , m), and k = 2, and the number
of set-valued features was changed from 10 to 50 with a step
length of 10.

Fig. 7 shows the scalability of the SV-k-modes algorithm
against the number of features. The SV-k-modes algorithm

Fig. 6. Scalability of the SV-k-modes algorithm against the number of
objects.

Fig. 7. Scalability of the SV-k-modes algorithm against the number of
features.

was linearly scalable to the number of features. Therefore,
the SV-k-modes algorithm can efficiently cluster high-
dimensional data.

Experiment 3: In this experiment, we set |X| = 1000,
|V j | = 50 ( j = 1, 2, . . . , m), and m = 10, and the number of
clusters was varied from 2 to 10 with a step length of 2.

Fig. 8 shows the scalability of the SV-k-modes algo-
rithm against the number of clusters. We can see that the
SV-k-modes algorithm scaled well with the number of clusters.

Experiment 4: In this experiment, we set |X| = 1000,
m = 10, and k = 2, and the number of categories in the set-
valued features was varied from 10 to 50 with a step length
of 10.

Fig. 9 shows the scalability of the SV-k-modes algorithm
against the number of categories in the set-valued features.
It can be observed that the runtime of the SV-k-modes algo-
rithm scaled nearly linearly with the number of categories in
the set-valued features.

These experiments indicate that the SV-k-modes algorithm
with HAFSM scales linearly with the numbers of objects,
features, clusters, and categories in the set-valued features.
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Fig. 8. Scalability of the SV-k-modes algorithm against the number of
clusters.

Fig. 9. Scalability of the SV-k-modes algorithm against the number of
categories in the set-valued features.

VII. RELATED WORK

In real applications, categorical data are ubiquitous. The
k-modes algorithm [7] extends the k-means algorithm [4]
using a simple matching dissimilarity measure for categorical
objects, modes instead of means for clusters, and a frequency-
based method to update modes in the clustering process to
minimize the clustering objective function. These extensions
have removed the numeric-only limitation of the k-means
algorithm and enabled the k-means clustering process to be
used to efficiently cluster large categorical data sets from
real-world applications [16], [17]. There are two versions of
k-modes clustering [18], [19]. Huang and Ng [20] analyzed
the relationship between the two k-modes methods. So far,
the k-modes algorithm and its variants [21], [22], including the
fuzzy k-modes algorithm [23], the fuzzy k-modes algorithm
with fuzzy centroid [24], the k-prototype algorithm [7], and
w-k-means [25], [26], have been widely used in many dis-
ciplines. However, these methods, including [27]–[29], can-
not be used to cluster set-valued data sets effectively. The
SV-k-modes algorithm attempts to fill this gap.

VIII. CONCLUSION

In real applications, data with set-valued features are not
uncommon, and current algorithms are not effective in clus-
tering set-valued data. In this paper, the SV-k-modes algorithm
was proposed for clustering categorical data sets with set-
valued features. In the proposed algorithm, a new distance
is used to compute the distance between two set-valued
objects. A set-valued cluster center representation and the

methods for updating the set-valued cluster centers in the
iterative clustering process were developed. The convergence
of the SV-k-modes clustering process was proved, and the
time complexity of the SV-k-modes algorithm was analyzed.
The heuristic method proposed to construct set-valued cluster
centers in each iteration of the SV-k-modes algorithm speeds
up the clustering process. An initialization algorithm for
selecting the initial cluster centers was developed to improve
the performance of the clustering algorithm. A method to
generate set-valued synthetic data for scalability testing was
developed. The experimental results on synthetic and real data
sets have shown that the SV-k-modes algorithm outperforms
other clustering algorithms in terms of clustering accuracy and
that the algorithm is scalable to large and high-dimensional
data.

Our future work is to accelerate the updating process of
the cluster centers in HAFSM by building a hierarchical
tree structure and applying the SV-k-modes algorithm to the
behavior analysis of customers.
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