Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section.</td>
</tr>
</tbody>
</table>

Please check this box if you have no corrections to make to the PDF file

Thank you for your assistance.
NMGRS: Neighborhood-based multigranulation rough sets

Guoping Lina,*, Yuhua Qianb, Jinjin Lia

a Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou, 363000 Fujian, China
b Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan, 030006 Shanxi, China

A B S T R A C T

Recently, a multigranulation rough set (MGRS) has become a new direction in rough set theory, which is based on multiple binary relations on the universe. However, it is worth noticing that the original MGRS can not be used to discover knowledge from information systems with various domains of attributes. In order to extend the theory of MGRS, the objective of this study is to develop a so-called neighborhood-based multigranulation rough set (NMGRS) in the framework of multigranulation rough sets. Furthermore, by using two different approximating strategies, i.e., seeking common reserving difference and seeking common rejecting difference, we first present optimistic and pessimistic 1-type neighborhood-based multigranulation rough sets and optimistic and pessimistic 2-type neighborhood-based multigranulation rough sets, respectively. Through analyzing several important properties of neighborhood-based multigranulation rough sets, we find that the new rough sets degenerate to the original MGRS when the size of neighborhood equals zero. To obtain covering reducts under neighborhood-based multigranulation rough sets, we then propose a new definition of covering reduct to describe the smallest attribute subset that preserves the consistency of the neighborhood decision system, which can be calculated by Chen’s discernibility matrix approach. These results show that the proposed NMGRS largely extends the theory and application of classical MGRS in the context of multiple granulations.

* Corresponding author. Tel.: +86 13063130529.
E-mail addresses: guoplin@163.com (G. Lin), jinchengqyh@126.com (Y. Qian), jinjinli@fzsu.edu.cn (J. Li).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Rough set theory was originally introduced by Pawlak as a tool to deal with vague, uncertain and incomplete data. It has been found applicable in knowledge discovery, decision analysis, conflict analysis and pattern recognition. One of the applications of rough set theory is to obtain a concept approximation of a universe by two definable subsets called lower and upper approximations. It has been known that lower and upper approximation operators in Pawlak’s rough set are defined by an equivalence (indiscernibility) relation \([24,25]\). With respect to different requirements, in the past ten years, various extensions of Pawlak’s rough set have been developed. There are two main methods to generalize it. One method is to extend an equivalence relation to other binary relations, such as a similarity relation, a tolerance relation, and dominance relation \([2–5,21–23,26,31,32,34,35,37–40,42,43,51,54–56]\). The other is to replace a partition of the universe with a covering and obtained the covering rough sets \([1,19,57–59]\). Particularly, in order to deal with an information system with numerical attribute, Lin \([13–17]\) presented the neighborhood-based rough set in the neighborhood information system which was originated by Sierpinski and Krieger \([36]\). Yao studied the neighborhood information system and proposed an approximation retrieval model based on it \([49]\). Furthermore, Hu et al. \([6–9]\) introduced a different neighborhood-based rough set for heterogeneous feature selection, which can be used to deal with an information system with heterogeneous attributes including categorical attributes and numerical attributes.

© This is an extended version of the paper presented at the 3rd National Conference on Intelligent Information Processing August 12–14, 2011, Shanxi, China.
Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason (2012), http://dx.doi.org/10.1016/j.ijar.2012.05.004
From above, however, we can find that all extensional rough sets including neighborhood rough sets are constructed on the basis of a single binary relation, which limit the applications of rough set theory. In the view of granular computing, they are constructed on a single granulation. Accordingly, Qian et al. [28,29] proposed multigranulation rough set in complete information system according to a user’s different requirements or targets of problem solving. One of important contributions in MGRS is to describe the lower and upper approximations of the rough set by multiple equivalence relations (multiple granulations) instead of a single equivalence relation (a single granulation). In their papers, Qian et al. said that the MGRS are useful in the following cases [28]:

1. We cannot perform the intersection operations between their quotient sets and the target concept cannot be approximated by using $U/(P \cup Q)$ which is called a single granulation in those papers.
2. In the process of some decision making, the decision or the view of each of decision makers may be independent for the same project (or a sample, object and element) in the universe. In this situation, the intersection operations between any two quotient sets will be redundant for decision making.
3. Extract decision rules from distributive information systems and groups of intelligent agents through using rough set approaches.

Since then, many researchers have extended the classical MGRS by using various generalized binary relations. For instance, Qian et al. [29] presented a multigranulation rough set based on multiple tolerance relations in incomplete information systems. Lin et al. [18] proposed a covering-based pessimistic multigranulation rough set. Xu et al. [45] proposed another generalized version, called variable precision multigranulation rough set, and Yang et al. [47] proposed a multigranulation rough set based on a fuzzy binary relation. In fact, the basic idea of multi-granulation has been also discussed by Khan et al. in Ref. [11]. However, the existing multigranulation rough set theory can not be used to describe the inconsistency coming from a neighborhood information system which consists of numerical and categorical attributes. In order to deal with multi-granulation information with heterogeneous attributes, it is necessary to introduce multiple neighborhood relations into a neighborhood information system, and further develop a so-called neighborhood-based multigranulation rough set (NMGRS). In particular, we will present two types of neighborhood multigranulation rough sets, 1-type NMGRS and 2-type NMGRS. For each NMGRS, we investigate its optimistic version and pessimistic version, respectively, and discuss their properties. In addition, we also given a new definition of covering reducts and propose its calculating method, which is based on a discernibility matrix approach proposed in the literature [1].

The paper is organized as follows. In Section 2, we briefly reviewed some basic concepts of MGRS. In Section 3, a rough set based on multi neighborhood relations is presented, called the neighborhood-based multigranulation rough sets (NMGRS), and some of its important properties are investigated. In Section 4, we first introduce a concept of covering reduct of the neighborhood-based multigranulation rough sets and then employ Chen’s discernibility matrix to reduce attributes in the neighborhood-based multigranulation rough sets. Finally, Section 5 concludes this study.

2. Preliminary knowledge on rough sets

In this section, we review some basic concepts, which includes Pawlak’s rough set, multigranulation rough sets, and neighborhood-based rough sets (see [8,13,24,28]).

2.1. Pawlak’s rough set

In many data analysis applications, knowledge and information presentation in rough set theory are realized by an information system. An information system is a tuple: $S = (U, AT, \{V_a | a \in AT\}, \{f_a | a \in AT\})$, where U is a finite nonempty set of objects, AT is a finite nonempty set of attributes, V_a is a nonempty set of values of $a \in AT$, and $f_a : U \rightarrow V_a$ is an information function that maps an object in U to exactly one value in V_a.

In particular, a target information system is given by $S = (U, AT \cup D, \{V_a | a \in AT\}, \{f_a | a \in AT\})$, where AT is a set of condition attributes describing the objects, and D is a set of decision attributes that indicate the classes of objects. In general, we often consider the decision information system with only one decision attribute, because an information system with multi decision attributes can be easily transformed into a system with a single decision attribute by considering the Cartesian product of the original decision attributes [35,50].

Each nonempty subset $B \subseteq AT$ determines an indiscernibility relation, defined as $R_B = \{(x, y) \in U \times U | f_a(x) = f_a(y), \forall a \in B\}$.

The relation R_B partitions U into some equivalence classes given by $U/R_B = \{[x]_B | x \in U\}$, where $[x]_B = \{y \in U | (x, y) \in R_B\}$.

For $X \subseteq U$, sets $R_B X = \bigcup\{Y \in U/IND(B) | Y \subseteq X\}$ and $R_B \overline{X} = \bigcup\{Y \in U/IND(B) | Y \cap X \neq \emptyset\}$ are called the lower and the upper approximations of X with respect to B, respectively.

The area of uncertainty or boundary region is

$$Bn(X) = \overline{R_B X} \setminus R_B X.$$
In order to measure the imprecision of a rough set, Pawlak [25] recommended for \(X \neq \emptyset \), the ratio \(\alpha_R(B) = \frac{|R \setminus X|}{|R|} \), which is called the accuracy measure of \(X \) by \(R \).

Roughness is calculated by subtracting the accuracy from \(\rho_R(B) = 1 - \alpha_R(B) \).

2.2. Multigranulation rough sets (MGRS)

In recent years, Qian et al. [28] have proposed a new extension of Pawlak rough set, i.e., multigranulation rough sets (MGRS). In the multigranulation rough set theory, a target concept is approximated by multiple binary relations. Furthermore, two kinds of important multigranulation rough sets were presented with optimistic and pessimistic strategies, which are called optimistic multigranulation rough sets and pessimistic multigranulation rough sets, respectively [28, 30].

Definition 1. Let \(S = (U, AT, f) \) be an information system, \(A_1, A_2, \ldots, A_m \subseteq AT \), and \(X \subseteq U \). The optimistic lower approximation and the upper approximation of \(X \) with respect to \(A_1, A_2, \ldots, A_m \) are denoted by \(\sum_{i=1}^{m} A_i^0 X \) and \(\sum_{i=1}^{m} A_i^O X \), respectively, where

\[
\sum_{i=1}^{m} A_i^O X = \bigcup \{ [x]_{A_i} \mid \exists i \leq m \},
\]

Then \(\sum_{i=1}^{m} A_i^0 X \) is the optimistic MGRS [24]. The word “optimistic” is used to express the idea that in multiple independent granular structures, one needs only at least one granular structure to satisfy with the inclusion condition between an equivalence class and a target concept. The upper approximation of the optimistic multigranulation rough set is defined by the complement of the lower approximation.

And the area of uncertainty or boundary region in MGRS is

\[
Bn_{\sum_{i=1}^{m}}^O (X) = \sum_{i=1}^{m} A_i^O X \setminus \sum_{i=1}^{m} A_i^0 X.
\]

The definition of pessimistic MGRS [30] is defined as follows:

\[
\sum_{i=1}^{m} A_i^P (X) = \{ x \in U \mid \exists i \leq m \} [x]_{A_i} \subseteq X \land [x]_{A_2} \subseteq X \land \cdots \land [x]_{A_m} \subseteq X \},
\]

Then \(\sum_{i=1}^{m} A_i^P X \) is the pessimistic MGRS [30]. The word “pessimistic” is used to express the idea that in multiple independent granular structures, one needs all granular structures to satisfy with the inclusion condition between an equivalence class and a target concept. The upper approximation of the optimistic multigranulation rough set is also defined by the complement of the lower approximation. And the area of uncertainty or boundary region in MGRS is

\[
BN_{\sum_{i=1}^{m}}^P (X) = \sum_{i=1}^{m} A_i^P (X) \setminus \sum_{i=1}^{m} A_i^O (X).
\]

2.3. Neighborhood-based rough sets

In order to make Pawlak’s rough set deal with the information system with heterogeneous attributes, T. Y. Lin et al. [14] gave the concept of neighborhood and proposed neighborhood-based rough sets. Since then, many researchers further studied the theory of the neighborhood-based rough set [6–10, 15, 48]. In this section, we especially introduce some concepts of neighborhood-based rough sets proposed by Hu [8].

Definition 2. Let \(S = (U, AT, f) \) be an information system with heterogeneous attributes, \(X \subseteq U \) and \(A, B \subseteq AT \) are categorical and numerical attributes, respectively. The neighborhood granules of objects \(x \) induced by \(A, B, A \cup B \) are defined as

Example 1. Here, we use an example to illustrate some notions of an information system which consists of categorical and numerical attributes. Table 1 shows data set

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Ultra-ray</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Intensity</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Weak</td>
<td>83</td>
<td>85</td>
<td>False</td>
<td>85</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Strong</td>
<td>80</td>
<td>90</td>
<td>True</td>
<td>95</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Strong</td>
<td>86</td>
<td>85</td>
<td>False</td>
<td>82</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Middle</td>
<td>70</td>
<td>96</td>
<td>False</td>
<td>91</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Weak</td>
<td>68</td>
<td>80</td>
<td>False</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>Middle</td>
<td>65</td>
<td>70</td>
<td>True</td>
<td>75</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Middle</td>
<td>64</td>
<td>65</td>
<td>True</td>
<td>63</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Strong</td>
<td>72</td>
<td>95</td>
<td>False</td>
<td>90</td>
<td>No</td>
</tr>
</tbody>
</table>

(1) $n_A(x) = \{ x_i \in U \mid d_A(x, x_i) = 0 \}$; (2) $n_B(x) = \{ x_i \in U \mid d_B(x, x_i) \leq \delta \}$; (3) $n_{(A\cup B)}(x) = \{ x_i \in U \mid d_A(x, x_i) = 0 \land d_B(x, x_i) \leq \delta \}$,

where d is a distance [40] between x and y, δ is a nonnegative number, and “\land” means “and” operator. (1) is designed for numerical attributes; (2) is designed for categorical attributes, and (3) is designed for heterogeneous attributes, namely, categorical and numerical attributes.

A neighborhood relation N on the universe can be written as a relation matrix $M(N) = (r_{ij})_{n \times n}$, where

$$
r_{ij} = \begin{cases}
1, & d(x_i, x_j) \leq \delta, \\
0, & \text{otherwise}.
\end{cases}
$$

Accordingly, we say (U, N) a neighborhood approximation space. If there is an attribute subset in the system generating a neighborhood relation on the universe, we can regard this system as a neighborhood information system, denoted by $NIS = (U, AT, N)$, where U is a nonempty finite set and AT is an attribute set. In particular, a neighborhood information system is also called a neighborhood decision information system if we distinguish condition attributes and decision attributes, denoted by $NIS = (U, AT \cup D, N)$.

Example 1. Here, we use an example to illustrate some notions of an information system which consists of categorical and numerical attributes. Table 1 shows data set play tennis with heterogeneous attributes, namely, categorical and numerical attributes, where $U = \{ x_1, x_2, \ldots, x_9 \}$, $AT = \{ outlook, ultra-ray, temperature, humidity, intensity, windy \}$, $D = \{ play \}$. Especially, outlook, ultra-ray, and windy are categorical condition attributes, temperature, humidity, and intensity are numerical condition attributes, and play is a decision attribute. In the sequel, O, U, T, H, W, I will displace outlook, ultra-ray, temperature, humidity, windy, and intensity, respectively. In Table 1, in order to reduce sample classification error rate caused by inconsistent dimension, numerical attribute values are standardized into [0, 1] for computing, see [7].

Definition 3. Let (U, N) be a neighborhood approximation space. For any $X \subseteq U$, the lower approximation and upper approximation of X in U are defined as:

$$
\overline{X} = \{ x \in U \mid n(x) \subseteq X \},
$$

$$
\overline{X} = \{ x \in U \mid n(x) \land X \neq \phi \}.
$$

One calls $(\overline{X}, \overline{X})$ a neighborhood rough set. Obviously, $\overline{X} \subseteq X \subseteq \overline{X}$. The boundary region of X in the approximation space is defined as $Bn(X) = \overline{X} \setminus \overline{X}$.

The size of boundary region reflects the degree of roughness of set X in the neighborhood approximation space (U, N). In the neighborhood rough set, δ can be considered as a parameter to control the granularity level at which we analyze the classification task.

3. Neighborhood multigranulation rough sets

In this section, we extend the classical MGRS to neighborhood-based multigranulation rough sets (NMGRS). We propose two types of neighborhood multigranulation rough sets according to different representations of neighborhood information granules by Definition 3. In the first case, a granular space induced by a neighborhood relation on the universe can be regarded as a set of mixed information granules induced by both a similarity relation and an indiscernibility relation in the view of granular computing [53]. If the approximations of a target concept are described by these mixed information granules, we call this rough set a 1-type neighborhood multigranulation rough set in this paper, denoted by 1-type NMGRS. In the second case, if the approximations of a target concept are described by multiple neighborhood relations, we call this rough set a 2-type neighborhood multigranulation rough set, denoted by 2-type NMGRS.
In the following, we will give the definitions of optimistic 1-type NMGRS and optimistic 2-type NMGRS and the definitions of pessimistic versions, respectively. Conveniently, we mainly discuss the properties of the optimistic versions. The pessimistic versions can be done similarly. We hence omit them in this paper.

3.1. 1-type neighborhood multigranulation rough sets (1-type NMGRS)

As we know, the incomplete MGRS is based on multiple tolerance relations, which sometimes can be also regarded as a neighborhood relation [7]. However, these existing multigranulation versions still cannot deal with data sets with heterogeneous attributes. Therefore, it is necessary to develop a new rough set based on multiple neighborhood relations to deal with hybrid data. Simply, we first investigate the approximation of a target set induced by mixed granules on the universe, which can be regarded as a simple neighborhood multigranulation rough set, just 1-type NMGRS.

Definition 4 (1-type NMGRS). Let \(NIS = (U, AT, N) \) be a neighborhood information system, \(A \subseteq AT \) a categorical attribute set, \(B \subseteq AT \) a numerical attribute set, \(A \cup B \subseteq AT \) a mixed attribute set; \(U/A, U/B, \) and \(U/(A \cup B) \) represent a partition and two coverings of the universe \(U \), respectively. For any \(X \subseteq U \), the optimistic multigranulation lower and upper approximations of \(X \) with respect to \(A, B \) in \(U \) are defined in the following:

\[
(A + B)^O X = \{x \in U | n_A(x) \subseteq X \lor n_B(x) \subseteq X\},
\]

(7)

\[
(A + B)^O X = \sim (A + B)^O (\sim X).
\]

(8)

By Definition 4, we can see that the lower and upper approximations of \(X \) of optimistic 1-type NMGRS satisfy duality property, i.e., the lower approximation can be defined by the complement of the lower approximation. The area of uncertainty or boundary region is defined as

\[
Bn^O_{(A+B)}(X) = (A + B)^O X \setminus (A + B)^O \sim X.
\]

We call \((A + B)^O X, (A + B)^O \sim X\) an optimistic 1-type NMGRS. Obviously, the optimistic 1-type NMGRS can degenerate into the original multigranulation while \(\delta = 0 \). The original MGRS is a special instance of 1-type NMGRS.

Theorem 1. Let \(NIS = (U, AT, N) \) be a neighborhood information system, \(A, B \subseteq AT \) categorical and numerical attribute subsets, respectively. For any \(X \subseteq U \), then

\[
(A + B)^O X = \{x \in U | (n_A(x) \cap X \neq \emptyset) \land (n_B(x) \cap X \neq \emptyset)\}.
\]

Proof. By Definition 4, we have that

\[
x \in (A + B)^O X \Leftrightarrow x \in \sim (A + B)^O (\sim X)
\]

\[
\Leftrightarrow x \notin (A + B)^O (\sim X)
\]

\[
\Leftrightarrow n_A(x) \not\subseteq (\sim X) \land n_B(x) \not\subseteq (\sim X)
\]

\[
\Leftrightarrow n_A(x) \cap X \neq \emptyset \land n_B(x) \cap X \neq \emptyset.
\]

This completes the proof. □

By Theorem 1, we can see that though the optimistic multigranulation upper approximation is defined by the complement of the optimistic multigranulation lower approximation, it also can be constructed by objects with nonempty intersection with the target concept in terms of each granular structure.

Proposition 1. Let \(NIS = (U, AT, N) \) be a neighborhood information system, \(\forall A, B \subseteq AT \), and \(\forall X \subseteq U \), then

(1) \((A + B)^O X = AX \cup BX\).

(2) \((A + B)^O X = AX \cap BX\).

Proof. (1) Let \(x \in AX \) (\(x \in U \)), note that \(AX = \{x \in U | n_A(x) \subseteq X\} \), but \(x \in (A + B)^O X \), hence \(AX \subseteq (A + B)^O X \). Similarly, \(BX \subseteq (A + B)^O X \). So \((A + B)^O X \supseteq AX \cup BX \). And, for \(x \in (A + B)^O X \), from (7), we have either \(n_A(x) \subseteq X \), then \(x \in AX \) or \(n_B(x) \subseteq X \), then \(x \in BX \), therefore \(x \in AX \cup BX \), namely, \((A + B)^O X \subseteq AX \cup BX \). Therefore, \((A + B)^O X = AX \cup BX\).

(2) From above and (8), we have \((A + B)^O X = \sim (A + B)^O (\sim X) = \sim (A \sim X) \cup B(\sim X) = \sim AX \cap BX\).

This completes the proof. □

Corollary 1. \(Bn^O_{(A+B)}(X) \subseteq Bn_A(X) \cup Bn_B(X) \).

In what follows, we will illuminate the difference between the 1-type NMGRS and classical Pawlak’s rough sets through employing Example 2.
Example 2 (Continued from Example 1). Let \(X = \{x_1, x_2, x_3, x_7\} \). Here we compute the neighborhood granules of samples with \(\delta = 0.1 \). A partition and two coverings are induced from Table 1 as follows:

\[A = \{0, W\} \subseteq AT \] be a categorical attribute subset. According to Definition 2, the information granules induced by \(A \) are listed. \(n_A(x_1) = \{x_1, x_3\} \), \(n_A(x_2) = \{x_2\} \), \(n_A(x_3) = \{x_3\} \), \(n_A(x_4) = \{x_4, x_5\} \), \(n_A(x_6) = \{x_6\} \), \(n_A(x_7) = \{x_7\} \). Obviously, they form a covering of the universe, i.e., \(U/A = \{\{x_1, x_3\}, \{x_2\}, \{x_4, x_5\}, \{x_6\}, \{x_7\}, \{x_8, x_1\}\} \).

which is a granular structure on \(U \), then \(A/X = \{x_2, x_3, x_7\} \) and \(\bar{A}/X = \{x_1, x_2, x_3, x_7, x_8\} \).

Let \(B = \{T, H\} \subseteq AT \) be a numerical attribute subset. Then, we have that \(n_B(x_1) = \{x_1, x_3\} \), \(n_B(x_2) = \{x_2\} \), \(n_B(x_3) = \{x_3\} \), \(n_B(x_4) = \{x_4, x_3, x_6, x_1\} \), \(n_B(x_5) = \{x_5, x_4, x_2\} \), \(n_B(x_6) = \{x_6, x_1\} \), \(n_B(x_7) = \{x_7\} \), \(n_B(x_8) = \{x_8, x_2, x_4\} \). Similarly, they form a covering of the universe, i.e., \(U/B = \{\{x_1, x_2, x_3\}, \{x_2, x_3, x_4, x_8\}, \{x_3, x_1, x_2\}, \{x_4, x_2, x_8\}, \{x_5, x_6, x_7\}, \{x_6, x_2, x_4\}\} \). Therefore we have that \(B/X = \{x_1, x_3\} \), \(\bar{B}/X = \{x_1, x_2, x_3, x_4, x_6, x_7, x_8\} \).

Based on \(U/A \) and \(U/B \) induced by \(A \) and \(B \), we have the optimistic lower and upper approximations of \(X \) in \(U \), respectively.

\[(A+B)^0X = \{x_1, x_2, x_3, x_7\} = A(X) \cup B(X), \quad (A+B)^O X = \{x_1, x_2, x_3, x_7, x_8\} = \bar{A}(X) \cap \bar{B}(X). \]

Furthermore, by the term (3) in Definition 2, we have that \(U/\{A \cup B\} = \{\{x_1\}, \{x_2, x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}, \{x_8\}\} \).

As a result of this example, we have the following results.

Proposition 2. Let \(NIS = (U, AT, N) \) be a neighborhood information system, \(A, B \subseteq AT \) categorical and numerical attribute subsets, respectively. For any \(X \subseteq U \), then

\[\begin{align*}
(1) \quad & (A+B)^0X \subseteq (A \cup B)X, \\
(2) \quad & (A+B)^O X \subseteq (A \cup B)X.
\end{align*} \]

Proof. (1) For any \(x \in (A+B)^0X \), by Definition 4, it follows that \(x \in n_A(x) \) and \(x \in n_B(x) \). Hence \(x \in n_A(x) \cap n_B(x) \). But \(n_A(x) \cap n_B(x) \subseteq n_{(A \cup B)}(x) \) for all \(x \in U \). Therefore, \(x \in (A \cup B)X \), i.e., \((A+B)^0X \subseteq (A \cup B)X \).

(2) From Pawlak's rough set theory, we know \((A \cup B)(\sim X) = \sim (A \cup B)(\sim X) \), applying the result of (1), we have that \(n_{(A \cup B)}(\sim X) \subseteq (A+B)^0(\sim X) \). Hence, \(\sim (A \cup B)(\sim X) \subseteq (A+B)^0(\sim X) \), i.e., \((A+B)^0X \subseteq (A \cup B)X \).

This completes the proof. \(\square \)

Proposition 2 shows that the optimistic lower approximation is not more than the Pawlak's lower approximation, while the optimistic upper approximation is not less than the Pawlak's upper approximation.

Corollary 2. \(Bn_{(A+B)}^O(X) \supseteq Bn_{(A \cup B)}(X) \).

Corollary 3. Let \(NIS = (U, AT, N) \) be a neighborhood information system, \(A, B \subseteq AT \) categorical and numerical attribute subsets, respectively, and \(X \subseteq U \). Then

\[\alpha_{(A \cup B)}(X) \geq \alpha_{(A+B)}^O(X). \]

Proof. They are straightforward from the definition of accuracy measure of \(X \).

In what follows, we further clarify the difference between multigranulation rough sets and classical rough sets. It can be illustrated from the following four aspects.

(1) Multigranulation rough set theory is a strategy for information fusion through single granulation rough sets. Here, neighborhood-based multigranulation rough sets is a simple information fusion method by operations '\(\lor \)' (conjunction) or '\(\land \)' (disjunction).

(2) In fact, there are some other fusion strategies [20,45–47]. For instance, in the literature [45], Xu et al. introduced a supporting characteristic function and a variable precision parameter \(\beta \) called information level to investigate a target concept under majority granulations.

(3) It is Proposition 2 that embodies the difference between classic rough sets and multigranulation rough sets.

(4) With regard to some special information systems, such as multi-source information systems, distributive information systems and groups of intelligent agents, the classical rough sets can not deal with these information systems, but multigranulation rough sets can. \(\square \)

Proposition 3. Let \(NIS = (U, AT, N) \) be a neighborhood information system, \(A, B \subseteq AT \) categorical and numerical attribute subsets, respectively, \(X \subseteq U \), and \(\delta_1, \delta_2 \) two nonnegative numbers. If \(\delta_1 \geq \delta_2 \), then

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason. (2012).

http://dx.doi.org/10.1016/j.ijar.2012.05.004
(1) \((A + B)\delta_1 X \subseteq (A + B)\delta_2 X\),
(2) \((A + B)\delta_1 X \supseteq (A + B)\delta_2 X\).

\textbf{Proof.} (1) Let \(X \subseteq U\), assume that \((A + B)\delta_2 X = \{x \mid n_{\delta_2}^A(x) \subseteq X \lor n_{\delta_2}^B(x) \subseteq X\}\), for any \(x \in U\). If \(\delta_1 \geq \delta_2\), we obviously have \(n_{\delta_1}^A(x) \subseteq n_{\delta_2}^A(x)\) and \(n_{\delta_1}^B(x) \subseteq n_{\delta_2}^B(x)\). So for any \(x \in n_{\delta_2}^A(x)\) \(\subseteq X\), we have \(x \in n_{\delta_1}^A(x) \subseteq X\). Similarly, for any \(x \in n_{\delta_2}^B(x)\) \(\subseteq X\), we have \(x \in n_{\delta_1}^B(x) \subseteq X\). Therefore, we have \(x \in (A + B)\delta_2 X\) \(\subseteq (A + B)\delta_1 X\). Hence, \((A + B)\delta_2 X \subseteq (A + B)\delta_1 X\).

(2) Similarly, we can prove that \((A + B)\delta_1 X \supseteq (A + B)\delta_2 X\).

This completes the proof. \(\square\)

Proposition 3 shows that the size of lower approximation of \(X\) under a 1-type optimistic neighborhood-based multigranulation rough set will become much larger with the value of the parameter \(\delta\) being much bigger. Its upper approximation has the inverse conclusion.

\textbf{Proposition 4.} Let \(\text{NIS} = (U, AT, N)\) be a neighborhood information system, \(A, B \subseteq AT\) categorical and numerical attribute subsets, respectively, and \(X, Y \subseteq U\). If \(X \subseteq Y\), then

\begin{align*}
(1) & \ (A + B)^0 X \subseteq (A + B)^0 Y, \\
(2) & \ (A + B)^0 X \subseteq (A + B)^0 Y.
\end{align*}

\textbf{Proof.} (1) If \(X \subseteq Y\), then \(X \cap Y = X\). Then we have

\begin{align*}
(A + B)^0 X &= (A + B)^0 (X \cap Y) \\
&= A(X \cap Y) \cup B(X \cap Y) \\
&= \{x \mid (AX \cap AY) \cup (BX \cap BY) \subseteq X\} \\
&= \{x \mid (AX \cap AY) \cup (BX \cap BY) \subseteq X\} \\
&= \{x \mid (AX \cap AY) \cup (BX \cap BY) \subseteq X\} \\
&\subseteq (A + B)^0 X \cup (A + B)^0 Y \\
&\subseteq (A + B)^0 X \cup (A + B)^0 Y.
\end{align*}

Hence, \((A + B)^0 X \subseteq (A + B)^0 Y\).

(2) If \(X \subseteq Y\), then \(X \cup Y = Y\). Then we have

\begin{align*}
(A + B)^0 Y &= (A + B)^0 (X \cup Y) \\
&= \overline{A}(X \cup Y) \cap \overline{B}(X \cup Y) \\
&= \overline{A}(X \cup Y) \cap \overline{B}(X \cup Y) \\
&= \overline{A}(X \cup Y) \cap \overline{B}(X \cup Y) \\
&= (A + B)^0 X \cup (A + B)^0 Y \\
&\subseteq (A + B)^0 X \cup (A + B)^0 Y.
\end{align*}

Hence, \((A + B)^0 Y \supseteq (A + B)^0 X\).

This completes the proof. \(\square\)

\textbf{Corollary 4.} Let \(\text{NIS} = (U, AT, N)\) be a neighborhood information system, \(A, B \subseteq AT\) categorical and numerical attribute subsets, respectively, and \(X \subseteq U\). If \(\delta_1, \delta_2\) are two nonnegative numbers and \(\delta_1 \geq \delta_2\), then

\[\alpha_{(A + B)\delta_1}^0 (X) \leq \alpha_{(A + B)\delta_2}^0 (X).\]

\textbf{Proof.} It is straightforward from Proposition 3.

Similar to the classical pessimistic MGRS’s definition [26], let \(\text{NIS} = (U, AT, N)\) be a neighborhood information system, where \(A, B \subseteq AT\) are categorical and numerical attributes, respectively. For any \(X \subseteq U\), the lower and upper approximations of \(X\) of the pessimistic 1-type NMGRS in \(U\) are described as:

\begin{align*}
(A + B)^\delta X &= \{x \in U \mid n_{\delta}^A(x) \subseteq X \land n_{\delta}^B(x) \subseteq X\}, \\
(A + B)^\delta X &= \sim (A + B)^\delta (\sim X).
\end{align*}

Analogously, this multigranulation boundary region of \(X\) is

\[Bn_{(A + B)\delta}^{\delta} (X) = (A + B)^\delta X \setminus (A + B)^\delta X.\]

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason (2012), http://dx.doi.org/10.1016/j.ijar.2012.05.004
We call \((A + B)^p X, (A + B)^n X\) a pessimistic 1-type neighborhood multigranulation rough set. □

Theorem 2. Let \(NIS = (U, AT, N)\) be a neighborhood information system, where \(A, B \subseteq AT\) are categorical and numerical attributes, respectively. For any \(X \subseteq U\), then \((A + B)^X = \{x \in U \mid (n_A(x) \cap X \neq \emptyset) \lor (n_B(x) \cap X \neq \emptyset)\}.

Proof. By the above definitions, we have
\[
x \in (A + B)^X \iff x \in (A + B)^p (∼ X)
\]
\[
\iff x \notin (A + B)^p (∼ X)
\]
\[
\iff n_A(x) \not\subseteq (∼ X) \lor n_B(x) \not\subseteq (∼ X)
\]
\[
\iff n_A(x) \cap X \neq \emptyset \lor n_B(x) \cap X \neq \emptyset.
\]
This completes the proof. □

Different from the upper approximation of optimistic 1-type neighborhood multigranulation rough set, the upper approximation of pessimistic 1-type neighborhood multigranulation rough set is represented as a set in which objects have non-empty intersection with the target in terms of at least one granular structure.

From the above analysis, we can obtain the following two corollaries and one proposition.

Corollary 5. Let \(NIS = (U, AT, N)\) be a neighborhood information system, \(A, B \subseteq AT\) categorical and numerical attributes, respectively. For any \(X \subseteq U\), then \((A + B)^X = \overline{AX} \cup \overline{BX}.

Proof. \((A + B)^X = (∼ (A + B)^p (∼ X)\)

\[
= (∼ (A (∼ X) \cap B(∼ X))
\]
\[
= (∼ A(∼ X) \cup (∼ B(∼ X)
\]
\[
= \overline{AX} \cup \overline{BX}.
\]
This completes the proof. □

Similarly, other properties of the pessimistic version can be proved by the same method.

3.2. 2-Type neighborhood multigranulation rough sets (2-type NMGRS)

When multiple neighborhood relations are used in the neighborhood information system, we call such a multigranulation rough set a 2-type neighborhood multigranulation rough set, denoted by 2-type NMGRS. Simply, we first investigate how to approximate a target concept through two neighborhood relations. For simpleness, we use the denotations \(A + BX = NX\), and \(A + BX = NX\) in the following:

Definition 5 (2-type NMGRS). Let \(NIS = (U, AT, N)\) be a neighborhood information system, \(N_1, N_2\) two neighborhood relations on the universe \(U\), \(N_1\) induced by \(A_1\) and \(B_1\), \(N_2\) induced by \(A_2\) and \(B_2\), where \(A_1, A_2\) are two categorical attribute subsets and \(B_1, B_2\) are two numerical attribute subsets, and \(U/A_1, U/A_2, U/B_1, U/B_2\) are four coverings on the universe \(U\). Then for any \(X \subseteq U\), the optimistic lower approximation and upper approximation of \(X\) in \(U\) are defined as
\[
\overline{(N_1 + N_2)^0 X} = \{x \in U \mid n_{(A_1 + B_1)}(x) \subseteq X \lor n_{(A_2 + B_2)}(x) \subseteq X\},
\]
\[
\overline{(N_1 + N_2)^0 X} = (N_1 + N_2)^0 (∼ X).
\]

The area of uncertainty or boundary region is defined as:
\[
B_0{(N_1 + N_2)(x)} = (N_1 + N_2)^0 X \setminus (N_1 + N_2)^0 X.
\]

We call \((N_1 + N_2)^0 X, (N_1 + N_2)^0 X\) an optimistic 2-type NMGRS based on two neighborhood relations.

In 2-type NMGRS, \(n_{(A + B)}(x)\) represents a neighborhood induced by a heterogeneous attribute subset and \(n_{(A + B)}(x) = \{x \in U \mid d_A(x, x_i) = 0 \lor d_B(x, x_i) \leq \delta\}\). However, by the (3) of Definition 2, \(n_{(A + B)}(x) = \{x_1 \in U \mid d_A(x, x_1) = 0 \lor d_B(x, x_1) \leq \delta\}\). It is deserved to point out that let \(NIS = (U, AT, N)\) be a neighborhood information system, a partition \(U/A\) induced by a categorical attribute subset \(A\), and a covering \(U/B\) induced by a numerical attribute subset \(B\), then \(U/(A \cup B)\) induced by \(A \cup B\) is also a covering of the universe.

Example 3 (Continued from Example 1). Let \(X = \{x_1, x_2, x_3, x_4\}\), four coverings on the universe \(U\) are induced from Table 1 as follows:

\[
\begin{array}{c|c|c}
\hline
\text{Attribute} & \text{Value} & \text{Covering} \\
\hline
A_1 & 1 & C_1 \cup C_2 \\
A_2 & 2 & C_3 \cup C_4 \\
B_1 & 3 & C_1 \cup C_3 \\
B_2 & 4 & C_2 \cup C_4 \\
\hline
\end{array}
\]
Let $A_1 = \{O, W\} \subseteq AT$ be a categorical attribute subset, from Example 2, it follows that $U/A_1 = \{(x_1, x_8), (x_2), (x_3), (x_4, x_5), (x_7), (x_9)\}$. Then $A_1 X = \{(x_1, x_8), (x_2), (x_3), (x_4, x_5), (x_7), (x_9)\}$, $A_1 X = \{(x_1, x_8), (x_2), (x_3), (x_4, x_5), (x_7), (x_9)\}$. Let $A_2 = \{O, U\} \subseteq AT$ be a categorical attribute subset, from Table 1, it follows that $U/A_2 = \{(x_1), (x_2, x_8), (x_3), (x_4, x_5)\}$. Then $A_2 X = \{x_1, x_8\}, A_2 X = \{x_1, x_8\}$.

Let $B_1 = \{T, H\} \subseteq AT$ be a numerical attribute subset, from Example 2, it follows that $U/B_1 = \{(x_1, x_2, x_3), (x_2, x_1, x_4, x_8), (x_3, x_4, x_6), (x_5, x_7, x_8), (x_5, x_7, x_8), (x_7, x_6, x_8), (x_8, x_4, x_5)\}$. We have that $B_1 X = \{x_1, x_3\}, B_1 X = \{x_1, x_3\}$.

From the definition of the optimistic 1-type NMGRS, by computing, we have that $(A_1 + B_1)O X = \{(x_1, x_2, x_3, x_7, x_8)\}$. And $(A_2 + B_2)O X = \{(x_1, x_3, x_7)\}$.

Then $(N_1 + N_2)O X = \{(x_1, x_2, x_3, x_7, x_8)\}$.

From Example 2, it follows that $A_1 \cup B_1 X = \{(x_1, x_2, x_3, x_7)\}, A_1 \cup B_1 X = \{(x_1, x_2, x_3, x_7)\}$.

For $U/(A_2 \cup B_2) = \{(x_1), (x_2, x_8), (x_3), (x_4, x_5)\}, (A_2 \cup B_2)X = \{(x_1, x_3, x_7)\}$. Then $A_2 \cup B_2 X = \{(x_1, x_3, x_7)\}$.

In addition, $U/(A_1 \cup B_1) = \{(x_1), (x_2, x_8), (x_3), (x_4, x_5)\}$, $X = \{(x_1, x_3, x_7)\}$, $X = \{(x_1, x_3, x_7)\}$, one has $(N_1 + N_2)X = (A_1 + B_1)O X$.

Obviously, for the optimistic 2-type neighborhood multigranulation rough set, we have that $(N_1 + N_2)O X = \{(x_3, x_7)\}$.

From the definition of approximation and the discussion above, we can get the following properties of the lower and upper approximations.

Proposition 5. Let $NIS = (U, AT, N)$ be a neighborhood information system, N_1, N_2 two neighborhood relations on the universe U. Then for any $X \subseteq U$, then

1. $(N_1 + N_2)O X \subseteq (N_1 \cup N_2)X$.
2. $(N_1 + N_2)^O X \supseteq (N_1 \cup N_2)X$.

Proof. (1) For any $x \in (N_1 + N_2)O X$, from Definition 5, it follows that $x \in n(A_1 + B_1)X$ and $x \in n(A_2 + B_2)X$, hence, $x \in (N_1 + N_2)X$.

(2) Due to duality property of the lower and upper approximations, $(N_1 \cup N_2)X = \sim (N_1 \cup N_2)(\sim X)$. Applying the result of (1), we have that $(N_1 \cup N_2)X = \sim (N_1 \cup N_2)(\sim X) \subseteq (N_1 + N_2)^O (\sim X) = (N_1 + N_2)^O X, i.e., (N_1 \cup N_2)X \subseteq (N_1 + N_2)^O X$.

This completes the proof. □

Corollary 6. $Bn_{N_1}(X) \cup Bn_{N_2}(X) \subseteq Bn_{(N_1 + N_2)}O X$.

Corollary 7. Let $NIS = (U, AT, N)$ be a neighborhood information system, N_1, N_2 two neighborhood relations on the universe U. Then, for $X \subseteq U$, one has

$$\alpha_{(N_1 + N_2)}O X = \alpha_{(N_1 \cup N_2)}X.$$

Proof. This is straightforward from the definition of the accuracy measure of X. □

Proposition 6. Let $NIS = (U, AT, N)$ be a neighborhood information system, N_1, N_2 two neighborhood relations on the universe U, and $X \subseteq U$. If δ_1, δ_2 are two nonnegative numbers and $\delta_1 \geq \delta_2$, then

1. $(N_1 + N_2)O X \subseteq (N_1 + N_2)O X$.
2. $(N_1 + N_2)^O X \supseteq (N_1 + N_2)^O X$.

Proof. It can be easily proved similar to Proposition 3.

Proposition 6 states that the size of lower approximation of X under a 2-type optimistic neighborhood-based multigranulation rough set will become much larger with the value of the parameter δ being much bigger. Its upper approximation has the inverse conclusion. □
Corollary 8. Let NIS = (U, AT, N) be a neighborhood information system, N1, N2 two neighborhood relations on the universe U, and X ⊆ U. If δ1, δ2 are two nonnegative numbers and δ1 ≥ δ2, then,
\[
\alpha_{(N_1+N_2)\delta_1}^0(X) \leq \alpha_{(N_1+N_2)\delta_2}^0(X).
\]

Proposition 7. Let NIS = (U, AT, N) be a neighborhood information system, N1, N2 two neighborhood relations on the universe U, and X, Y ⊆ U. If X ⊆ Y, then
\[
N_1 + N_2 \subseteq (N_1 + N_2)^0 Y.
\]

Proof. (1) If X ⊆ Y, X ∩ Y = X, then
\[
(N_1 + N_2) X \subseteq (N_1 + N_2)^0 (X \cap Y).
\]

(2) If X ⊆ Y, X ∩ Y = X, then
\[
(N_1 + N_2) X \subseteq (N_1 + N_2)^0 Y.
\]

Similarly, the optimistic 2-type neighborhood multigranulation rough set with two neighborhood granulations can be also defined as follows:
\[
(N_1 + N_2) X = \{ x | n_{(A_1+B_1)}(x) \subseteq X \land n_{(A_2+B_2)}(x) \subseteq X \},
\]
and
\[
(N_1 + N_2) X = \{ x | n_{(A_1+B_1)}(x) \subseteq X \land n_{(A_2+B_2)}(x) \subseteq X \}.
\]

The area of uncertainty or boundary region is defined as:
\[
Br_{(N_1+N_2)}^p(X) = (N_1 + N_2)^p X \setminus (N_1 + N_2)^p X.
\]

Based on the above conclusions, we extend 2-type NMGRS based on two neighborhood relations to that based on multiple neighborhood relations.

Definition 6. Let NIS = (U, AT, N) be a neighborhood information system, A1, A2, ..., Am categorical attribute subsets of AT; B1, B2, ..., Bm numerical attributes of AT, Ni induced by Ai and Bi for i = 1, 2, ..., m, and X ⊆ U. We define an optimistic multigranulation lower approximation and an upper approximation of X by the following:
\[
\sum_{i=1}^{m} N_i X = \bigcup_{i=1}^{m} \{ x \in U | n_{(A_i+B_i)}(x) \subseteq X \land n_{(A_i+B_i)}(x) \subseteq X \},
\]
and
\[
\sum_{i=1}^{m} N_i X = \bigcup_{i=1}^{m} \{ x \in U | n_{(A_i+B_i)}(x) \subseteq X \land n_{(A_i+B_i)}(x) \subseteq X \}.
\]

Similarly, the area of uncertainty or boundary region is defined as:
\[
Br_{\sum_{i=1}^{m} N_i}^p(X) = \bigcup_{i=1}^{m} N_i X \setminus \bigcup_{i=1}^{m} N_i X.
\]

We call \((\sum_{i=1}^{m} N_i X, \sum_{i=1}^{m} N_i X)\) an optimistic 2-type NMGRS based on multiple neighborhood relations.
Proposition 8. Let \(NIS = \langle U, AT, N \rangle \) be a neighborhood information system, \(N_1, N_2, \ldots, N_m \) \(m \) neighborhood relations on the universe \(U \), and \(X \subseteq U \). Then,

\[
\begin{align*}
(1) & \quad \sum_{i=1}^{m} N_i^0 X \subseteq (N_1 \cup N_2 \cup \cdots \cup N_m)X, \\
(2) & \quad \sum_{i=1}^{m} N_i^0 X \supseteq (N_1 \cup N_2 \cup \cdots \cup N_m)X.
\end{align*}
\]

Proof. If \(m = 1 \), they are straightforward. If \(m > 1 \), we prove them as follows:

(1) It can be easily proved from Definition 6.

(2) \(\sum_{i=1}^{m} N_i^0 X \simeq \sum_{i=1}^{m} (N_i^0 \sim X) \supseteq (N_1 \cup N_2 \cup \cdots \cup N_m)(\sim X) = (N_1 \cup N_2 \cup \cdots \cup N_m)X. \)

This completes the proof. \(\Box \)

Corollary 9. Let \(NIS = \langle U, AT, N \rangle \) be a neighborhood system, \(N_1, N_2, \ldots, N_m \) \(m \) neighborhood relations on the universe \(U \), and \(X \subseteq U \). Then,

\[
\alpha_{\sum_{i=1}^{m} N_i}^0(X) \leq \alpha_{(N_1 \cup N_2 \cup \cdots \cup N_m)}^0(X).
\]

Proposition 9. Let \(NIS = \langle U, AT, N \rangle \) be a neighborhood information system, \(N_1, N_2, \ldots, N_m \) \(m \) neighborhood relations on the universe \(U \), \(X \subseteq U \), and \(\delta_1, \delta_2 \) two nonnegative numbers. If \(\delta_1 \geq \delta_2 \), then,

\[
\begin{align*}
(1) & \quad (\sum_{i=1}^{m} N_i^\delta_1 X \subseteq (\sum_{i=1}^{m} N_i^\delta_2 X, \\
(2) & \quad (\sum_{i=1}^{m} N_i^\delta_1 X \supseteq (\sum_{i=1}^{m} N_i^\delta_2 X.
\end{align*}
\]

Proof. It can be proved similar to Proposition 3. \(\Box \)

Corollary 10. Let \(NIS = \langle U, AT, N \rangle \) be a neighborhood information system, \(N_1, N_2, \ldots, N_m \) \(m \) neighborhood relations on the universe \(U \), and \(X \subseteq U \). If \(\delta_1, \delta_2 \) are two nonnegative numbers, and \(\delta_1 \geq \delta_2 \), then the following properties hold.

\[
\alpha_{(\sum_{i=1}^{m} N_i)^\delta_1}^0(X) \leq \alpha_{(\sum_{i=1}^{m} N_i)^\delta_2}^0(X).
\]

Proposition 10. Let \(NIS = \langle U, AT, N \rangle \) be a neighborhood information system, \(N_1, N_2, \ldots, N_m \) \(m \) neighborhood relations on the universe \(U \), and \(X, Y \subseteq U \). If \(X \subseteq Y \), then

\[
\begin{align*}
(1) & \quad \sum_{i=1}^{m} N_i^0 X \subseteq \sum_{i=1}^{m} N_i^0 Y, \\
(2) & \quad \sum_{i=1}^{m} N_i^0 X \subseteq \sum_{i=1}^{m} N_i^0 Y.
\end{align*}
\]

Proof. It is similar to the proof of Proposition 4. \(\Box \)

Similarly, we can also define the pessimistic 2-type neighborhood multigranulation rough set as the following:

\[
\begin{align*}
\sum_{i=1}^{m} N_i^p X = \{ x \in U \mid n_{(A_1 + B_1)}(x) \subseteq X \land \cdots \land n_{(A_m + B_m)}(x) \subseteq X \}, \quad (17)
\end{align*}
\]

\[
\begin{align*}
\sum_{i=1}^{m} N_i^p X \simeq \sum_{i=1}^{m} N_i^p (\sim X). \quad (18)
\end{align*}
\]

Similarly, the area of uncertainty or boundary region is defined as:

\[
\begin{align*}
Bn_{\sum_{i=1}^{m} N_i}^p(X) = \sum_{i=1}^{m} N_i^p X \backslash \sum_{i=1}^{m} N_i^p X.
\end{align*}
\]

Analogously, we can gain the same results of the pessimistic version with multiple neighborhood granulations.

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason (2012), http://dx.doi.org/10.1016/j.ijar.2012.05.004
4. Attribute reduction of neighborhood multigranulation rough sets

In this section, we investigate the reduction of coverings induced by the multiple neighborhood relations. A discernibility matrix will be used to compute all the reducts of neighborhood multigranulation rough set. The objective of reduction is to select a subset of coverings that can preserve consistency of the neighborhood decision system [1]. Let \(\Omega = \{C_1, C_2, \ldots, C_m\} \) be a family of coverings of \(U, C = \{K_1, K_2, \ldots, K_l\} \), where \(K_j \) is nonempty subset of \(U \) for \(j = 1, 2, \ldots, t_j \). For any \(x \in U, (C_1)_x = \bigcap \{K_j | K_j \in C, x \in K_j\}, \text{ Cov}(C_j) = \{(C_j)_x | x \in \Omega, \Omega_x = \bigcap \{K_j \in \text{ Cov}(C_i), x \in C_i\}, \text{ and Cov}(\Omega_x) = \{\Omega_x | x \in \Omega\}. \text{ As a result, Cov}(C_j) = \{(C_j)_x | x \in \Omega\} \) and Cov(\(\Omega_x \)) = \{\Omega_x | x \in \Omega\} are two coverings of \(U \).

Definition 7. Let \(\Omega = \{C_1, C_2, \ldots, C_m\} \) be a family of coverings of \(U, D = \{d\} \) a decision attribute set, and \(U/D = \{D_1, D_2, \ldots, D_n\} \) a decision partition on \(U \). If for any \(x \in U \), there exists \(D_j \in U/D \) such that \(\Omega_x \subseteq D_j \), then decision system \((U, \Omega, D) \) is called a consistent decision system and denoted by \(\text{ Cov}(\Omega) \leq U/D \).

Definition 8. \(\text{ NIS} = (U, AT \cup D, N) \) be a neighborhood decision information system, where \(D = \{d\} \), \(C_i \) induced by a categorical attribute subset \(A_i \) or a numerical attribute subset \(B_i, i = 1, 2, \ldots, m \), and \(\Omega = \{C_1, C_2, \ldots, C_m\} \) m coverings of \(U \). We call \((U, \Omega, D) \) a covering neighborhood decision system.

Definition 9. Let \((U, \Omega, D = \{d\}) \) be a covering neighborhood decision information system. For \(C_i \in \Omega \), if \(\text{ Cov}(\Omega \cdot C_i) \leq U/D \), then \(C_i \) is called a superfluous covering relative to \(D \) in \(\Omega \), otherwise \(C_i \) is called indispensable relative to \(D \) in \(\Omega \). For every \(P \subseteq \Omega \) satisfying \(\text{ Cov}(P) \leq U/D \), if every element in \(P \) is an indispensable covering, i.e., for any \(C_i \in P, \text{ if Cov}(P - C_i) \leq U/D \), then \(P \) is called a relative reduct of \(\Omega \) relative to \(D \). The disjunction of all the indispensable elements in \(\Omega \) is called the core of \(\Omega \) to \(D \), denoted by \(\text{ NCore}(\Omega) \). The relative reduct of a consistent covering decision system is the subset of coverings to ensure the consistency of the decision information system.

When the attribute reduction of a neighborhood-based multigranulation rough set is to calculate, we will employ the discernibility matrix approach proposed by Chen et al. for this objective, which is as follows:

Definition 10 [1]. Let \((U, \Omega, D = \{d\}) \) be a consistent covering decision system. Suppose \(U = \{x_1, x_2, \ldots, x_n\} \), by \(M(U, \Omega, D) \), we denote a \(n \times n \) matrix \((c_{ij}) \), called the discernibility matrix of \((U, \Omega, D = \{d\}) \), defined as

\[
c_{ij} = \begin{cases} \{C \in \Omega : (C_{x_i} \not\subset C_{x_j}) \wedge (C_{x_j} \not\subset C_{x_i})\} \cup \{C \times C_{x_i} \subset C_{x_j} \wedge (C_{x_j} \subset C_{x_i})\}, & d(\Omega_{x_i}) \neq d(\Omega_{x_j}), \\ d(\Omega_{x_i}) = d(\Omega_{x_j}). & \end{cases}
\]

In which \(D = \{d\} \) and \(d(x) \) is a decision function \(d : U \rightarrow V_d \) of the universe \(U \) into value set \(V_d \). For every \(x_i, x_j \in U \), if \(\Omega_{x_i} \subseteq \Omega_{x_j} \), then \(d(x_i) = d(x_j) = d(\Omega_{x_i}) = d(\Omega_{x_j}) \). If \(d(x_i) \neq d(\Omega_{x_i}) \), then \(\Omega_{x_i} \cap \Omega_{x_j} = \emptyset \), i.e., \(\Omega_{x_i} \not\subseteq \Omega_{x_j} \) and \(\Omega_{x_j} \not\subseteq \Omega_{x_i} \). But if \(\Omega_{x_i} \not\subseteq \Omega_{x_j} \) and \(\Omega_{x_j} \not\subseteq \Omega_{x_i} \) then either \(d(\Omega_{x_i}) = d(\Omega_{x_j}) \) or \(d(\Omega_{x_i}) \neq d(\Omega_{x_j}) \) are possible. For this case, if \(\Omega_{x_i} \cap \Omega_{x_j} \neq \emptyset \), we have \(d(\Omega_{x_i}) = d(\Omega_{x_j}) \). If \(d(\Omega_{x_i}) = d(\Omega_{x_j}) \), then both \(\Omega_{x_i} \not\subseteq \Omega_{x_j} \) and \(\Omega_{x_j} \not\subseteq \Omega_{x_i} \), or \(\Omega_{x_i} \subseteq \Omega_{x_j} \) or \(\Omega_{x_j} \subseteq \Omega_{x_i} \) are possible.

In the following, we give an example to illustrate the covering reduct of 1-type neighborhood multigranulation rough set through using the discernibility matrix approach proposed by Chen et al. The covering reduct of 2-type neighborhood multigranulation rough set can be done similarly.

Example 4. Table 2 depicts a neighborhood decision information system \(\text{ NIS} = (U, AT \cup D, N) \) in which \(AT = \{\text{ outlook, temperature, windy}\} \), \(D = \{\text{ play}\} \). The numerical attribute value of \(\text{ temperature} \) is standardized into \([0, 1]\) (see [6]) for computing and we suppose \(\delta = 0.1 \). By Definition 2, we have that:

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>85</td>
<td>False</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>80</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>83</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>70</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>68</td>
<td>False</td>
<td>Yes</td>
</tr>
<tr>
<td>Rainy</td>
<td>65</td>
<td>True</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>64</td>
<td>True</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>72</td>
<td>False</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 2

A playing tennis information system with mixed attributes.
Acknowledgment

The authors would like to thank the anonymous reviewers for their constructive comments. This work is supported by grants from National Natural Science Foundation of China under Grant (Nos. 60903110, 71140004, 10971186, 10671173 and 11061004), and National Science Foundation in Fujian Province under Grant (No. 2010J01018) and Education Committee of Fujian Province under Grant (Nos. JA11171, JK2011031 and JA09167).

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason. (2012), http://dx.doi.org/10.1016/j.ijar.2012.05.004
References

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multi-granulation rough sets, Int. J. Approx. Reason. (2012), http://dx.doi.org/10.1016/j.ijar.2012.05.004